Compositional Methods
for Probabilistic Systems***

Luca de Alfaro Thomas A. Henzinger Ranjit Jhala

Electrical Engineering and Computer Sciences, University of California, Berkeley
{dealfaro,tah, jhala}@eecs.berkeley.edu

Abstract. We present a compositional trace-based model for proba-
bilistic systems. The behavior of a system with probabilistic choice is a
stochastic process, namely, a probability distribution on traces, or “bun-
dle.” Consequently, the semantics of a system with both nondeterministic
and probabilistic choice is a set of bundles. The bundles of a composite
system can be obtained by combining the bundles of the components
in a simple mathematical way. Refinement between systems is bundle
containment. We achieve assume-guarantee compositionality for bundle
semantics by introducing two scoping mechanisms. The first mechanism,
which is standard in compositional modeling, distinguishes inputs from
outputs and hidden state. The second mechanism, which arises in prob-
abilistic systems, partitions the state into probabilistically independent
regions.

1 Introduction

A system model is compositional if the model of a composite system can be ob-
tained by composing the models of the components. Compositionality comes in
two flavors: shallow and deep. Shallow compositionality is essentially a syntac-
tic notion: given two components P and (), we can construct their composition
P||@, but the semantics of this composition is not directly related to that of P
and @. On the other hand, deep compositionality relates not only the syntax,
but also the semantics: not only can we combine P and @ into P||Q, but the
semantics [P||Q] of P||Q can be obtained by combining [P] and [Q]. A simple
model with deep compositionality is that of transition systems with trace se-
mantics [Dil89,Lam93,Lyn96,AH99]. In the variable-based version of this model,
a state is an assignment of values to a set of variables, a trace is a sequence of
states, and the semantics [P] of a component P consists of the set of all traces
that correspond to behaviors of P. If the variables written by P are read by an-
other component (), and vice versa, and components interact synchronously, then

* This research was supported in part by the SRC contract 99-TJ-683.003, the AFOSR
MURI grant F49620-00-1-0327, the MARCO GSRC grant 98-DT-660, the NSF The-
ory grant CCR-9988172, and the DARPA SEC grant F33615-C-98-3614.

** A preliminary version of this paper will appear in the Proceedings of the 12th Inter-
national Conference on Concurrency Theory (CONCUR 2001).

composition corresponds to the intersection of trace sets: [P||Q] = [P] N [@Q].
If each component has also private variables, which are invisible to the other
component, then we obtain the observable traces of P||Q via projection from
the behaviors of P and () that agree on the mutually visible variables.

The chief advantage of deep over shallow compositionality is that deep com-
positionality enables not only the composition of systems, but also the com-
position of properties. In particular, it becomes possible to prove properties of
systems by proving properties of their components. Since each component is sim-
pler than the composite system, such a compositional approach can be markedly
more efficient. A basic application of property composition consists in proving a
refinement relation P||@Q < P'||Q' between a composite implementation P||@Q and
a composite specification P’||Q’ by proving independently the two component
refinements P < P' and) < @'. In practice, a more powerful assume-guarantee
rule is preferred, where the proofs of each component refinement rely on the
hypothesis that the other component refinement holds, yielding the proof obli-
gations P||Q" = P'||Q" and P'||Q < P'||Q'. Such a circular assume-guarantee
rule is available, for example, for [MC81,AL95McM97,AH99]. In spite of the
advantages of deeply compositional models, no such model has thus far been
presented for systems with both probability and nondeterminism. The difficulty,
as we will detail in Section 2, lies in the interaction between the resolution of
nondeterministic choice, mediated by schedulers, and composition.

We introduce a deeply compositional model for systems with both probabilis-
tic and nondeterministic choice, and we show how the model leads to the first
assume-guarantee rule for checking refinement between probabilistic systems.
The model is based on a synchronous, variable-based view of systems, as in
reactive modules [AH99]. The semantics of a component is obtained by general-
izing trace semantics: instead of a trace, our basic semantical unit is a probability
distribution on traces —i.e., a stochastic process over the state space— which
we call a “bundle.” A bundle represents a single (probabilistic) behavior of a
component, once all nondeterminism has been resolved by a scheduler. Thus,
the semantics [P] of a component P consists of a set of bundles. This is very
similar to the semantics for the probabilistic I/O automata of [SL94,Seg95]. Un-
like the models of [SL94,Seg95], however, our models are deeply compositional.
In our models, the semantics of composition is essentially intersection, as in the
nonprobabilistic case: for two components P and () that share the same vari-
ables, we have [P||Q] = [P] N [Q]; this is now an intersection of bundles, rather
than traces. This relationship will be generalized also to components with private
variables.

Our deeply compositional semantics opens the way to the use of assume-
guarantee methods for probabilistic systems. In the trace-based semantics of
nondeterministic systems, refinement is defined as trace containment. In anal-
ogy, we define refinement as bundle containment: P < P’ iff [P] C [P’]. This
definition, together with deep compositionality, ensures that refinement can be
proven in a compositional fashion: P < P" and @ < Q' imply P||Q < P'||Q".
Furthermore, we show that a circular assume-guarantee rule for refinement can

be applied: P||Q" < P'||Q" and P'||Q = P'||Q" imply P||@ < P'||Q’. This does
not follow immediately from deep compositionality, but requires inductive rea-
soning, as in the nonprobabilistic case. Arguably, the ability of studying systems
in a compositional fashion is even more beneficial for probabilistic than for purely
nondeterministic systems, due to the greater complexity of the verification al-
gorithms and symbolic data structures [IAKN100]. We therefore believe that
our deeply compositional semantics, together with the assume-guarantee rule
for proving refinement, represent a step forward in the analysis and verification
of complex probabilistic systems.

2 Motivational Examples

In systems with both probabilistic and nondeterministic choice, the resolution
of nondeterministic choice is mediated by schedulers, which specify how to
choose between nondeterministic alternatives [Der70,Var85,51.94,BdA95]. Once
a scheduler is fixed, the behavior of a system is a stochastic process, namely,
a bundle. Following [SL94,Seg95], we define the semantics [P] of a component
P as the set of bundles that arise from all possible schedulers for P. While
deterministic schedulers resolve each choice in a deterministic manner [Var85],
we opt for randomized schedulers, which select probability distributions of out-
comes [SL94,BdA95], thus resolving nondeterminism in a randomized fashion,
similarly to Markov decision processes [Der70]. Our preference for randomized
schedulers is motivated by refinement: under randomized scheduling, if we re-
place probability by nondeterminism in a component P, obtaining the compo-
nent P’, then P refines P'. Hence, nondeterminism can be seen as “unspec-
ified probability,” and it can be used to encode imprecise probability values
[JL91,dA98]. To see this, consider the following example.

Example 1 Assume that P and P’ are two components, each writing once to
a variable x that can take the two values 0 or 1. In P, the variable x is set to 0
or 1 with probability % each; in P', the choice between setting x to 0 or 1 is
entirely nondeterministic. Since there is no nondeterminism in P, there is a single
scheduler for P (taking no choices), which gives rise to the behavior (bundle)
with the two one-step traces x:0 and x: 1, each with probability % There are two
deterministic schedulers for P’: the first sets z to 0 and yields the bundle with
the single trace x:0; the second sets x to 1 and yields the bundle with the single
trace x: 1. Therefore, with deterministic scheduling, [P] N [P'] = . There are
infinitely many randomized schedulers for P’, one for each real number 6§ € [0, 1]:
the scheduler o5 sets = to 0 with probability 6, and sets x to 1 with probability
1—6, and thus yields the bundle with the two traces :0 (probability ¢) and z:1
(probability 1 — §). Choosing § = %, we see that using randomized schedulers,
[P] C [P'], as desired. I

We adopt a purely variable-based view of systems: each state is a valuation of
a set of typed variables. Following reactive modules [AH99], our components,
called probabilistic modules, have a set of private variables, visible to the module

ctr p=—1 ctrg=-1
ctr x=0 ext x=0
ext y=0 ctr y=0
ctr p:=0,1 with 1/2,172 ctr q:=0,1 with 1/2,1/2
ctr x:=0 ext x:=0
exty:=0 /\ ctr y:=0
=0 =1 q=0 q=1
=0 =0 x=0 x=0
y=0 y=0 y=0 ¥=0

ctr x:=p ctr x:=p ext x:=q ext x:i=q
exty:=p exty:=p ctry:=q ctry:=q

p=0 P q=0 q=1
x=0 X X= x=1
y=0 y= y=0 y=1
ctr x:=p ctr x:=p ext xi=q ext xi=q
ext yi=p ext y:=p ctryi=q ctr y:=q
module P module Q

Fig. 1. Bundle of P and Q, but not of P||Q

alone, a set of interface variables, which are the outputs of the module, and a set
of external variables, which are the inputs of the module. Together, the interface
and external variables are called observable, and the private and interface vari-
ables are called the controlled variables of the module. Here, we justify some of
the definitions that are necessary to achieve a deeply compositional semantics.

Example 2 The module P has private variable p, interface variable z, and
external variable y. All variables are modified repeatedly, in a sequence of discrete
steps. The initial values of p and = are —1 and 0, respectively. When p = —1, the
module P updates p to 0 or 1 with equal probability %, and updates = to 0. When
p # —1, the module P leaves p unchanged, and updates = to p. The initial value
and updates of the external variable y are entirely nondeterministic. Let op be
the scheduler for P that initially sets y to 0, and then updates y to 0 when
p = —1, and updates y to p when p # —1. The module @, and its scheduler
0q, are defined symmetrically, with ¢ in place of p, and z,y interchanged. The
behavior of these two modules, under their respective schedulers, is illustrated
in Figure 1. Under the scheduler op, the observable part of the behavior of P is
a bundle b consisting of the two infinite traces (z:0,y:0),(0,0),(0,0),... and
(£:0,y:0),(0,0),(1,1),... with probability % each. The bundle b also results
from @ under the scheduler og. However, b is not a bundle of P||@), under any
scheduler. In fact, there is no nondeterminism in P||@: the values for p and ¢ are
chosen independently, and the unique observable behavior of P||@ is the bundle
that, for each 4,7 € {0,1}, contains the trace (z:0,y:0),(0,0),(¢,7),... with
probability %. |

Thus, in order to obtain a compositional semantics, the values of the external
variables must be chosen without looking at the values of private variables. On
the other hand, the choice of values for the controlled variables should be able to

depend on the values of private variables. Hence, we need at least two schedulers
for each module: one for the external variables, which cannot look at the values
of the private variables, and one for the controlled variables, which can.

Example 3 Counsider a module P with an interface variable z and an exter-
nal variable y, and a module () with the interface variable y and the external
variable . Both variables can have value 0 or 1, and are updated completely
nondeterministically. The behavior of P is thus determined by two schedulers:
a module scheduler mp that provides a probability distribution for the choice
between values 0 and 1 for z, and an environment scheduler np that provides
a probability distribution for the choice between values 0 and 1 for y. Symmet-
rically, the behavior of () is determined by the two schedulers mg and 7ng. In
the compositon P||@, the variables x and y are both controlled variables. If we
postulate that all controlled variables are controlled by the same scheduler, then
there is a module scheduler 7p| for P||Q that chooses for (z,y) the values (0,0)
with probability %, and (1,1) with probability % This scheduler gives rise to the
bundle that contains the one-step trace (z:0,y:0) with probability 3, and the
one-step trace (z:1,y:1) with probability % This bundle is neither a bundle of
P, nor a bundle of @, however, because in P and () the values for z and y are
chosen independently. i

In previous models of probabilistic systems, a single scheduler is used to re-
solve all nondeterminism in the choice of values for the controlled variables
[Var85,5L.94,Seg95,BdA95]. The above example indicates that in order to achieve
deep compositionality, we must abandon this restriction, and allow multiple
schedulers for the resolution of the nondeterminism within a module. For each
scheduler, we must specify the set of variables that it affects, as well as the set of
variables at which it can look. To this end, we partition the controlled variables
of a module into atoms: each atom represents a set of controlled variables that
are scheduled together, by a single scheduler. Each atom has also a set of read
variables, which are the variables visible to the scheduler, on which the choice
of values for the controlled variables may depend. When we compose modules,
we take the union of their sets of atoms, thus ensuring that the scheduling de-
pendencies between variables remain unchanged. In the example above, P would
contain an atom for scheduling x, and @) an atom for scheduling y (there are no
read variables). The composite system P||@ then inherits the atoms of P and
@, and has two schedulers, one for x, the other for y. Each pair of schedulers
for P||@ corresponds to both a scheduler of P and a scheduler of @, yielding
[PI N [Q] = [P]Q].

Our atoms are derived directly from the atoms of reactive modules [AH99].
However, while in [AH99] the atoms indicate which variables are updated jointly
(i.e., interdependently), and dependent on which other variables, here atoms ac-
quire additional meaning: they indicate which variables are scheduled jointly, and
dependent on which other variables. In particular, while in the nonprobabilistic
case the merging of atoms never changes the behaviors (traces) of a module, in
the probabilistic case, the merging of atoms may increase the behaviors (bun-
dles) by permitting strictly more probabilistic dependencies between variable

values, as the previous example illustrates. This is because it is the atom struc-
ture of a module that determines probabilistic dependence and, importantly,
independence between variables values.

3 Probabilistic Modules and Composition

3.1 Definition of probabilistic modules

Definition 1. [States and moves] Let X be a set of typed variables. An X-
state s is a function that maps each variable in X to a value of the appropriate
type. We write Val(X) for the set of X -states. An X-move m is a probability
distribution on X -states. The move m is nonprobabilistic if the support of m is
a single state. Given two X -moves my and my, and a real number § € [0, 1], we
write 6 -my + (1 — 6) - my for the X-move m such that m(s) =& -my(s) + (1 —
8) - my(s) for all X -states s.

While a nonprobabilistic transition (s, s') consists of a source state s and a target
state s’, a probabilistic transition (s, m) consists of a source state s and a proba-
bility distribution m of target states. A nondeterministic collection of transitions
(probabilistic or not) is called an “action.” Consider, for example, the action
F = {f1, f2} with the two transitions f; = (s,m;) and fo = (s,ms). Every
action is resolved by a scheduler, which, given a sequence of actions, produces
a sequence of states. Given the action F' = {fi, fo} in state s, a deterministic
scheduler may choose either the transition fi;, whose outcome is determined by
the probability distribution m;, or the transition f», whose outcome is deter-
mined by the probability distribution m,. A randomized scheduler may choose
any convex combination of f; and fs, say, fi with probability 6 and fo with
probability 1 — 6.

Definition 2. [Transitions and actions] Let X and Y be two sets of typed
variables. A probabilistic transition (s,m) from X to Y consists of an X -state
s and a Y-move m. The transition (s, m) is nonprobabilistic if the move m is
nonprobabilistic. A probabilistic action F' from X to Y is a set of probabilistic
transitions from X to Y. The action F is deterministic if for every X -state s,
there is at most one Y -move m such that (s,m) € F. The action F is nonproba-
bilistic if all transitions in F are nonprobabilistic. The action F is convex-closed
if for all X -states s, all Y-moves my and my, and all real numbers § € [0,1], if
(s,my) € F and (s,mp) € F, then (s,6 -my + (1 —8) - my) € F. The convex-
closure ConvexClosure(F) is the least superset of F' that is a convex-closed action
from X to Y.

A system proceeds in a sequence of discrete rounds. In the first round, all system
variables are initialized in accordance with initial actions; in the subsequent
rounds, all system variables are updated in accordance with update actions.
Dependencies between variables are expressed by clustering the variables into
“atoms.” If two variables are controlled (i.e., initialized and updated) by the same

atom, then their behaviors are interdependent. Consequently, if the behaviors
of two variables are desired to be independent, then the variables must be put
into different atoms. Consider, for example, two boolean variables z and y. First,
suppose that and y are jointly controlled by a single atom. The deterministic
initial action 1(z,y :=0,0) + 3(z,y := 1,1) with probability 1 initializes both
variables to 0, and with probability % initializes both variables to 1. There are
two possible initial states, (0,0) and (1,1). Second, suppose that = and y are
independently controlled by different atoms. The deterministic initial actions
(@ :=0)+ 3(x := 1) and L(z := 0) + 1(z := 1) initialize each variable with
equal probability to 0 or 1. There are four possible initial states, (0,0), (0,1), (1,0),
and (1,1). If z is controlled by one atom, and y by another atom, then x may still
depend on y, because the atom controlling z may “read” the value of y at the
beginning of each round. All such read dependencies must be declared explicitly;
the absence of read dependencies (or transitively implied read dependencies)
between different atoms means true independence, in the probabilistic sense.

Definition 3. [Atoms] Let X be a set of typed variables. A probabilistic X -
atom A consists of a set readX(A) C X of read variables, a set ctrX(A) C X of
controlled variables, a probabilistic initial action initF(A) from 0 to ctrX(A), and
a probabilistic update action updateF(A) from readX(A) to ctrX(A). The atom
A is deterministic if both initF(A) and updateF(A) are deterministic actions.
The atom A is nonprobabilistic if both initF(A) and updateF(A) are nonproba-
bilistic.

In addition to its atoms, which provide the initial and update actions for vari-
ables, an open probabilistic system —or “module” — also provides the capability
to view variables that are not initialized and updated by the module, and the
capability to hide variables from the view of other modules. The former vari-
ables are called “external”; the latter, “private.” The variables that are neither
external nor private —i.e., the variables that are initialized and updated by the
module and can be viewed by other modules— are called “interface” variables.

Definition 4. [Modules| A probabilistic module P consists of a declaration
and a body. The module declaration is a finite set of typed variables X (P)
that is partitioned into three sets: the set extlX(P) of external variables, the
set intfX(P) of interface variables, and the set privX(P) of private variables.
The module body is a finite set Atoms(P) of probabilistic X (P)-atoms such that
(1) intfX(P) U privX(P) = U scasoms(p) CtrX(A), and (2) for all atoms Ay and
As in Atoms(P), the sets ctrX(A1) and ctrX(As) are disjoint. The module P
is deterministic if all atoms in Atoms(P) are deterministic. The module P is
nonprobabilistic if all atoms in Atoms(P) are nonprobabilistic.

Given a module P, we call intfX(P) U extlX(P) the set of observable variables
of P, and we call privX(P) U intfX(P) the set of controlled variables of P. The
nonprobabilistic modules are exactly the reactive modules of [AH99] without
await dependencies. We have omitted await dependencies, which are instrumen-
tal for synchronous communication, for simplicity; they can be added without

changing the results of this paper. Modules without external variables are called
“closed.” Every closed module defines a Markov decision process; every closed
deterministic module defines a Markov chain.

3.2 Operations on probabilistic modules

We define three operations on probabilistic modules: hiding, composition, and
opening. The hiding (or abstraction) operation makes some interface variables
private.

Definition 5. [Hiding] Let P be a probabilistic module, and let Y C intfX(P)
be a set of interface variables. By hiding Y in P we obtain the probabilistic
module P\Y with the set extlX(P\Y) = extlX(P) of external variables, the
set intfX(P\Y) = intfX(P)\Y of interface variables, the set privX(P\Y) =
privX(P) UY of private variables, and the set Atoms(P\Y) = Atoms(P) of
atoms.

The (parallel) composition operation puts together two modules which control
the behaviors of disjoint sets of variables. The composition operation can be ap-
plied only when the observable —i.e., external and interface— variables of two
modules coincide. This constraint is necessary for a compositional semantics in
the presence of probabilities. If a module has a private variable p and an external
variables y, then the module semantics insists on the independence between p
and y, because the environment, which controls y, cannot observe p. It is there-
fore illegal to compose a module with private p, but without external y, and an
environment that controls y, because the module, which does not know about
the existence of y, has no way of noting that p and y must be independent.
We will illustrate this in Example 4, presented below after the necessary ter-
minology has been introduced. This underlines how the scoping of variables in
the probabilistic case is considerably more delicate than in the nonprobabilistic
case, where incidental dependencies between variables cause no harm.

Definition 6. [Composition] Two probabilistic modules P, and P, can be
composed if (1) extlX(P;) UintfX(P;) = extIX(P;) UintfX(Ps), (2) intfX(P) N
intfX(P2) = 0, and (3) privX(P) N X(Py) = 0 and X(Py) N privX(P) = 0.
Two composition of two probabilistic modules P, and P that can be composed
is the probabilistic module Py||Py with the set extlX(Pi||P2) = (extlX(P;) U
ext]X(P2))\intfX (P || P2) of external variables, the set intfX(Py||Py) = intfX (P)U
intfX(P») of interface variables, the set privX(Py||P2) = privX(P;) U privX(Ps)
of private variables, and the set Atoms(P;||P2) = Atoms(P;) U Atoms(P2) of
atoms.

The opening operation adds external variables to a module, and is unique to
probabilistic modules. It is used to ensure that two modules have the same set
of observable variables before they are composed.

Definition 7. [Opening] Let P be a probabilistic module, and let Y be a set
of typed variables disjoint from the set X(P) of module variables. By opening
P to Y we obtain the probabilistic module P &Y with the set extIX(PWY) =
extlIX(P)UY of external variables, the set intfX(PWY) = intfX(P) of interface
variables, the set privX(P WY) = privX(P) of private variables, and the set
Atoms(P WY) = Atoms(P) of atoms.

3.3 Trace semantics of probabilistic systems

Definition of probabilistic languages. While the behavior of a determin-
istic and closed nonprobabilistic system is an infinite state sequence —called
a “trace”— the behavior of a deterministic and closed probabilistic system
(Markov chain) is a probability distribution on traces —called a “bundle.” Con-
sequently, the possible behaviors of a nondeterministic or open probabilistic sys-
tem form a set of traces, and the possible behaviors of a nondeterministic or open
probabilistic system (in the nondeterministic and closed case, a Markov decision
process) form a set of bundles. We restrict ourselves to safe systems, where it
suffices to consider finite behaviors, albeit of arbitrary length; this restriction
is particularly technically convenient in the probabilistic case, as probability
distributions on finite traces can be defined in a straightforward manner.

Definition 8. [Traces and bundles] Let X be a set of typed variables, and let
n be a nonnegative integer. An X -trace t of length n is a sequence of X -states
with n elements. We write € for the empty sequence, and given 1 < ¢ < n, we
write t(i) for the i-th element of t. We write Val"(X) for the set of X -traces of
length n. An X -bundle of length n is a probability distribution over X -traces of
length n. The unique X -bundle of length 0, which assigns the probability 1 to €,
is called the empty bundle. The bundle b is nonprobabilistic if the support of
b is a single trace. If n > 0, then the prefix of b is the X-bundle b’ of length
n—1 such that b'(t) = 3 cyax) bt - 8) for all X-tracest of length n —1. The
X -bundle b" of length n + 1 is an extension of b if b is the prefiz of b".

Each bundle records the outcome of a particular sequence of nondeterministic
or randomized choices made by a system. Such a sequence of choices is called a
“scheduler” (to be defined later). The set of bundles that result from all possible
schedulers are collected forms a probabilistic languages.

Definition 9. [Languages] Let X be a set of typed variables. A set L of X-
bundles is prefix-closed if for every bundle b in L, the prefix of b is also in L. The
set L of bundles is extension-closed if (1) the empty bundle is in L, and (2) for
every bundle b in L, some extension of b is also in L. A probabilistic X-language
L is a prefiz-closed and extension-closed set of X -bundles. The language L is
deterministic if for all nonnegative integers n, there is a single bundle of length n
in L. The language L is nonprobabilistic if all bundles in L are nonprobabilistic.

The nonprobabilistic languages are precisely the prefix-closed and extension-
closed trace sets; that is, the languages generated by safe and deadlock-free
discrete systems.

Operations on probabilistic languages. We define two operations on bun-
dles and on probabilistic languages: projection and product. Properties of these
operations are needed to prove the compositionality of hiding and composition
for probabilistic systems.

Definition 10. [Projection] Let X and X' C X be two sets of typed variables.
The X'-projection of an X -state s is the X'-state s[X'] such that (s[X'])(z) =
s(z) for all variables x € X'. The X'-projection of an X -move m is the X'-move
m[X'] such that (m[X'])(s") = EseVal(X) with s[x]=s' m(s) for all X'-states s'.
The X'-projection of an X-trace t of length n is the X'-trace t[X'] of length n
such that (t[X'])(%) = (¢(¢))[X'] for all 1 < i < n. The X'-projection of an X -
bundle b of length n is the X'-bundle b[X'] of length n such that (b[X'])(t') =
ZteVal”(X) with ¢[x/]=t" b(t) for all X'-traces t of length n. The X'-projection
of an X -language L is the X'-language L[X'] = {b[X'] | b € L}.

Definition 11. [Product] Let X; and X» be two sets of typed variables. An X; -
state (resp. move; trace; bundle) s1 and a X»-state (resp. move; trace; bundle)
so can be multiplied if s1[X; N X3] = s2[X; N X3]. The product of an X -state
s1 and an Xo-state so that can be multiplied is the (X1 U Xo)-state s; X s such
that (s1 X s2)(z1) = s1(x1) for all variables x; € X1, and (s1 X s2)(z2) = s2(x2)
for all xo € X,. The product of an Xi-move m; and an Xo-move my that
can be multiplied is the (X1 U X3)-move m; X my such that (m; X mp)(s) =
my (s[X1]) - ma(s[X2])/my(s[X1 N X3]) for all (X1 U Xy)-states s. The product
of an Xi-trace t1 and an Xs-trace t2 that have length n and can be multiplied
is the (X1 U Xo)-trace t1 X to of length n such that (t1 X t2)(i) = t1(i) x t2(4)
for all 1 < i < n. The product of an Xi-bundle by and an Xs-bundle by
that have length n and can be multiplied is the (X; U X2)-bundle by X bs of
length n such that (by x b2)(t) = by (t[X1]) - ba(¢[X2])/b1(t[X1 N X)) for all
(X1 U Xso)-traces t of length n. The product of an X;-language Ly and an Xo-
language Lo is the (X1 U X3)-language Ly X Ly = {by x ba | by € L; and by €
L, can be multiplied}.

The product of bundle languages is the probabilistic analogue to the intersection
of trace languages. This is captured in the following lemma.

Lemma 1. Let Ly be a probabilistic X1-language, and let Lo be a probabilistic
Xg—language. Then (Ll X Lz)[Xl N Xz] = Ll[Xl n XQ] N LQ[Xl N XQ]

Containment between probabilistic languages. Since the set of possible
behaviors of a probabilistic system is a set of bundles, the appropriate notion of
refinement between probabilistic systems is bundle containment: an implemen-
tation refines a specification iff every possible behavior (bundle) of the imple-
mentation is a legal behavior (bundle) of the specification.

Definition 12. [Bundle containment] Let X and X' C X be two sets of
typed variables. If L is a probabilistic X -language, and L' is a probabilistic X'-
language, then L is bundle-contained in L' if L[X'] C L'.

10

3.4 Connecting syntax and semantics

Bundle semantics of probabilistic modules. We associate with every proba-
bilistic module a probabilistic language, i.e., a set of bundles. The key concept for
doing this is the concept of a “scheduler,” which represents a possible sequence
of choices taken by the module. Each scheduler, then, gives rise to an infinite
bundle that can be represented by all its finite prefixes. We permit randomized
schedulers, which in each state can choose probability distributions over the en-
abled transitions. By contrast, a deterministic scheduler must choose exactly one
of the enabled transitions.

Definition 13. [Schedulers] Let X and Y be two sets of variables. A scheduler
o from X toY is a function that maps every X -trace to a probability distribution
on Y -states. The scheduler o is nonprobabilistic if for all X -traces t, the support
of a(t) is a single Y -state. If o is a scheduler from X to X, then the 0-outcome
of o is the empty bundle, and for all positive integers i > 0, the i-outcome of o is
an inductively defined X -bundle b; of length i: the bundle b; is the extension of
the bundle b;_y such that b;(t) =b;_1(t(1)---t(i —1))-(o(¢(1)---t(i—1)))(¢(¢))
for all X -traces t of length i. We collect the set of i-outcomes of o, for all i > 0,
in the set Outcome(o) of X -bundles.

Each scheduler for a module consists of a scheduler for the environment, which
chooses the initial and updated values for the external variables, together with
a scheduler for each atom, which chooses the initial and updated values for the
variables controlled by that atom.

Definition 14. [Schedulers for an atom] Consider a probabilistic X -atom A.
The set atomX(A) of atom schedulers for A contains all schedulers o from
readX(A) to ctrX(A) such that (1) (-,0(e)) € ConvexClosure(initF(A)), and
(2) (t(n),o(t)) € ConvexClosure(updateF (A)) for all nonempty readX(A)-traces
t of length n. A scheduler o in atomX(A) is deterministic if (1) (-,0(c)) €
initF(A), and (2) (t(n),o(t)) € updateF(A) for all nonempty tracest of length n.
Let atomXY(A) be the set of deterministic schedulers in atomX(A).

To compose the schedulers for several atoms, we define the product of schedulers.

Definition 15. [Product of schedulers] Two schedulers o1 and oy are dis-
joint if o1 is a scheduler from Xy to Y1, and o2 is a scheduler from Xs to Ys,
and Y1 NYs = 0. If o1 is a scheduler from X1 to Y1, and o3 is a scheduler from
Xy to Ys, such that o1 and oo are disjoint, then the product is the scheduler
o1 X 09 fmm X1 U X2 to Yi U Y2 such that (Ul X (Tz)(t) = (Tl(t[Xl]) X Uz(t[Xz])
for all (X1 UXy)-traces t. If o1 and o2 are two sets of schedulers such that every
scheduler in Xy is disjoint from every scheduler in Xy, then Xy x Xy = {01 X 02 |
o1 € Xy and 02 € Yo},

The environment scheduler can initialize and update the external variables in
arbitrary, interdependent ways.

11

Definition 16. [Schedulers for a module] Consider a probabilistic module P.
The set extl!X(P) of environment schedulers for P contains all schedulers from
extlX(P) U intfX(P) to extlX(P). Let extlX4(P) be the set of nonprobabilis-
tic schedulers in extlX(P). The set mod X (P) of module schedulers for P con-
tains the schedulers from X(P) to X(P) such that modX(P) = extl¥(P) x
[acAtoms(p) atomX(A). Let mod Y4 (P) = extlEd(P)xHAeAmmS(P) atomY(A).

We are finally ready to define the “trace semantics” of a probabilistic module.

Definition 17. [Semantics of a module] Given a probabilistic module P, we
define L(P) = {Outcome(s) | ¢ € modX(P)} and LY P) = {Outcome(c) |
o € modX?4(P)}. The trace semantics of the probabilistic module P is [P] =
L(P)JextIX(P) U intfX(P)]. The deterministic trace semantics of P is [P]¢ =
LA(P)[extIX(P) U intfX(P)].

It it not difficult to verify that the bundle semantics of a module is indeed
prefix-closed and extension-closed: if P is a probabilistic module, then [P] is
a probabilistic (extIX(P) U intfX(P))-language. In general, [P]¢ C [P]. For
nonprobabilistic modules, the traditional trace semantics corresponds to bundle
semantics with only deterministic schedulers: according to [AH99], the trace
semantics of a reactive module P is [P].

Bundle interpretation of module operations. The hiding of variables in a
module corresponds to a projection on the bundle language of the module: it is
easy to check that for every probabilistic module P, and every set ¥ C intfX(P)
of interface variables, [P\Y] = [P][extlX(P) UintfX(P)\Y]. The composition of
two modules corresponds to a product on the respective bundle languages. This
observation, which is stated in the following proposition, will be instrumental
to the compositionality properties of probabilistic modules given in the next
section.

Theorem 1. If P, and P> are two probabilistic modules that can be composed,
then |IP1||P2]] = II.Pl]] X [[Pz]] = [[Pl]] n IIPQ]]

Proof. By induction on the length of bundles, we show the following two obser-
vations, which rely heavily on the fact that schedulers have restricted visibility.
First, b € L(P,||P,) implies that b[X(P,)] € L(P1) and b[X(P)] € L(FP2).
Moreover, b = b[X(P;)] x b[X(P,)]. This in turn also means that every bundle
in [Py ||P;] can be “factored,” via projection, into bundles in [P] and [P2]. Sec-
ond, for all bundles by € L(P;) and by € L(P>) such that b1 [X(P) N X (P)] =
by[X (P1) N X (P,)]), we have by X by € L(Py||P2). These two observations com-
bine to give the first equality. The observation that X (P;) N X (P,) is the set of
observables of both P; and Ps, coupled with Lemma 1, gives the second equality.
|

The following example illustrates the need for restricting composition to modules
with identical sets of observable variables.

12

Example 4 Consider two modules P and @) defined as in Example 2, except
that the variables p and ¢ are both interface variables, and thus observable. We
assume that each controlled variable of P and @ belongs to a different atom.
Under the scheduler op, the behavior of P is a bundle bp consisting of the
two infinite traces (p: —1,2:0,y:0),(0,0,0),(0,0,0),... and (p: —1,2:0,y:
0),(1,0,0),(1,1,1),... with probability 1 each (to be precise, there are infinitely
many bundles, each consisting of two finite traces, whose limit is bp, but in exam-
ples, we find it convenient to informally consider bundles of infinite traces). Sim-
ilarly, the behavior of () under o¢ is the bundle bg that contains the two traces
(:0,4:0,¢9:—1),(0,0,0),(0,0,0),...and (z:0,y:0,¢q:—1),(0,0,1),(1,1,1),...,
each with probability £ (see Figure 1). The bundles bp and bg can be multi-
plied, but their product bp xbg is not a bundle of P||Q. In fact, bp xbg consists
of the two traces (p: —1,2:0,y:0,¢:-1),(0,0,0,0),(0,0,0,0),...and (p:—1,z:
0,9:0,¢:-1),(1,0,0,1),(1,1,1,1),... On the other hand, since the values of p
and g are chosen independently, [P||Q] consists of a single bundle bp g, contain-
ing for each 4,j € {0,1} the trace (p:—1,2:0,y:0,¢9:-1),(¢,0,0,7), (¢,4,4,7), - -
with probability 1. It follows that [P] x [Q] D [P||Q]. ®

4 Refinement between Probabilistic Modules

4.1 Definition of probabilistic refinement

The refinement relation between probabilistic modules is defined essentially as
bundle containment. Unlike in the nonprobabilistic case, however, we require an
additional constraint on the atom structure of the two modules, which ensures
that an implementation cannot exhibit more variable dependencies than a spec-
ification. In other words, all variables that are specified to be independent must
be implemented independently.

Definition 18. [Refinement between modules] Let P and P’ be two prob-
abilistic modules. The module P structurally refines P’, written P <g P', if
(1) intfX(P) D intfX(P') and extlX(P) UintfX(P) D extlX(P'), (2) for all vari-
ables w1, xo € IntfX(P'), if there is an atom A € Atoms(P) such that x1,x2 €
ctrX(A), then there is an atom A" € Atoms(P') such that x1,x2 € ctrX(A'),
and (3) for all variables © € intfX(P') and y € intfX(P') U extlX(P'), if there
is an atom A € Atoms(P) such that x € ctrX(A) and y € readX(A), then there
is an atom A' € Atoms(P') such that x € ctrX(A4') and y € readX(A"). The
module P (behaviorally) refines P', written P X P', if P <g P' and (4) [P] is
bundle-contained in [P'].

It is easy to check that the refinement relation < it is a preorder. Further-
more, every probabilistic module refines its nonprobabilistic abstraction. The
nonprobabilistic abstraction of a probabilistic action F' is the nonprobabilistic
action {(s,s") | (s,m) € F and s’ € Support(m)}. The nonprobabilistic abstrac-
tion Nonprob(P) of a probabilistic module P is the nonprobabilistic module
that results from P by replacing all initial and update actions of P with their
nonprobabilistic abstractions. Then, P < Nonprob(P).

13

Refinement between nonprobabilistic modules, however, does not quite agree
with refinement between reactive modules, as defined in [AH99]. The reason
is that conditions (2) and (3) are absent from the definition of refinement for
reactive modules, which is purely behavioral (namely, trace containment). For
example, two atoms of a reactive module specification can be implemented by a
single atom. If atoms are viewed structurally, say, as blocks in a block diagram,
then such a refinement breaks component boundaries. This is brought to the
fore formally in the probabilistic case, where atoms carry meaning as bound-
aries between independent variables. We submit that it is the definition above,
including the structural conditions (2) and (3), which is more sensible also in
the nonprobabilistic case of reactive modules. Once conditions (2) and (3) are
added to the refinement between reactive modules, then the probabilistic case is
a conservative extension: for nonprobabilistic modules P and P’, we have P < P’
iff P <5 P'" and (4%) [P]? is bundle-contained in [P']¢.

4.2 Compositionality of probabilistic refinement

The following theorem summarizes the compositionality properties of the re-
finement relation between probabilistic modules. In particular, refinement is a
congruence with respect to all module operations, and the refinement between
composite modules can be decomposed using circular assume-guarantee reason-
ing.

Theorem 2. [Compositionality]| The following statements are true, provided
all subexpressions are well-defined:

- P < P\Y.

~ PWY =< P.

- PllQ < P.

—IfP < P', then P\Y < P'\Y.
—IfP < P, then PWY < P'WY.

~ IfP = P, then P||Q < P'||Q.
— IfP|Q = Q and Q||P' = @', then P||P' = Q||Q'.

The last assertion is an assume-guarantee rule for probabilistic modules. Its
proof uses the following lemma, whose proof relies on Theorem 1. Essentially,
the lemma states that the observable part of a bundle of length i is obtained
from the observable part of its prefix of length ¢ — 1, the environment scheduler
and the “observable” behaviour of the module scheduler, and the last may be
written as the product of the observable behaviours of the atom schedulers and
the environment scheduler. Given a scheduler o from X (P) to ctrX(P), an X (P)-
bundle b, and its projection b* = b[intfX(P) U extlX(P)], define the observable
scheduler o* w.r.t. b as the scheduler from intfX(P)UextlX(P) to intfX(P) such
that for every (intfX(P) U extlX(P))-trace s of length i — 1,

b1 (#(1) -~ t(i — 1))
Lo bia(s(1)-s(i— 1))

o*(s(1)- - s(i — 1)) = Co(t(1) - t(i - 1)) [intX(P)],

14

where t* = t[intfX(P) U extlX(P)]. Recall that if P = P;|| P is defined, then
it must be that intfX(P) U extIX(P) = intfX(P) U extlX(Py) = intfX(P;) U
extlX(Py).

Lemma 2. Let P = Pi||P, be a probabilistic module, and let b € L(P,||P) be
the outcome of a scheduler o = ogny X op, X op, With 0., € extlY(P) and
op, € [lacatoms(p,) atomE(A) for j = 1,2. For every (intfX(P) U extlX(P))-
trace t of length i, we have b} (t) = b}, (t(1)---t(i—1))-(0pae X op, x0p,)((7)),
where o' is the observable scheduler w.r.t. b[X(F;)] for j =1,2.

Using this lemma, the soundness of the assume-guarantee rule can be proved

in a fashion similar to that for nonprobabilistic systems like reactive modules
[AH99].

References

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design 15:7-48, 1999.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans. Program-
ming Languages and Systems, 17:507-534, 1995.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeter-
ministic systems. In Foundations of Software Technology and Theoretical Computer
Science, volume 1026 of Lect. Notes in Comp. Sci., pages 499-513. Springer-Verlag,
1995.

[dA98] L. de Alfaro. Stochastic transition systems. In Concurrency Theory, volume
1466 of Lect. Notes in Comp. Sci., pages 423—-438. Springer-Verlag, 1998.

[dAKN+OO] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala.
Symbolic model checking of concurrent probabilistic processes using MTBDDs and
the Kronecker representation. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 1785 of Lect. Notes in Comp. Sci., pages 395-410.
Springer-Verlag, 2000.

[Der70] C. Derman. Finite State Markovian Decision Processes. Academic Press, 1970.

[Dil89] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
independent Circuits. The MIT Press, 1989.

[JL91] B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic pro-
cesses. In Proc. Symp. Logic in Computer Science, pages 266-277. IEEE Computer
Society Press, 1991.

[Lam93] L. Lamport. Specifying concurrent program modules. ACM Trans. Progam-
ming Languages and Systems, 5:190-222, 1993.

[Lyn96] N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

[MC81] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Trans.
Software Engineering, SE-7:417-426, 1981.

[McM97] K.L. McMillan. A compositional rule for hardware design refinement. In
Computer-Aided Verification, volume 1254 of Lect. Notes in Comp. Sci., pages 24—
35. Springer-Verlag, 1997.

[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, MIT, 1995. Technical Report MIT/LCS/TR-676.

15

[SL94] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes

In Concurrency Theory, volume 836 of Lect. Notes in Comp. Sci., pages 481-496
Springer-Verlag, 1994.

[Var85] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state sys-

tems. In Proc. Symp. Foundations of Computer Science, pages 327-338. IEEE
Computer Society Press, 1985.

16

