
Compositional Methods

for Probabilistic Systems����

Luca de Alfaro Thomas A� Henzinger Ranjit Jhala

Electrical Engineering and Computer Sciences� University of California� Berkeley
fdealfaro�tah�jhalag�eecs�berkeley�edu

Abstract� We present a compositional trace�based model for proba�
bilistic systems� The behavior of a system with probabilistic choice is a
stochastic process� namely� a probability distribution on traces� or �bun�
dle�� Consequently� the semantics of a systemwith both nondeterministic
and probabilistic choice is a set of bundles� The bundles of a composite
system can be obtained by combining the bundles of the components
in a simple mathematical way� Re�nement between systems is bundle
containment� We achieve assume�guarantee compositionality for bundle
semantics by introducing two scoping mechanisms� The �rst mechanism�
which is standard in compositional modeling� distinguishes inputs from
outputs and hidden state� The second mechanism� which arises in prob�
abilistic systems� partitions the state into probabilistically independent
regions�

� Introduction

A system model is compositional if the model of a composite system can be ob�
tained by composing the models of the components� Compositionality comes in
two �avors� shallow and deep� Shallow compositionality is essentially a syntac�
tic notion� given two components P and Q� we can construct their composition
PkQ� but the semantics of this composition is not directly related to that of P
and Q� On the other hand� deep compositionality relates not only the syntax�
but also the semantics� not only can we combine P and Q into PkQ� but the
semantics ��PkQ�� of PkQ can be obtained by combining ��P �� and ��Q��� A simple
model with deep compositionality is that of transition systems with trace se�
mantics �Dil�	�Lam	
�Lyn	��AH		�� In the variable�based version of this model�
a state is an assignment of values to a set of variables� a trace is a sequence of
states� and the semantics ��P �� of a component P consists of the set of all traces
that correspond to behaviors of P � If the variables written by P are read by an�
other componentQ� and vice versa� and components interact synchronously� then

� This researchwas supported in part by the SRC contract ���TJ��	
���
� the AFOSR
MURI grant F�����������
�� the MARCO GSRC grant �	�DT����� the NSF The�
ory grant CCR���		��� and the DARPA SEC grant F

����C��	�
����

�� A preliminary version of this paper will appear in the Proceedings of the ��th Inter�

national Conference on Concurrency Theory �CONCUR �����

composition corresponds to the intersection of trace sets� ��PkQ�� � ��P �� � ��Q���
If each component has also private variables� which are invisible to the other
component� then we obtain the observable traces of PkQ via projection from
the behaviors of P and Q that agree on the mutually visible variables�

The chief advantage of deep over shallow compositionality is that deep com�
positionality enables not only the composition of systems� but also the com�
position of properties� In particular� it becomes possible to prove properties of
systems by proving properties of their components� Since each component is sim�
pler than the composite system� such a compositional approach can be markedly
more ecient� A basic application of property composition consists in proving a
re�nement relation PkQ � P �kQ� between a composite implementation PkQ and
a composite speci�cation P �kQ� by proving independently the two component
re�nements P � P � and Q � Q�� In practice� a more powerful assume�guarantee
rule is preferred� where the proofs of each component re�nement rely on the
hypothesis that the other component re�nement holds� yielding the proof obli�
gations PkQ� � P �kQ� and P �kQ � P �kQ�� Such a circular assume�guarantee
rule is available� for example� for �MC���AL	��McM	��AH		�� In spite of the
advantages of deeply compositional models� no such model has thus far been
presented for systems with both probability and nondeterminism� The diculty�
as we will detail in Section �� lies in the interaction between the resolution of
nondeterministic choice� mediated by schedulers� and composition�

We introduce a deeply compositional model for systems with both probabilis�
tic and nondeterministic choice� and we show how the model leads to the �rst
assume�guarantee rule for checking re�nement between probabilistic systems�
The model is based on a synchronous� variable�based view of systems� as in
reactive modules �AH		�� The semantics of a component is obtained by general�
izing trace semantics� instead of a trace� our basic semantical unit is a probability
distribution on traces �i�e�� a stochastic process over the state space� which
we call a �bundle�� A bundle represents a single �probabilistic� behavior of a
component� once all nondeterminism has been resolved by a scheduler� Thus�
the semantics ��P �� of a component P consists of a set of bundles� This is very
similar to the semantics for the probabilistic I�O automata of �SL	��Seg	��� Un�
like the models of �SL	��Seg	��� however� our models are deeply compositional�
In our models� the semantics of composition is essentially intersection� as in the
nonprobabilistic case� for two components P and Q that share the same vari�
ables� we have ��PkQ�� � ��P ��� ��Q��� this is now an intersection of bundles� rather
than traces� This relationship will be generalized also to components with private
variables�

Our deeply compositional semantics opens the way to the use of assume�
guarantee methods for probabilistic systems� In the trace�based semantics of
nondeterministic systems� re�nement is de�ned as trace containment� In anal�
ogy� we de�ne re�nement as bundle containment� P � P � i� ��P �� � ��P ���� This
de�nition� together with deep compositionality� ensures that re�nement can be
proven in a compositional fashion� P � P � and Q � Q� imply PkQ � P �kQ��
Furthermore� we show that a circular assume�guarantee rule for re�nement can

�

be applied� PkQ� � P �kQ� and P �kQ � P �kQ� imply PkQ � P �kQ�� This does
not follow immediately from deep compositionality� but requires inductive rea�
soning� as in the nonprobabilistic case� Arguably� the ability of studying systems
in a compositional fashion is even more bene�cial for probabilistic than for purely
nondeterministic systems� due to the greater complexity of the veri�cation al�
gorithms and symbolic data structures �dAKN����� We therefore believe that
our deeply compositional semantics� together with the assume�guarantee rule
for proving re�nement� represent a step forward in the analysis and veri�cation
of complex probabilistic systems�

� Motivational Examples

In systems with both probabilistic and nondeterministic choice� the resolution
of nondeterministic choice is mediated by schedulers� which specify how to
choose between nondeterministic alternatives �Der���Var���SL	��BdA	��� Once
a scheduler is �xed� the behavior of a system is a stochastic process� namely�
a bundle� Following �SL	��Seg	��� we de�ne the semantics ��P �� of a component
P as the set of bundles that arise from all possible schedulers for P � While
deterministic schedulers resolve each choice in a deterministic manner �Var����
we opt for randomized schedulers� which select probability distributions of out�
comes �SL	��BdA	��� thus resolving nondeterminism in a randomized fashion�
similarly to Markov decision processes �Der���� Our preference for randomized
schedulers is motivated by re�nement� under randomized scheduling� if we re�
place probability by nondeterminism in a component P � obtaining the compo�
nent P �� then P re�nes P �� Hence� nondeterminism can be seen as �unspec�
i�ed probability�� and it can be used to encode imprecise probability values
�JL	��dA	��� To see this� consider the following example�

Example � Assume that P and P � are two components� each writing once to
a variable x that can take the two values � or �� In P � the variable x is set to �
or � with probability �

� each� in P �� the choice between setting x to � or � is
entirely nondeterministic� Since there is no nondeterminism in P � there is a single
scheduler for P �taking no choices�� which gives rise to the behavior �bundle�
with the two one�step traces x �� and x ��� each with probability �

� � There are two
deterministic schedulers for P �� the �rst sets x to � and yields the bundle with
the single trace x ��� the second sets x to � and yields the bundle with the single
trace x � �� Therefore� with deterministic scheduling� ��P �� � ��P ��� � �� There are
in�nitely many randomized schedulers for P �� one for each real number � � ��� ���
the scheduler �� sets x to � with probability �� and sets x to � with probability
���� and thus yields the bundle with the two traces x �� �probability �� and x ��
�probability � � ��� Choosing � � �

� � we see that using randomized schedulers�
��P �� � ��P ���� as desired�

We adopt a purely variable�based view of systems� each state is a valuation of
a set of typed variables� Following reactive modules �AH		�� our components�
called probabilistic modules� have a set of private variables� visible to the module

x=0
y=0

p=1
x=1
y=1

ext y:=p ext y:=p

p=0

p=0
x=0
y=0

p=1
x=0
y=0

ctr x:=0

ctr x=0

ctr p:=0,1 with 1/2,1/2

 ext y:=0

 ext y=0

 ctr p=−1

ctr x:=p ctr x:=p

ctr x:=p
 ext y:=p

ctr x:=p
 ext y:=p

module P

x=0
y=0

x=0
y=0

ctr y:=q

q=0 q=1

ctr y:=q

x=0
y=0

x=1
y=1

ctr y:=q ctr y:=q

q=0 q=1

module Q

ext x:=q

ctr q:=0,1 with 1/2,1/2
ext x:=0
ctr y:=0

ctr y=0
 ext x=0
 ctr q=−1

 ext x:=q

 ext x:=q ext x:=q

Fig� �� Bundle of P and Q� but not of PkQ

alone� a set of interface variables� which are the outputs of the module� and a set
of external variables� which are the inputs of the module� Together� the interface
and external variables are called observable� and the private and interface vari�
ables are called the controlled variables of the module� Here� we justify some of
the de�nitions that are necessary to achieve a deeply compositional semantics�

Example � The module P has private variable p� interface variable x� and
external variable y� All variables are modi�ed repeatedly� in a sequence of discrete
steps� The initial values of p and x are �� and �� respectively� When p � ��� the
module P updates p to � or � with equal probability �

� � and updates x to �� When
p �� ��� the module P leaves p unchanged� and updates x to p� The initial value
and updates of the external variable y are entirely nondeterministic� Let �P be
the scheduler for P that initially sets y to �� and then updates y to � when
p � ��� and updates y to p when p �� ��� The module Q� and its scheduler
�Q� are de�ned symmetrically� with q in place of p� and x� y interchanged� The
behavior of these two modules� under their respective schedulers� is illustrated
in Figure �� Under the scheduler �P � the observable part of the behavior of P is
a bundle b consisting of the two in�nite traces �x � �� y � ��� ��� ��� ��� ��� � � � and
�x � �� y � ��� ��� ��� ��� ��� � � � with probability �

� each� The bundle b also results
from Q under the scheduler �Q� However� b is not a bundle of PkQ� under any
scheduler� In fact� there is no nondeterminism in PkQ� the values for p and q are
chosen independently� and the unique observable behavior of PkQ is the bundle
that� for each i� j � f�� �g� contains the trace �x � �� y � ��� ��� ��� �i� j�� � � � with
probability �

� �

Thus� in order to obtain a compositional semantics� the values of the external
variables must be chosen without looking at the values of private variables� On
the other hand� the choice of values for the controlled variables should be able to

�

depend on the values of private variables� Hence� we need at least two schedulers
for each module� one for the external variables� which cannot look at the values
of the private variables� and one for the controlled variables� which can�

Example � Consider a module P with an interface variable x and an exter�
nal variable y� and a module Q with the interface variable y and the external
variable x� Both variables can have value � or �� and are updated completely
nondeterministically� The behavior of P is thus determined by two schedulers�
a module scheduler �P that provides a probability distribution for the choice
between values � and � for x� and an environment scheduler �P that provides
a probability distribution for the choice between values � and � for y� Symmet�
rically� the behavior of Q is determined by the two schedulers �Q and �Q� In
the compositon PkQ� the variables x and y are both controlled variables� If we
postulate that all controlled variables are controlled by the same scheduler� then
there is a module scheduler �PkQ for PkQ that chooses for �x� y� the values ��� ��

with probability �
� � and ��� �� with probability �

� � This scheduler gives rise to the
bundle that contains the one�step trace �x � �� y � �� with probability �

� � and the
one�step trace �x � �� y � �� with probability �

� � This bundle is neither a bundle of
P � nor a bundle of Q� however� because in P and Q the values for x and y are
chosen independently�

In previous models of probabilistic systems� a single scheduler is used to re�
solve all nondeterminism in the choice of values for the controlled variables
�Var���SL	��Seg	��BdA	��� The above example indicates that in order to achieve
deep compositionality� we must abandon this restriction� and allow multiple
schedulers for the resolution of the nondeterminism within a module� For each
scheduler� we must specify the set of variables that it a�ects� as well as the set of
variables at which it can look� To this end� we partition the controlled variables
of a module into atoms� each atom represents a set of controlled variables that
are scheduled together� by a single scheduler� Each atom has also a set of read
variables� which are the variables visible to the scheduler� on which the choice
of values for the controlled variables may depend� When we compose modules�
we take the union of their sets of atoms� thus ensuring that the scheduling de�
pendencies between variables remain unchanged� In the example above� P would
contain an atom for scheduling x� and Q an atom for scheduling y �there are no
read variables�� The composite system PkQ then inherits the atoms of P and
Q� and has two schedulers� one for x� the other for y� Each pair of schedulers
for PkQ corresponds to both a scheduler of P and a scheduler of Q� yielding
��P �� � ��Q�� � ��PkQ���

Our atoms are derived directly from the atoms of reactive modules �AH		��
However� while in �AH		� the atoms indicate which variables are updated jointly
�i�e�� interdependently�� and dependent on which other variables� here atoms ac�
quire additional meaning� they indicate which variables are scheduled jointly� and
dependent on which other variables� In particular� while in the nonprobabilistic
case the merging of atoms never changes the behaviors �traces� of a module� in
the probabilistic case� the merging of atoms may increase the behaviors �bun�
dles� by permitting strictly more probabilistic dependencies between variable

�

values� as the previous example illustrates� This is because it is the atom struc�
ture of a module that determines probabilistic dependence and� importantly�
independence between variables values�

� Probabilistic Modules and Composition

��� De�nition of probabilistic modules

De�nition �� �States and moves� Let X be a set of typed variables� An X�
state s is a function that maps each variable in X to a value of the appropriate
type� We write Val�X� for the set of X�states� An X�move m is a probability
distribution on X�states� The move m is nonprobabilistic if the support of m is
a single state� Given two X�moves m� and m�� and a real number � � ��� ��� we
write � �m�� ��� �� �m� for the X�move m such that m�s� � � �m��s� � ���
�� �m��s� for all X�states s�

While a nonprobabilistic transition �s� s�� consists of a source state s and a target
state s�� a probabilistic transition �s�m� consists of a source state s and a proba�
bility distributionm of target states� A nondeterministic collection of transitions
�probabilistic or not� is called an �action�� Consider� for example� the action
F � ff�� f�g with the two transitions f� � �s�m�� and f� � �s�m��� Every
action is resolved by a scheduler� which� given a sequence of actions� produces
a sequence of states� Given the action F � ff�� f�g in state s� a deterministic
scheduler may choose either the transition f�� whose outcome is determined by
the probability distribution m�� or the transition f�� whose outcome is deter�
mined by the probability distribution m�� A randomized scheduler may choose
any convex combination of f� and f�� say� f� with probability � and f� with
probability �� ��

De�nition �� �Transitions and actions� Let X and Y be two sets of typed
variables� A probabilistic transition �s�m� from X to Y consists of an X�state
s and a Y �move m� The transition �s�m� is nonprobabilistic if the move m is
nonprobabilistic� A probabilistic action F from X to Y is a set of probabilistic
transitions from X to Y � The action F is deterministic if for every X�state s�
there is at most one Y �move m such that �s�m� � F � The action F is nonproba�
bilistic if all transitions in F are nonprobabilistic� The action F is convex�closed
if for all X�states s� all Y �moves m� and m�� and all real numbers � � ��� ��� if
�s�m�� � F and �s�m�� � F � then �s� � �m� � �� � �� �m�� � F � The convex�
closure ConvexClosure�F � is the least superset of F that is a convex�closed action
from X to Y �

A system proceeds in a sequence of discrete rounds� In the �rst round� all system
variables are initialized in accordance with initial actions� in the subsequent
rounds� all system variables are updated in accordance with update actions�
Dependencies between variables are expressed by clustering the variables into
�atoms�� If two variables are controlled �i�e�� initialized and updated� by the same

�

atom� then their behaviors are interdependent� Consequently� if the behaviors
of two variables are desired to be independent� then the variables must be put
into di�erent atoms� Consider� for example� two boolean variables x and y� First�
suppose that x and y are jointly controlled by a single atom� The deterministic
initial action �

� �x� y �� �� �� � �
� �x� y �� �� �� with probability �

� initializes both
variables to �� and with probability �

� initializes both variables to �� There are
two possible initial states� ����� and ������ Second� suppose that x and y are
independently controlled by di�erent atoms� The deterministic initial actions
�
� �x �� �� � �

� �x �� �� and �
� �x �� �� � �

� �x �� �� initialize each variable with
equal probability to � or �� There are four possible initial states� ������ ������ ������
and ������ If x is controlled by one atom� and y by another atom� then x may still
depend on y� because the atom controlling x may �read� the value of y at the
beginning of each round� All such read dependencies must be declared explicitly�
the absence of read dependencies �or transitively implied read dependencies�
between di�erent atoms means true independence� in the probabilistic sense�

De�nition �� �Atoms� Let X be a set of typed variables� A probabilistic X�
atom A consists of a set readX�A� � X of read variables� a set ctrX�A� � X of
controlled variables� a probabilistic initial action initF�A� from � to ctrX�A�� and
a probabilistic update action updateF�A� from readX�A� to ctrX�A�� The atom
A is deterministic if both initF�A� and updateF�A� are deterministic actions�
The atom A is nonprobabilistic if both initF�A� and updateF�A� are nonproba�
bilistic�

In addition to its atoms� which provide the initial and update actions for vari�
ables� an open probabilistic system �or �module�� also provides the capability
to view variables that are not initialized and updated by the module� and the
capability to hide variables from the view of other modules� The former vari�
ables are called �external�� the latter� �private�� The variables that are neither
external nor private �i�e�� the variables that are initialized and updated by the
module and can be viewed by other modules� are called �interface� variables�

De�nition �� �Modules� A probabilistic module P consists of a declaration
and a body� The module declaration is a �nite set of typed variables X�P �
that is partitioned into three sets� the set extlX�P � of external variables� the
set intfX�P � of interface variables� and the set privX�P � of private variables�
The module body is a �nite set Atoms�P � of probabilistic X�P ��atoms such that
��	 intfX�P � 	 privX�P � �

S
A�Atoms�P � ctrX�A�� and �
	 for all atoms A� and

A� in Atoms�P �� the sets ctrX�A�� and ctrX�A�� are disjoint� The module P
is deterministic if all atoms in Atoms�P � are deterministic� The module P is
nonprobabilistic if all atoms in Atoms�P � are nonprobabilistic�

Given a module P � we call intfX�P � 	 extlX�P � the set of observable variables
of P � and we call privX�P � 	 intfX�P � the set of controlled variables of P � The
nonprobabilistic modules are exactly the reactive modules of �AH		� without
await dependencies� We have omitted await dependencies� which are instrumen�
tal for synchronous communication� for simplicity� they can be added without

�

changing the results of this paper� Modules without external variables are called
�closed�� Every closed module de�nes a Markov decision process� every closed
deterministic module de�nes a Markov chain�

��� Operations on probabilistic modules

We de�ne three operations on probabilistic modules� hiding� composition� and
opening� The hiding �or abstraction� operation makes some interface variables
private�

De�nition 	� �Hiding� Let P be a probabilistic module� and let Y � intfX�P �
be a set of interface variables� By hiding Y in P we obtain the probabilistic
module PnY with the set extlX�PnY � � extlX�P � of external variables� the
set intfX�PnY � � intfX�P �nY of interface variables� the set privX�PnY � �
privX�P � 	 Y of private variables� and the set Atoms�PnY � � Atoms�P � of
atoms�

The �parallel� composition operation puts together two modules which control
the behaviors of disjoint sets of variables� The composition operation can be ap�
plied only when the observable �i�e�� external and interface� variables of two
modules coincide� This constraint is necessary for a compositional semantics in
the presence of probabilities� If a module has a private variable p and an external
variables y� then the module semantics insists on the independence between p
and y� because the environment� which controls y� cannot observe p� It is there�
fore illegal to compose a module with private p� but without external y� and an
environment that controls y� because the module� which does not know about
the existence of y� has no way of noting that p and y must be independent�
We will illustrate this in Example �� presented below after the necessary ter�
minology has been introduced� This underlines how the scoping of variables in
the probabilistic case is considerably more delicate than in the nonprobabilistic
case� where incidental dependencies between variables cause no harm�

De�nition
� �Composition� Two probabilistic modules P� and P� can be
composed if ��	 extlX�P�� 	 intfX�P�� � extlX�P��	 intfX�P��� �
	 intfX�P�� �
intfX�P�� � �� and ��	 privX�P�� � X�P�� � � and X�P�� � privX�P�� � ��
Two composition of two probabilistic modules P� and P� that can be composed
is the probabilistic module P�jjP� with the set extlX�P�jjP�� � �extlX�P�� 	
extlX�P���nintfX�P�jjP�� of external variables� the set intfX�P�jjP�� � intfX�P��	
intfX�P�� of interface variables� the set privX�P�jjP�� � privX�P�� 	 privX�P��
of private variables� and the set Atoms�P�jjP�� � Atoms�P�� 	 Atoms�P�� of
atoms�

The opening operation adds external variables to a module� and is unique to
probabilistic modules� It is used to ensure that two modules have the same set
of observable variables before they are composed�

�

De�nition �� �Opening� Let P be a probabilistic module� and let Y be a set
of typed variables disjoint from the set X�P � of module variables� By opening
P to Y we obtain the probabilistic module P
 Y with the set extlX�P
 Y � �
extlX�P �	 Y of external variables� the set intfX�P
 Y � � intfX�P � of interface
variables� the set privX�P
 Y � � privX�P � of private variables� and the set
Atoms�P
 Y � � Atoms�P � of atoms�

��� Trace semantics of probabilistic systems

De�nition of probabilistic languages� While the behavior of a determin�
istic and closed nonprobabilistic system is an in�nite state sequence �called
a �trace�� the behavior of a deterministic and closed probabilistic system
�Markov chain� is a probability distribution on traces �called a �bundle�� Con�
sequently� the possible behaviors of a nondeterministic or open probabilistic sys�
tem form a set of traces� and the possible behaviors of a nondeterministic or open
probabilistic system �in the nondeterministic and closed case� a Markov decision
process� form a set of bundles� We restrict ourselves to safe systems� where it
suces to consider �nite behaviors� albeit of arbitrary length� this restriction
is particularly technically convenient in the probabilistic case� as probability
distributions on �nite traces can be de�ned in a straightforward manner�

De�nition �� �Traces and bundles� Let X be a set of typed variables� and let
n be a nonnegative integer� An X�trace t of length n is a sequence of X�states
with n elements� We write � for the empty sequence� and given � � i � n� we
write t�i� for the i�th element of t� We write Valn�X� for the set of X�traces of
length n� An X�bundle of length n is a probability distribution over X�traces of
length n� The unique X�bundle of length �� which assigns the probability � to ��
is called the empty bundle� The bundle b is nonprobabilistic if the support of
b is a single trace� If n � �� then the pre�x of b is the X�bundle b� of length
n� � such that b��t� �

P
s�Val�X� b�t � s� for all X�traces t of length n� �� The

X�bundle b�� of length n� � is an extension of b if b is the pre�x of b���

Each bundle records the outcome of a particular sequence of nondeterministic
or randomized choices made by a system� Such a sequence of choices is called a
�scheduler� �to be de�ned later�� The set of bundles that result from all possible
schedulers are collected forms a probabilistic languages�

De�nition � �Languages� Let X be a set of typed variables� A set L of X�
bundles is pre�x�closed if for every bundle b in L� the pre�x of b is also in L� The
set L of bundles is extension�closed if ��	 the empty bundle is in L� and �
	 for
every bundle b in L� some extension of b is also in L� A probabilisticX�language
L is a pre�x�closed and extension�closed set of X�bundles� The language L is
deterministic if for all nonnegative integers n� there is a single bundle of length n
in L� The language L is nonprobabilistic if all bundles in L are nonprobabilistic�

The nonprobabilistic languages are precisely the pre�x�closed and extension�
closed trace sets� that is� the languages generated by safe and deadlock�free
discrete systems�

	

Operations on probabilistic languages� We de�ne two operations on bun�
dles and on probabilistic languages� projection and product� Properties of these
operations are needed to prove the compositionality of hiding and composition
for probabilistic systems�

De�nition ��� �Projection� Let X and X � � X be two sets of typed variables�
The X ��projection of an X�state s is the X ��state s�X �� such that �s�X ����x� �
s�x� for all variables x � X �� The X ��projection of an X�movem is the X ��move
m�X �� such that �m�X ����s�� �

P
s�Val�X� with s�X��	s� m�s� for all X ��states s��

The X ��projection of an X�trace t of length n is the X ��trace t�X �� of length n
such that �t�X ����i� � �t�i���X �� for all � � i � n� The X ��projection of an X�
bundle b of length n is the X ��bundle b�X �� of length n such that �b�X ����t�� �P

t�Valn�X� with t�X��	t� b�t� for all X ��traces t of length n� The X ��projection

of an X�language L is the X ��language L�X �� � fb�X �� j b � Lg�

De�nition ��� �Product� Let X� and X� be two sets of typed variables� An X��
state �resp� move trace bundle	 s� and a X��state �resp� move trace bundle	
s� can be multiplied if s��X� �X�� � s��X� �X��� The product of an X��state
s� and an X��state s� that can be multiplied is the �X� 	X���state s� � s� such
that �s�� s���x�� � s��x�� for all variables x� � X�� and �s�� s���x�� � s��x��
for all x� � X�� The product of an X��move m� and an X��move m� that
can be multiplied is the �X� 	 X���move m� �m� such that �m� �m���s� �
m��s�X��� �m��s�X���	m��s�X� �X��� for all �X� 	X���states s� The product
of an X��trace t� and an X��trace t� that have length n and can be multiplied
is the �X� 	 X���trace t� � t� of length n such that �t� � t���i� � t��i� � t��i�
for all � � i � n� The product of an X��bundle b� and an X��bundle b�
that have length n and can be multiplied is the �X� 	 X���bundle b� � b� of
length n such that �b� � b���t� � b��t�X��� � b��t�X���	b��t�X� � X��� for all
�X� 	X���traces t of length n� The product of an X��language L� and an X��
language L� is the �X� 	X���language L� � L� � fb� � b� j b� � L� and b� �
L� can be multipliedg�

The product of bundle languages is the probabilistic analogue to the intersection
of trace languages� This is captured in the following lemma�

Lemma �� Let L� be a probabilistic X��language� and let L� be a probabilistic
X��language� Then �L� � L���X� �X�� � L��X� �X�� � L��X� �X���

Containment between probabilistic languages� Since the set of possible
behaviors of a probabilistic system is a set of bundles� the appropriate notion of
re�nement between probabilistic systems is bundle containment� an implemen�
tation re�nes a speci�cation i� every possible behavior �bundle� of the imple�
mentation is a legal behavior �bundle� of the speci�cation�

De�nition ��� �Bundle containment� Let X and X � � X be two sets of
typed variables� If L is a probabilistic X�language� and L� is a probabilistic X ��
language� then L is bundle�contained in L� if L�X �� � L��

��

��� Connecting syntax and semantics

Bundle semantics of probabilistic modules�We associate with every proba�
bilistic module a probabilistic language� i�e�� a set of bundles� The key concept for
doing this is the concept of a �scheduler�� which represents a possible sequence
of choices taken by the module� Each scheduler� then� gives rise to an in�nite
bundle that can be represented by all its �nite pre�xes� We permit randomized
schedulers� which in each state can choose probability distributions over the en�
abled transitions� By contrast� a deterministic scheduler must choose exactly one
of the enabled transitions�

De�nition ��� �Schedulers� Let X and Y be two sets of variables� A scheduler
� from X to Y is a function that maps every X�trace to a probability distribution
on Y �states� The scheduler � is nonprobabilistic if for all X�traces t� the support
of ��t� is a single Y �state� If � is a scheduler from X to X� then the ��outcome
of � is the empty bundle� and for all positive integers i � �� the i�outcome of � is
an inductively de�ned X�bundle bi of length i� the bundle bi is the extension of
the bundle bi�� such that bi�t� � bi���t��� � � � t�i���� � ���t��� � � � t�i������t�i��
for all X�traces t of length i� We collect the set of i�outcomes of �� for all i ��
in the set Outcome��� of X�bundles�

Each scheduler for a module consists of a scheduler for the environment� which
chooses the initial and updated values for the external variables� together with
a scheduler for each atom� which chooses the initial and updated values for the
variables controlled by that atom�

De�nition ��� �Schedulers for an atom� Consider a probabilistic X�atom A�
The set atom
�A� of atom schedulers for A contains all schedulers � from
readX�A� to ctrX�A� such that ��	 ��� ����� � ConvexClosure�initF�A��� and
�
	 �t�n�� ��t�� � ConvexClosure�updateF�A�� for all nonempty readX�A��traces
t of length n� A scheduler � in atom
�A� is deterministic if ��	 ��� ����� �
initF�A�� and �
	 �t�n�� ��t�� � updateF�A� for all nonempty traces t of length n�
Let atom
d�A� be the set of deterministic schedulers in atom
�A��

To compose the schedulers for several atoms� we de�ne the product of schedulers�

De�nition �	� �Product of schedulers� Two schedulers �� and �� are dis�
joint if �� is a scheduler from X� to Y�� and �� is a scheduler from X� to Y��
and Y� � Y� � �� If �� is a scheduler from X� to Y�� and �� is a scheduler from
X� to Y�� such that �� and �� are disjoint� then the product is the scheduler
�� � �� from X� 	X� to Y� 	 Y� such that ��� � ����t� � ���t�X���� ���t�X���
for all �X�	X���traces t� If �� and �� are two sets of schedulers such that every
scheduler in
� is disjoint from every scheduler in
�� then
��
� � f����� j
�� �
� and �� �
�g�

The environment scheduler can initialize and update the external variables in
arbitrary� interdependent ways�

��

De�nition �
� �Schedulers for a module� Consider a probabilistic module P �
The set extl
�P � of environment schedulers for P contains all schedulers from
extlX�P � 	 intfX�P � to extlX�P �� Let extl
d�P � be the set of nonprobabilis�
tic schedulers in extl
�P �� The set mod
�P � of module schedulers for P con�
tains the schedulers from X�P � to X�P � such that mod
�P � � extl
�P � �Q

A�Atoms�P � atom
�A�� Let mod
d�P � � extl
d�P ��
Q

A�Atoms�P � atom

d�A��

We are �nally ready to de�ne the �trace semantics� of a probabilistic module�

De�nition ��� �Semantics of a module� Given a probabilistic module P � we
de�ne L�P � � fOutcome��� j � � mod
�P �g and Ld�P � � fOutcome��� j
� � mod
d�P �g� The trace semantics of the probabilistic module P is ��P �� �
L�P ��extlX�P � 	 intfX�P ��� The deterministic trace semantics of P is ��P ��d �
Ld�P ��extlX�P � 	 intfX�P ���

It it not dicult to verify that the bundle semantics of a module is indeed
pre�x�closed and extension�closed� if P is a probabilistic module� then ��P �� is
a probabilistic �extlX�P � 	 intfX�P ���language� In general� ��P ��d � ��P ��� For
nonprobabilistic modules� the traditional trace semantics corresponds to bundle
semantics with only deterministic schedulers� according to �AH		�� the trace
semantics of a reactive module P is ��P ��d�

Bundle interpretation of module operations� The hiding of variables in a
module corresponds to a projection on the bundle language of the module� it is
easy to check that for every probabilistic module P � and every set Y � intfX�P �
of interface variables� ��PnY �� � ��P ���extlX�P �	 intfX�P �nY �� The composition of
two modules corresponds to a product on the respective bundle languages� This
observation� which is stated in the following proposition� will be instrumental
to the compositionality properties of probabilistic modules given in the next
section�

Theorem �� If P� and P� are two probabilistic modules that can be composed�
then ��P�jjP��� � ��P���� ��P��� � ��P��� � ��P����

Proof� By induction on the length of bundles� we show the following two obser�
vations� which rely heavily on the fact that schedulers have restricted visibility�
First� b � L�P�kP�� implies that b�X�P��� � L�P�� and b�X�P��� � L�P���
Moreover� b � b�X�P����b�X�P���� This in turn also means that every bundle
in ��P�kP��� can be �factored�� via projection� into bundles in ��P��� and ��P���� Sec�
ond� for all bundles b� � L�P�� and b� � L�P�� such that b��X�P���X�P��� �
b��X�P���X�P����� we have b��b� � L�P�kP��� These two observations com�
bine to give the �rst equality� The observation that X�P�� �X�P�� is the set of
observables of both P� and P�� coupled with Lemma �� gives the second equality�

The following example illustrates the need for restricting composition to modules
with identical sets of observable variables�

��

Example � Consider two modules P and Q de�ned as in Example �� except
that the variables p and q are both interface variables� and thus observable� We
assume that each controlled variable of P and Q belongs to a di�erent atom�
Under the scheduler �P � the behavior of P is a bundle bP consisting of the
two in�nite traces �p � ��� x � �� y � ��� ��� �� ��� ��� �� ��� � � � and �p � ��� x � �� y �
��� ��� �� ��� ��� �� ��� � � � with probability �

� each �to be precise� there are in�nitely
many bundles� each consisting of two �nite traces� whose limit is bP � but in exam�
ples� we �nd it convenient to informally consider bundles of in�nite traces�� Sim�
ilarly� the behavior of Q under �Q is the bundle bQ that contains the two traces
�x � �� y � �� q ����� ��� �� ��� ��� �� ��� � � � and �x � �� y � �� q ����� ��� �� ��� ��� �� ��� � � ��
each with probability �

� �see Figure ��� The bundles bP and bQ can be multi�
plied� but their product bP�bQ is not a bundle of PkQ� In fact� bP�bQ consists
of the two traces �p ���� x � �� y � �� q ����� ��� �� �� ��� ��� �� �� ��� � � � and �p ���� x �
�� y � �� q ����� ��� �� �� ��� ��� �� �� ��� � � � On the other hand� since the values of p
and q are chosen independently� ��PkQ�� consists of a single bundle bPkQ� contain�
ing for each i� j � f�� �g the trace �p ���� x ��� y ��� q ����� �i� �� �� j�� �i� i� j� j�� � � �
with probability �

� � It follows that ��P ��� ��Q�� � ��PkQ���

� Re�nement between Probabilistic Modules

��� De�nition of probabilistic re�nement

The re�nement relation between probabilistic modules is de�ned essentially as
bundle containment� Unlike in the nonprobabilistic case� however� we require an
additional constraint on the atom structure of the two modules� which ensures
that an implementation cannot exhibit more variable dependencies than a spec�
i�cation� In other words� all variables that are speci�ed to be independent must
be implemented independently�

De�nition ��� �Re�nement between modules� Let P and P � be two prob�
abilistic modules� The module P structurally re�nes P �� written P �S P �� if
��	 intfX�P � � intfX�P �� and extlX�P �	 intfX�P � � extlX�P ��� �
	 for all vari�
ables x�� x� � intfX�P ��� if there is an atom A � Atoms�P � such that x�� x� �
ctrX�A�� then there is an atom A� � Atoms�P �� such that x�� x� � ctrX�A���
and ��	 for all variables x � intfX�P �� and y � intfX�P �� 	 extlX�P ��� if there
is an atom A � Atoms�P � such that x � ctrX�A� and y � readX�A�� then there
is an atom A� � Atoms�P �� such that x � ctrX�A�� and y � readX�A��� The
module P �behaviorally	 re�nes P �� written P � P �� if P �S P � and ��	 ��P �� is
bundle�contained in ��P ����

It is easy to check that the re�nement relation � it is a preorder� Further�
more� every probabilistic module re�nes its nonprobabilistic abstraction� The
nonprobabilistic abstraction of a probabilistic action F is the nonprobabilistic
action f�s� s�� j �s�m� � F and s� � Support�m�g� The nonprobabilistic abstrac�
tion Nonprob�P � of a probabilistic module P is the nonprobabilistic module
that results from P by replacing all initial and update actions of P with their
nonprobabilistic abstractions� Then� P � Nonprob�P ��

�

Re�nement between nonprobabilistic modules� however� does not quite agree
with re�nement between reactive modules� as de�ned in �AH		�� The reason
is that conditions ��� and �
� are absent from the de�nition of re�nement for
reactive modules� which is purely behavioral �namely� trace containment�� For
example� two atoms of a reactive module speci�cation can be implemented by a
single atom� If atoms are viewed structurally� say� as blocks in a block diagram�
then such a re�nement breaks component boundaries� This is brought to the
fore formally in the probabilistic case� where atoms carry meaning as bound�
aries between independent variables� We submit that it is the de�nition above�
including the structural conditions ��� and �
�� which is more sensible also in
the nonprobabilistic case of reactive modules� Once conditions ��� and �
� are
added to the re�nement between reactive modules� then the probabilistic case is
a conservative extension� for nonprobabilistic modules P and P �� we have P � P �

i� P �S P � and ��d� ��P ��d is bundle�contained in ��P ���d�

��� Compositionality of probabilistic re�nement

The following theorem summarizes the compositionality properties of the re�
�nement relation between probabilistic modules� In particular� re�nement is a
congruence with respect to all module operations� and the re�nement between
composite modules can be decomposed using circular assume�guarantee reason�
ing�

Theorem �� �Compositionality� The following statements are true� provided
all subexpressions are well�de�ned�

� P � PnY �
� P
 Y � P �
� P jjQ � P �
� If P � P �� then PnY � P �nY �
� If P � P �� then P
 Y � P �
 Y �
� If P � P �� then P jjQ � P �jjQ�
� If P jjQ� � Q and QjjP � � Q�� then P jjP � � QjjQ��

The last assertion is an assume�guarantee rule for probabilistic modules� Its
proof uses the following lemma� whose proof relies on Theorem �� Essentially�
the lemma states that the observable part of a bundle of length i is obtained
from the observable part of its pre�x of length i� �� the environment scheduler
and the �observable� behaviour of the module scheduler� and the last may be
written as the product of the observable behaviours of the atom schedulers and
the environment scheduler� Given a scheduler � fromX�P � to ctrX�P �� anX�P ��
bundle b� and its projection b� � b�intfX�P � 	 extlX�P ��� de�ne the observable
scheduler �� w�r�t� b as the scheduler from intfX�P �	extlX�P � to intfX�P � such
that for every �intfX�P � 	 extlX�P ���trace s of length i� ��

���s��� � � � s�i� ��� �
X

t�	s

bi���t��� � � � t�i� ���

b�i���s��� � � � s�i� ���
� ��t��� � � � t�i� ����intfX�P ���

��

where t� � t�intfX�P � 	 extlX�P ��� Recall that if P � P�kP� is de�ned� then
it must be that intfX�P � 	 extlX�P � � intfX�P�� 	 extlX�P�� � intfX�P�� 	
extlX�P���

Lemma �� Let P � P�kP� be a probabilistic module� and let b � L�P�kP�� be
the outcome of a scheduler � � �Env � �P� � �P� with �Env � extl
�P � and
�Pj �

Q
A�Atoms�Pj�

atom
�A� for j � �� �� For every �intfX�P � 	 extlX�P ���

trace t of length i� we have b�i �t� � b�i���t��� � � � t�i�������Env��
�
P�
���P���t�i���

where ��Pj is the observable scheduler w�r�t� b�X�Pj�� for j � �� ��

Using this lemma� the soundness of the assume�guarantee rule can be proved
in a fashion similar to that for nonprobabilistic systems like reactive modules
�AH		��

References

�AH��� R� Alur and T�A� Henzinger� Reactive modules� Formal Methods in System

Design ������	� �����

�AL��� M� Abadi and L� Lamport� Conjoining speci�cations� ACM Trans� Program�

ming Languages and Systems� ��������
�� �����

�BdA��� A� Bianco and L� de Alfaro� Model checking of probabilistic and nondeter�
ministic systems� In Foundations of Software Technology and Theoretical Computer

Science� volume ��� of Lect� Notes in Comp� Sci�� pages ������
� Springer�Verlag�
�����

�dA�	� L� de Alfaro� Stochastic transition systems� In Concurrency Theory� volume
���� of Lect� Notes in Comp� Sci�� pages �
��
	� Springer�Verlag� ���	�

�dAKN���� L� de Alfaro� M� Kwiatkowska� G� Norman� D� Parker� and R� Segala�
Symbolic model checking of concurrent probabilistic processes using MTBDDs and
the Kronecker representation� In Tools and Algorithms for the Construction and

Analysis of Systems� volume ��	� of Lect� Notes in Comp� Sci�� pages
�������
Springer�Verlag� ����

�Der��� C� Derman� Finite State Markovian Decision Processes� Academic Press� �����

�Dil	�� D�L� Dill� Trace Theory for Automatic Hierarchical Veri�cation of Speed�

independent Circuits� The MIT Press� ��	��

�JL��� B� Jonsson and K�G� Larsen� Speci�cation and re�nement of probabilistic pro�
cesses� In Proc� Symp� Logic in Computer Science� pages ������ IEEE Computer
Society Press� �����

�Lam�
� L� Lamport� Specifying concurrent program modules� ACM Trans� Progam�

ming Languages and Systems� ������� ���
�

�Lyn��� N�A� Lynch� Distributed Algorithms� Morgan�Kaufmann� �����

�MC	�� J� Misra and K�M� Chandy� Proofs of networks of processes� IEEE Trans�

Software Engineering� SE���������� ��	��

�McM��� K�L� McMillan� A compositional rule for hardware design re�nement� In
Computer�Aided Veri�cation� volume ��� of Lect� Notes in Comp� Sci�� pages ��

�� Springer�Verlag� �����

�Seg��� R� Segala� Modeling and Veri�cation of Randomized Distributed Real�Time

Systems� PhD thesis� MIT� ����� Technical Report MIT�LCS�TR�����

��

�SL��� R� Segala and N�A� Lynch� Probabilistic simulations for probabilistic processes�
In Concurrency Theory� volume 	
� of Lect� Notes in Comp� Sci�� pages �	������
Springer�Verlag� �����

�Var	�� M�Y� Vardi� Automatic veri�cation of probabilistic concurrent �nite�state sys�
tems� In Proc� Symp� Foundations of Computer Science� pages
��

	� IEEE
Computer Society Press� ��	��

��

