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ABSTRACT

The runtimes of certain floating-point instructions can vary up
to two orders of magnitude with instruction operands, allowing
attackers to break security and privacy guarantees of real systems
(e.g., browsers). To prevent attacks due to such floating-point timing

channels, we introduce CTFP, an efficient, machine-checked, and
extensible system that transforms unsafe floating-point operations
into safe, constant-time computations. CTFP relies on two observa-
tions. First, that it is possible to execute floating-point computations
in constant-time by emulating them in software; and second, that
most security critical applications do not require full IEEE-754
floating-point precision. We use these observations to: eliminate
certain classes of dangerous values from ever reaching floating-
point hardware; emulate floating-point operations on dangerous
values when eliminating them would severely alter application se-
mantics; and, leverage fast floating-point hardware when it is safe
to do so. We implement the constant-time transformations with
our own domain-specific language that produces LLVM bitcode.
Since the transformations themselves equate to bit surgery on al-
ready complicated floating-point arithmetic, we use a satisfiability
modulo theories (SMT) solver to ensure that their behavior fits our
specifications. Finally, we find that CTFP neither breaks real world
applications nor incurs overwhelming overhead.
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1 INTRODUCTION

The IEEE-754 standard was developed for efficient and precise
computation over floating-point (FP) values. The standard allows
hardware vendors to implement fast paths for common, easy com-
binations of instructions and operands—addition or multiplication
by zero—while falling back to slow paths for rare, complex values—
addition or multiplication by special subnormal numbers [18]. This
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path bifurcation allows hardware developers to make (simple) com-
putations over common-case values orders of magnitude faster than
(complex) computations designed to precisely account for special
values.

Alas, every well-intentioned fast path eventually becomes an
attacker’s instrument. For example, Andrysco et al. show that at-
tackers can exploit the timing differences between floating-point
computations to exfiltrate the values of sensitive data, breaking
Firefox’s same-origin policy and the Fuzz database’s differential
privacy guarantees [4]. For Firefox, they implement Stone’s pixel
stealing attack [38] by measuring page rendering time. To break
Fuzz [21]—a system specifically engineered to prevent covert tim-
ing attacks—they craft queries that return subnormal results for
particular (private) values, and amplify the timing signal into one
strong enough to break Fuzz’s differential privacy guarantees.

In response to these attacks, system designers have tried to plug
floating-point timing channels by using existing hardware features
to force operations to take a fixed amount of time. For example, to
address floating-point-based SVG filter attacks, Chrome browser
developers set the “flush-to-zero” (FTZ) and “denormals-are-zero”
(DAZ) CPU flags before calling the SVG library code [10, 23]. These
flags set subnormal outputs and inputs to zero, respectively; since
the timing attacks rely on subnormal values, enabling flags before
executing the SVG filters prevents pixel stealing [12]. The Escort
system [34] proposes a more general defense in which each FP
operation is simultaneously executed on both a real input value
and a dummy subnormal value via single instruction, multiple data
(SIMD) instructions. Since SIMD instructions should execute in
parallel and block until both results are computed, this tries to
ensure that each FP operation takes exactly as long as the worst-
case, subnormal running time.

Unfortunately, in relying on hardware alone to resolve tim-
ing variabilities, these proposals fall short in several ways. The
FTZ+DAZ flags are incomplete—they focus exclusively on subnor-
mals, but it turns out that other floating-point values can cause
timing differences, too. For example, Kohlbrenner and Shacham
show that certain operations speed up on non-subnormal values like
zero and four [25]. In this paper, we confirm these timing measure-
ments on additional CPUs and report three new classes of values
that show timing variability for certain operations: NaNs, Infs,
and negatives. Timing channels based on such values are hard to
prevent with existing approaches, since existing approaches repur-
pose existing hardware—and there is a limit to how many kinds of
pipes you can fix with a hammer.

Leveraging CPU features also demands a deep understanding of
different—almost exclusively proprietary and closed-source—CPU
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details; if you’re not Intel you’re probably wrong. For example,
Kohlbrenner and Shacham observe that certain CPUs execute some
portion of the seemingly-parallel SIMD operations serially—not,
like the name implies, in parallel [25]. Escort’s design overlooks
this completely unexpected detail, so the system remains vulnerable
to timing attacks both on subnormals and on other values like zero.

In this paper, we introduce CTFP: an efficient, machine-checked,
and extensible software-based approach to preventing FP timing
channels. CTFP is based on two key insights. First, floating-point
operations can be executed in constant-time by efficiently emulating
them in software. Second, for the vast majority of security-critical
applications, the full IEEE-754 precision is unnecessary. These two
insights are distilled into program transformations that replace
unsafe, elementary floating-point operations (e.g., multiplication
and division) with new constant-time variants.

Since fully emulating IEEE floating-point arithmetic is impos-
sibly slow, our constant-time operations are implemented as dec-
orators for the existing hardware instructions. These decorators
ensure that the hardware floating-point instructions are never called
with inputs that may introduce time variability. For example, our
decorators for the sqrt instruction eliminate, among other values
(Section 2.1), subnormal and negative numbers from the input space
to avoid FPU slow- and fast-paths, respectively. When encountering
such inputs, the decorators instead emulate the operation using
constant-time instructions. In all other cases, the decorators simply
invoke the corresponding hardware instruction.

CTFP provides two classes of decorators, Full and Restrict,
that trade-off precision and performance. Both classes of decorators
eliminate subnormal input values from the input space by flushing
them to zero, much like DAZ . The two decorators, however, differ
in how they treat normal, but dangerous values that (may) produce
subnormal results. Full decorators emulate operations on such
values and only flush results that are indeed subnormal, much like
FTZ . Restrict decorators, on the other hand, altogether eliminate
dangerous values from the input space by flushing them (and thus
their results) to zero—a precision hit that comes with a dramatic
performance boost. Outside these ranges, both Full and Restrict
preserve the IEEE-754 semantics.

Implementing constant-time floating-point instructions with cor-
rect semantics is hard. We must not only handle the complexity of
floating-point arithmetic, but do so differently for each instruction—
different floating-point operations are vulnerable to different classes
of values—and in an extensible way—as new dangerous classes of
values come to light, CTFP must be updated to account for them.
To this end, CTFP is implemented as a domain-specific language
(DSL) for specifying decorated, verified floating-point instructions.
At its core, the DSL provides building blocks for (1) defining simple
decorators (e.g., flush to zero if subnormal); (2) composing simple
decorators into decorated instructions or more complex decora-
tors (e.g., to handle multiple classes of values); and, (3) specifying
the semantics of decorators and decorated instructions as pre- and
post-conditions. The DSL compiler, in turn, generates constant-time
LLVM bitcode for each decorated instruction, which we mechani-
cally check for safety and precision issues using our verifier.

Machine-checked CTFP is only useful if it does not kill perfor-
mance or ruin program semantics. We found it encouraging that
FP-heavy programs transformed to use our CTFP constant-time

instructions did not incur severe overheads—Full imposes an over-
head of 3×–29×, while Restrict imposes an overhead of 1.7×–8.1×.
For both, the impact on semantics is negligible. Both versions of
CTFP pass all the tests from SPECfp, the floating-point performance
testing suite from the SPEC 2006 benchmarks. Of the 913 unit tests
from the Skia graphics library, Full passes all but 5 and Restrict
fails only 7. More importantly, both Full and Restrict pass the
entire suite of 654 rendering tests.

2 CONSTANT-TIME FLOATING-POINT

In this section, we give an overview of the classes of values that
introduce floating-point (FP) timing channels and describe how
CTFP addresses these timing channels. We first give a brief back-
ground on floating-point and how timing channels arise when FP
operations exhibit different timing behaviors for different classes of
values (Section 2.1). Then, we experimentally identify the different
classes of values that lead to timing channels (Section 2.2). Finally,
we sketch our approach to addressing the timing channels by deco-
rating FP operations to execute in constant-time (Section 2.3).

2.1 Floating-Point and Timing Attacks

IEEE-754 is a standard for floating-point arithmetic that specifies
all aspects of a floating-point number system from values (e.g.,
32-bit single-precision, 64-bit double-precision, and 128-bit quad-
precision), to rounding behavior and error conditions [6]. The
standard was created to ensure hardware-software interoperability
and, as a result of its popularity, essentially all modern CPUs in-
clude a specially designed floating-point unit (FPU) that accelerates
floating-point operations.

In IEEE-754, the encoding of floating-point numbers consists of
three different parts—a sign bit, aw-bit exponent, and a fixed-width
significand. Under this encoding, the value of a normal floating-
point number is specified by the following formula:

(−1)sign × 1.significand × 2exponent−bias,

where bias = 2w−1 − 1 and both the exponent and significant are
treated as unsigned integers, the latter’s bit-representation prefixed
with a 1. The range for exponents for normal floating-point numbers
is limited to [1, 2w −2]; exponents outside this range encode special
values. For example, zeros (+0 and -0) are encoded by setting both
the exponent and significand bits to 0s; infinities (+Inf and -Inf)
are encoded by setting the exponent bits to 1s and the significand
bits to 0s; and Not-a-Number values (NaNs) are encoded by setting
the exponent bits to 1s and the significand to a value above zero.
Lastly, subnormals are encoded by setting all the exponent bits to
0 and the significand to a value above zero. Subnormals (or denor-
mals) are extremely small numbers, useful in retaining precision for
computations on small numbers [6]; they are computed according
to:

(−1)sign × significand × 2−bias

The running time of floating-point operations can vastly depend
on the values of the operands. Some FPU operations exhibit speed-
ups on specific operands. Consider, for example, computing the
square root of a negative number. This computation can be much
faster than the the square root of an average positive number—
the FPU can simply short circuit the implementation of sqrt by
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Square root ✗ ✗ ✓ ✗ ✗

Figure 1: Classes of unsafe floating-point values. We distinguish (✓)

and unsafe (✗) floating-point operations on these different classes

of values. We note that operations that produce subnormal results—

even if their inputs are not subnormal—are unsafe.

checking the the siдn bit of the operand and return NaN if it is
set. In fact, CPU designers would have to go out of their way to
prevent such an “optimization.” In contrast, since few applications
demand extremely high precision, most FPUs implement operations
on subnormals in microcode, rendering these operations far slower
than those on normal inputs.

Measurable timing differences can be turned into covert timing

channels. Attackers can leverage them to learn secret values, even
when the rest of an application was engineered to keep instruction
and memory access sequences independent of secret data [4]. For
example, Andrysco et al. [4] show how subnormals can be exploited
to break Firefox’s same-origin guarantees by using them to imple-
ment Stone’s pixel stealing attack [38]. Intuitively, the attack works
by having the user render pages using using SVG filters that are
specifically crafted so that when a pixel is black (resp. white), the
filter results in many fast (resp. slow) 0 × subnormal = 0 (resp.
1 × subnormal = subnormal) operations. An attacker observing
the timing differences can reconstruct the pixels and therefore the
contents of the web-page, completely circumventing the browser’s
same-origin policy.

2.2 Classes of Potentially Dangerous Values

For performance, CTFP relies on the FPU to handle the bulk of
the work of floating-point computations—but, since the latency
of different computations may vary with arguments, CTFP must
only directly use the FPU to execute floating-point operations on
safe classes of values. Identifying all safe values is prohibitively
expensive. So, beyond designing CTFP to be easily extensible, we
follow in the lines of previous work on constant-time FP [4, 25, 34]
and seek to identify classes of potentially dangerous values.

To identify unsafe classes of values, we measure the running
time of operations (addition, subtraction, multiplication, division,
and square root) with different inputs. Figure 2 presents the results
of our measurements for different x86 CPUs. (In Section 5.1, we
describe our measurement approach in detail.) We conservatively
consider classes of values to be unsafe if they are unsafe on any
CPU—this ensures that CTFP-transformed x86 is portable and can
be safely used across CPUs.

As shown in Figure 1, our measurements establish several classes
of unsafe values: subnormal numbers, negative numbers, powers-
of-two, powers-of-four, and special values—zeros, Infs, and NaNs.
While many of these were established by Andrysco et al. [4] and,
more recently, Kohlbrenner and Shacham [25], our measurements
confirm their observations on different CPUs and identify new
classes of unsafe values—negative numbers, NaNs, and Infs. In
addition, wemodify Kohlbrenner and Shacham’s tests to distinguish
powers-of-twos from powers-of-four and find the two classes to
exhibit different timing behavior. Below we describe these different
classes in more detail.
Subnormals. Subnormal values induce an order-of-magnitude slow-
down on most CPUs for most operations. They differ from other
classes of values in not only being unsafe as inputs to FP operations,
but also as outputs: operations that produce subnormal results—
even if operating on non-subnormals—are extremely slow.
Negative Values. Negative values are unsafe as operands to sqrt .
Taking the square root of a negative exhibits a speed-up on some
CPUs, since the operation amounts to checking a single bit before
returning NaN .
Powers-of-Two. Powers-of-two are floating-point values that have
a zero significand (see Section 2.1). Division with a power-of-two
value as the divisor exhibits a speed-up on several CPUs for both
single- and double-precision. In contrast to other classes of values,
dividing by a power of two is equivalent to performing an addition
on the dividend’s exponent, a cheap and fast operation.
Powers-of-Four. Powers-of-four are floating-point values where the
significand is zero and the exponent is even (see Section 2.1). While
powers-of-four values exhibit the same behavior as powers-of-two
values for division, the two classes differ for square root operations.
Specifically, powers-of-four exhibit a speed-up on several CPUs
for sqrt . This is not surprising since taking the square root of a
power-of-four is equivalent to dividing its exponent by two, i.e., a
simple bit-shift.
Special Values. Special values include floating-point values of zero,
Inf , NaN , and their negative counterparts. Special values show a
speed-up for division and square root on many CPUs. This is not
surprising since division and square root on these values have fixed
results: zero divided by anything (except zero or NaN) is zero, the
square root of NaN is NaN , etc.

2.3 Eliminating Timing Attacks with CTFP

To address attacks that leverage floating-point timing channels,
we eliminate timing difference in FP computations by emulating
elementary operations (addition, multiplication, etc.) on unsafe
values in software, only leveraging the FPU, internally, to perform
safe constant-time computations. Our constant-time emulation is
not perfect, though. We relax some of the floating-point semantics
in return for performance when emulating operations on deadly

and dangerous values.
An argument to a particular FP operation is deadly if it always

triggers a slow- or fast-path in the FPU (on some processor). For
example, subnormal values are deadly values for all FP operations,
while negative numbers are only deadly as operands to sqrt . An
argument to a particular FP operation is dangerous if it can ever
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Single-precision operations

Intel Core i7-7700 (Kaby Lake) ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Intel Core i7-6700K (Skylake) ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Intel Core i7-3667U (Ivy Bridge) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Intel Xeon X5660 (Westmere) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Intel Atom D2550 (Cedarview) ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

AMD Phenom II X6 1100T ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

AMD Ryzen 7 1800x ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Double-precision operations

Intel Core i7-7700 (Kaby Lake) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Intel Core i7-6700K (Skylake) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Intel Core i7-3667U (Ivy Bridge) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Intel Xeon X5660 (Westmere) ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Intel Atom D2550 (Cedarview) ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

AMD Phenom II X6 1100T ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

AMD Ryzen 7 1800x ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Figure 2: Safe and unsafe single- and double-precision operations for various processors. A checkmark (✓) indicates the operation is safe, and

a cross (✗) indicates the operation is unsafe. The notation 2n and 4n denote powers-of-two and powers-of-four, respectively.

produce a subnormal output—and therefore trigger a slow-path in
the FPU. For example, very small normal values are dangerous as
operands to a FP multiplication (if their result is subnormal).

A faithful, but unacceptably slow IEEE-754 implementationwould
emulate operations on all values (including deadly and danger-
ous values). A fast, but unacceptably imprecise implementation
would eliminate all deadly and dangerous values from the input
space.CTFP presents two classes of decorated floating-point instruc-
tions that are in the sweet-spot: they are efficient while preserving
floating-point semantics relevant to many real-world applications.
Our decorators emulate operations on both dangerous and non-
subnormal deadly values in software, but perform operations on
safe values directly (by calling normal floating-point operations
like fadd and fmul). Full, the more precise version of CTFP, pre-
serves the (almost) full FTZ+DAZ floating-point range; Restrict,
the less precise version, alters the floating-point range range more
significantly but is also significantly faster.We implementCTFP as a
DSL that makes it easy to update the Restrict and Full decorators
to account for newly discovered unsafe values.
Eliminating Subnormals. CTFP decorates (i.e., wraps) floating-
point hardware instructions to eliminate subnormals as both inputs
to and outputs from FP operations. Both our Full and Restrict
decorators eliminate subnormal operands by flushing them to zero
and then performing the intended operation on zero(s).1 The two
classes of decorators differ in how they handle dangerous values.

To ensure that no FP operation produces subnormals, Full emu-
lates operations on dangerous input values—the values that may

1Of course, since zero is a deadly value for certain operations, the intended operation
may itself be further decorated.

produce subnormals. This is non-trivial, since operations on dan-
gerous values do not necessarily produce subnormals. Full thus
checks if the result of the operation would be subnormal, without
actually performing the potentially unsafe operation. If the result
is guaranteed to be normal, Full performs the floating-point op-
eration on the dangerous value(s); otherwise, it produces zero—of
course ensuring that the entire computation runs in constant-time.

Our range-restricted decorators, Restrict, do not emulate opera-
tions on dangerous values. Instead, Restrict eliminates dangerous
input values altogether by flushing them to a zero or infinity (de-
pending on the operation). Compared to Full, this approach is
dramatically faster (see Section 5). Of course, it also significantly
alters the semantics of several FP operations—for example, our Re-
strict decorators for division essentially eliminate half the input
space. In practice, though, this seems to not damage the behavior
of many applications (see Section 5).

Emulating Operations on Deadly Values. Both classes of deco-
rators emulate operations on other deadly input values by special-
casing each class of values—powers-of-twos, zeros, NaNs, etc. At a
high-level, a CTFP decorated instruction (1) replaces each deadly
operand with a dummy, safe value; (2) performs the operation on
the dummy value(s); and, (3) returns the actual result, as if were
computed on the deadly value(s). For example, consider executing
4 × ∞ using our constant-time fmul . Instead of running fmul
directly on the two inputs, the decorator first checks if either argu-
ment is an infinity. Since one of the arguments is∞, CTFP replaces
that value with a dummy value that causes no timing variation
for fmul . Then, CTFP executes fmul on 4 and the dummy value,



and overwrites the result with infinity—all in constant-time. In Sec-
tion 3, we describe the implementation of the Full and Restrict
decorated instructions in detail.
Correct and Extensible Decorators. Decorating floating-point
instructions is error-prone: decorators have to account for all the
intricacies of floating-point arithmetic. Moreover, decorated in-
structions must be extensible—in a month or a year or five years,
someone may discover a whole new class of unsafe floating-point
values. To account for these issues we implement CTFP as a DSL,
so developers can specify new decorated instructions using generic
high-level building blocks. Then, they can ensure that their new
instructions are correct using our verifier, and compile them into op-
timized LLVM bitcode. Section 3 and Section 4 respectively describe
the DSL and verifier in detail.
Threat Model.We assume an attacker capable of running floating-
point computations (e.g., as SVG filters [38]) on sensitive data in
an attempt to leak the data. These computations, however, are
restricted to our decorated constant-time floating-point operations
and cannot use the hardware instructions directly. To this end,
CTFP provides a program transformation that rewrites existing
operations with our constant-time variants (see Section 3.4). We
consider attacks that abuse other CPU instructions (e.g., branching)
outside the scope of this work—instructions such as conditional
branches can trivially introduce time-variability, however, and must
be addressed in practice. We believe techniques that address these
broader concerns (e.g., [8, 28, 33]) are complimentary to CTFP.

3 THE CTFP DSL

CTFP ensures that floating-point operations execute in constant-
time using carefully crafted bitmasking operations. In this section,
we describe how to create the bitmasking operations using the
CTFP domain specific language (embedded in Haskell). Then, we
show how CTFP goes from DSL implementations of Restrict and
Full to LLVM bitcode.

At its core, CTFP consists of basic floating-point operations op,
and decorators tx. Each op represents—and is compiled to—a low-
level LLVM function. Each decorator takes as input an operation
and returns a new operation that “wraps” or “transforms” the input
operation; we can use the decorators to transform unsafe opera-
tions into their safe counterparts. Both decorators and operations
are represented in the DSL “meta-language,” Haskell. We develop
CTFP by composing multiple decorators tx1, tx2, . . . , each of which
accounts for a subset of unsafe inputs. Inspired by Python [36], we
write tx @ op for the result of applying the decorator tx to the
operation op, and tx1 @ . . . @ txn @ op for the result of compos-
ing the decorators tx1, . . . , txn . Below, we describe the building
blocks of our DSL and the four decorator “strategies” that we use
to implement the Restrict and Full operations.
Primitives. Our DSL has the following primitives that correspond
to the machine operations that test and manipulate floating-point
values.

▶ Floating-point and integer literals.
▶ Floating-point arithmetic functions, including addition (fadd),

subtraction (fsub), multiplication (fmul), division (fdiv),
and square-root (fsqrt).

▶ Bitwise functions, including and , or , xor , and not .

▶ Comparison functions, including ordered equality (oeq), or-
dered less than (olt), ordered greater than (ogt), unordered
less than or equal to (ule), unordered greater than or equal
to (uge), unordered-is-negative check (isUneg), and a NaN
check (isNaN).

▶ Sign functions, including abs—which computes the abso-
lute value of a floating-point value—and copySign—which
creates a value with a given magnitude and sign.

Conditionals. Since conditional branching can introduce timing
variabilities, our DSL does not provide general conditional branch-
ing primitives [1]. Instead, we provide a function ite that can be
used to select between two values: ite b x y evaluates to x if
b is true and y otherwise. Internally, ite is implemented using
constant-time bitvector operations:

ite b e1 e2 = (b `and` e1) `or` (not b `and` e2)

We ensure that the condition variable (b) is always true (i.e., all 1s)
or false (i.e., all 0s). In the former (resp. latter) case, ite returns
e1 (resp. e2).
Calls. Recall that each decorator tx is a meta-function that takes as
input an op function and returns a new function. The new, decorated
function may call op—or any other primitive function—via the DSL
primitive call .
Generic Blinding Decorator. We express all CTFP decorators
using the generic blinding decorator shown below:

txBlind isUnsafe blind fix op = λvs ->

let unsafe = isUnsafe vs

safeVs = ite unsafe (blind vs) vs

res = call op safeVs

fixedRes = ite unsafe (fix vs res) res

in fixedRes

This decorator takes as input four functions:2

▶ isUnsafe : tests if any input value is unsafe,
▶ blind : replaces the unsafe inputs with safe values that can

be used as inputs to op,
▶ fix : produces a correct output given the (potentially) unsafe

inputs and the result of the operation, and
▶ op: the operation to be decorated.

Given these input functions, the decorator returns a new “wrapped”
operation.

3.1 Core CTFP Decorators

We use the binding decorator txBlind to implement the four high-
level decorators for all Full and Restrict decorated instructions.
Dummy Value Decorator. For several floating-point operations,
emulating the computation on certain unsafe values amounts to
returning a constant value. For example, the square-root of NaN
or a negative number—both unsafe—is NaN . To this end, our DSL
provides the dummy value decorator:

2 We loosely use the term “decorator” to refer to these high-order meta-functions
that take several values, not just the operation to be transformed. Indeed, these high
order functions can be thought of as “decorator templates”, i.e., functions that produce
decorators.



txDummy badIn badOut safeIn =

txBlind (λv -> oeq v badIn) −− isUnsafe
(λ_ -> safeIn) −− blind
(λ_ _ -> badOut) −− fix

This decorator addresses the timing variability of an operation op
(without altering its semantics) by computing on dummy safeIn—
instead of deadly or dangerous badIn—and returning badOut , the
value that would be returned if the unsafe computation were actu-
ally performed. The decorator txDummies generalizes txDummy
to blind multiple deadly inputs at once; this allows our DSL to
generate more efficient code than would be possible by repeatedly
applying txDummy .
Underflow and Overflow Decorators. Restrict and Full ma-
nipulate the range of floating-point numbers to eliminate subnormal
numbers from the input and output space. CTFP accomplishes this
by implementing underflow and overflow in software:

txUnderflow lim =

txBlind (λv -> olt (abs v) lim) −− isUnsafe
(λv -> copySign Zero v) −− blind
(λ_ res -> res) −− fix

txOverflow lim =

txBlind (λv -> ogt (abs v) lim) −− isUnsafe
(λv -> Inf) −− blind
(λ_ res -> res) −− fix

Decorator txUnderflow takes as input a threshold value lim
and returns a decorator that replaces all inputs under the threshold
with positive or negative zero. txOverflow replaces all inputs
over the threshold with the special value Inf . Both decorators
return the result of op on the zero or infinity.
Predict Decorator. Since computations that produce subnormal
outputs exhibit time variability, CTFP must predict these outputs
without performing the dangerous operation:

txPredict shift lim safeIn =

txBlind (λv -> olt (abs (shift v) lim) −− isUnsafe
(λ_ -> safeIn) −− blind
(λv res -> copySign r (shift v)) −− fix

This decorator performs a safe, constant-time computation on mod-
ified inputs in order to predict whether the output (on the original
values) is deadly or not. It takes three inputs:

▶ a function shift that, given the input v returns a shifted
value shift v in lieu of the underlying operation,

▶ a threshold lim that is an upper bound on the magnitude
of deadly outputs for the underlying operation,

▶ and a safe input safeIn that should be used if the output
is indeed deadly.

Given these inputs, we use txBlind to return a decorated oper-
ation that executes on safeIn if the shifted (output) value falls
within the (shifted) deadly region denoted by lim , and executes
unchanged otherwise.

3.2 Restrict Decorated Instructions

In this section, we show how to use our DSL to implement the
constant-time Restrict floating-point operations. Restrict ex-
ploits the fact that there is a range of normal floating-point values

Op Expression Float Double

Add/Sub Min MIN * 2ˆSIG - ULP 9.86e-32 1.00e-292
Mul/Div Min sqrt(MIN) 1.08e-19 1.49e-154
Div Max 1 / sqrt(MIN) 9.22e+18 6.70e+153
Sqrt Min MIN 1.18e-38 2.22e-308

Figure 3: Threshold values used by Restrict decorators. The con-

stant MIN is the smallest, normal floating-point for a format and

SIG is the number of bits in the significand (e.g.,MIN = 1.175e-38 and

SIG=23 for float). For brevity, the table shows constants rounded

to three digits.

that are guaranteed to also produce safe, normal outputs for a given
floating-point operation. Restrict uses the dummy, underflow, and
overflow decorators to flush values outside of this safe range to
zero and infinity.

Each floating-point operation has its own safe input range. For
example, for multiplication, an input range [0.1, 10.0] is sufficient to
prevent subnormal outputs since multiplying the smallest possibles
value of 0.1 with itself yields 0.01 (a value far from any subnor-
mal numbers). To minimize the impact on floating-point precision,
however, we want the largest safe input range possible; Figure 3
summarizes the cutoffs that CTFP uses for the different operations.
Addition, Subtraction, and Multiplication. To transform addi-
tion, we restrict the input range so that any values below addMin
(9.86e-32) are flushed to zero. The following code demonstrates the
Restrict version of addition:

restrictAdd = txUnderflow1 addMin

@ txUnderflow2 addMin

@ fadd

Subtraction is nearly identical to addition, except that we change the
base operation to fsub . For multiplication, we underflow values
smaller than mulMin (1.08e-19).
Division. A safe division operator must account for three classes
of deadly values. First, out-of-range values like very large divi-
sors or small dividends can lead to subnormal outputs. Second,
special values like NaN or Inf or Zero can trigger special cases
that return early (and thus take less time than a “typical” divi-
sion). Third, some implementations of division enjoy a small but
exploitable speedup [25] when the divisor is a power-of-two. We ad-
dress these three classes of values with three decorators (txRange ,
txSpecial , and divPowers2), and compose them to imple-
ment the Restrict division shown in Figure 4.

First, the txRange decorator underflows dividends smaller
than divMin (1.08e-19) to zero, and overflows divisors larger
than divMax (9.22e+18) to infinity to ensure that the outputs are
not subnormal. We chose these cutoffs to roughly balance the num-
ber of floating-point values below the lower cutoff and above the
upper cutoff.3

Oncewe eliminate the out-of-range values, we call the safeDiv
function, a decorated version of division that is safe whenever the
inputs and outputs are normal. We implement safeDiv by wrap-
ping the base operation fdiv with two decorators that respectively
account for special values and powers-of-two.
3Users can choose their own (application-specific) cutoffs, too.



−− | Restrict division −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

restrictDiv = txUnderflow1 divMin

@ txOverflow2 divMax

@ safeDiv

−− Decorated division that is safe for normal inputs
safeDiv = txSpecial

@ divPowers2

@ fdiv

−− Emulate division on special values
txSpecial = txDummies nans (λ_ -> NaN) Dummy

@ txDummies infs (λ_ -> Inf) Dummy

@ txDummies zeros (λ_ -> Zero) Dummy

−− Emulate division on powers−of−two
divPowers2 = divByParts

@ txDummy2 1.0 (λ(v,_) -> v) Dummy

@ txDummies infs (λ_ -> Inf) Dummy

@ txDummies zeros (λ_ -> Zero) Dummy

−− Split division into two steps
divByParts = txBlind

(λ _ -> True)

(λ (n,d) -> (fdiv n (getExp d), getSig d))

(λ _ r -> r)

Figure 4: Restrict-division uses decorators that blind large divi-

sors, small dividends,

▶ The txSpecial decorator emulates division on special
inputs—NaNs, Infs and Zeros—using the txDummies
decorator to perform constant-time division on a Dummy
(1.5), normal value.

▶ divPowers2 handles powers-of-two divisors. This deco-
rator exploits the insight that a power-of-two divisor can
be split into two parts d = s × e where the significand s lies
in the range [1, 2) and the exponent e is exactly a power of
two. To this end, our decorator emulates the division com-
putation by performing division by parts, i.e., in two steps
n/d = (n/e)/s where dividing by e is always “fast” and divid-
ing by s is always “slow”. When splitting division into parts,
we use txDummy to account for the special degenerate case
where s = 1.0. Also, since the intermediate result of n/e may
itself underflow or overflow to Zero or Inf we again use
txDummies to handle these safely—recall that Zero and
Inf are special values for division.

Square Root. The Restrict implementation of square root must
account for four classes of deadly values. First, as with other opera-
tions, square root is unsafe when the input is subnormal. Second,
as with division, square root exposes a timing variability due to the
special values Zero , Inf and NaN . Third, negative input values
are deadly for square root. Finally, some implementations of square
root are faster on powers-of-four inputs.

We account for these cases by composing a sequence of trans-
forms. We use the txUnderflow decorator to eliminate subnor-
mal inputs (values below fltMin) and flush them to zero. As
with division, we use txDummy to emulate the operation on spe-
cial values NaN , Inf and Zero (in the last case, we return v to

preserve the sign). The sqrtNeg decorator—implemented using
txBlind—emulates square root on negative input values by per-
forming the computation on a dummy value and returning NaN .

Finally, sqrtPowers4 emulates square root on powers-of-four
using txBlind . This decorator checks if the value is a power-of-
four4 and, if so, blinds the input by adding a single bit to it (i.e.,
sqrtPowers4 computes sqrt(input + ULP), where ULP is
the unit of least precision). It fixes the result by removing (via a
bit-mask) the at-most single incorrect bit from the output.

3.3 Full Decorated Instructions

Next, we show how to use our DSL to implement the Full floating-
point operators. Full instructions preserve IEEE-754 semantics for
all non-subnormal floating-point values. As with Restrict, we flush
subnormal inputs to zero using the txUnderflow decorators.
Unlike Restrict, however, we do not flush normal inputs that may

result in a subnormal output. Instead, our Full operations only
flush values that actually produce subnormal outputs—a decision
we perform at run-time. For an operation op on values a and b, we
check if |a op b | ≥ M , whereM is the smallest normal value. Since
this is exactly the timing-variable computation that we wish to
avoid, though, our decorated operations rely on the txPredict
decorator to perform this computation on scaled but timing-safe
values, in order to determine whether they are safe.
Addition, Subtraction, and Multiplication. Figure 5 shows the
Full version of addition. To decorate addition, we first apply the un-
derflow decorators to eliminate subnormal inputs. Next, we use the
predictAdd decorator to emulate addition, accounting for inputs
that may result in subnormal outputs. Internally the predictAdd
decorator multiplies both inputs with a constant C (addC in the
figure) so that C · a +C · b is normal for all possible inputs a and
b. It then tests the result against C · M (addLim in the figure),
i.e., it checks if |C · a +C · b | ≥ C ·M , to determine if the output
of the computation is subnormal. If the output is subnormal, the
decorator replaces the inputs with Zeros; otherwise it leaves the
inputs intact. It then performs the floating-point addition on the
safe inputs. Subtraction is implemented the same, except the base
operation fadd is replaced by subtraction fsub .

For the decorated multiplication we use the predictMul dec-
orator to emulate multiplication after subnormal inputs are elimi-
nated. This decorator performs a scaled multiplication to determine
if a × b is subnormal, and if so, sets the inputs to Zero . Unlike
the predictAdd decorator, predictMul uses a single multipli-
cation (by mulC) to scale the operation outside of the subnormal
range, after which the result is compared against the threshold
mulLim to determine if the output is subnormal.
Division.As with the previous operations, we use txUnderflow
decorators to eliminate subnormal inputs and a predict decorator,
predictDiv , to remove normal inputs that produce a subnormal
output. The predict decorator for division is more complex, though,
since extreme operands may (1) require intermediate computation
on values larger than FLT_MAX or (2) overflow intermediate values
4 The binary representation of a power-of-four has all zeros in the significand and an
odd exponent—the odd exponent translates to a power-of-four due to the exponent
bias. Thus, to determine if the input is a power-of-four, the blinding condition extracts
the significand bits of the input and the last bit of the exponent and compares the
result to verify all significand bits are zero and the exponent ends in a one bit.



−− | Full addition −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

fullAdd = txUnderflow1 fltMin

@ txUnderflow2 fltmin

@ predictAdd

@ fadd

−− Try an addition and replace inputs with zeros if output is subnormal
predictAdd = txPredict

(λ (a,b) -> fadd (fmul a addC) (fmul b addC))

addLim

(Zero, Zero)

Figure 5: Full addition, subtraction (omitted), and multiplication

(omitted) underflow subnormal inputs and any normal inputs that

produce subnormal outputs.

to infinity. For the first issue, consider a/b when a is 1.18e-38 and b
is 3.4e38. The result of the shifted division using divC (8.5e37) will
produce the subnormal 2.9e-39. Unfortunately, we cannot address
this by simply increasing divC to the necessary value of 3.4e38,
since this number exceeds the maximum size of single-precision
floats. For the second issue, consider when a is 5e31 and b is 2e-07.
When divByParts splits b into 1.2e-7 and 1.68 such that the
first division results in 4e38, a value that incorrectly overflows to
infinity. Consequently, we must account for the possibility of the
first division—the division by the exponent—overflowing without
giving up on precision. For both cases—when the trial division
is subnormal or when the intermediate value in divByParts
overflows—we use the decorator extremeDiv to shift the value
of b up or down to avoid subnormals and overflow.
Square Root. The Full square root operator is identical to the
Restrict one shown in Section 3.2 since the square-root of a normal
number is guaranteed to be normal.

3.4 Implementation

CTFP generates LLVM code from our DSL by generating a new
LLVM function for each decorated term, yielding constant-time
equivalents for each floating-point operation. Given an DSL term
ctOp = tx1 @ . . . @ txn @ opCTFP generates a sequence of functions
f1 . . . fn+1 where each fn+1 is just op and each fi is the result of
applying the decorator txi to fi+1.

We use Clang version 6.0.0 on Linux to generate constant-time
machine code targeting Skylake processors (-march=skylake).
We manually verify this machine code is free of unsafe instructions
(e.g., conditional branches).
Vectorized CTFP Transformations. For each instruction, our
tool supports floats and doubles as either scalars or vectors of
sizes 2, 4, 8, or 16. Supporting vectorized CTFP transformations is
crucial for performance. Without vector support, the CTFP transfor-
mations must run before the vectorization passes of LLVM, and the
CTFP code’s complexity prevents the future vectorization passes
from succeeding. By supplying vector versions of the CTFP trans-
formation, the pass is able to run after vectorization and take full
advantage of the resulting SIMD instructions.
Source Code. The full source code for CTFP is publicly available
at http://ctfp.programming.systems. The repository includes the

Haskell DSL for generating Restrict and Full floating-point oper-
ations, the LLVM plugin for applying CTFP as a optimization pass
in Clang, and our verifier.

4 VERIFYING CTFPWITH SMT

As demonstrated by the decorators in Section 3, floating-point com-
putations have various subtle corner cases, and it is quite easy to
get transformations wrong. To address this issue, we implemented
LLVC, a verifier for the LLVM fragment used by CTFP. LLVC con-
verts LLVM programs and specifications into logical formulas called
verification conditions (VCs) whose validity (1) can be automatically
checked by SMT solvers, and (2) implies that the LLVM program
adheres to the given specification. Next, we describe LLVC and
how we use it to verify that CTFP’s decorated operations indeed
eliminate inputs and outputs that could lead to timing variability
and produce results that are equivalent to the IEEE-754 behaviors
for the respective Restrict- or Full-value ranges. During develop-
ment, we found and fixed six bugs using verification, from tricky
cases involving special values to semantic differences caused under
certain rounding modes.

SMT Solvers. SMT solvers are automatic decision procedures that
can determine whether a formula is satisfiable, i.e., whether a for-
mula evaluates to true for some assignment of values to the variables
in the formula. The formula is unsatisfiable if no such assignment
exists. Dually, we say a formula is valid if the formula evaluates
to true for all assignments of values to the variables. Note that a
formula is valid if its negation is unsatisfiable. For example, when
queried with formula a ∨ b, an SMT solver will return a satisfying
assignment a = true,b = false that makes the formula evaluate to
true. When queried with a∧¬a, the SMT solver will return unsat ,
indicating that no satisfying assignment exists. In other words, the
negation of the above, namely ¬(a ∨ ¬a) is valid.

Reasoning about Floating-Point Arithmetic with SMT. Users
can express relatively high-level concepts about program structures
as SMT formulas by using functions and predicates that belong
to theories. Theories include integers, arrays, and bit-vectors. We
encode the semantics of CTFP transformations using the theories
of bit-vectors and floating-point arithmetic [9] formalized in SMT-
LIB [7], an initiative for standardizing theories and input languages
across different solver implementations. The floating-point theory is
a formalization based on the IEEE-754 standard, and includes basic
arithmetic operations, sqrt , the five different rounding modes,
and special values. We use commit 95963f7 of Z3 [16] as our SMT
solver because it is one of the few solvers that currently support
the floating-point theory.

4.1 Specification

Function Contracts. In LLVC, we model all operations i.e., LLVM
primitives like comparisons, bitwise operations, select and arith-
metic, and of course, call—as function calls. In LLVC, users can
specify desired properties as Floyd-Hoare style function contracts
comprising a precondition that callers must establish on the func-
tion’s inputs, and a postcondition that the function will guarantee
about the function’s output [22]. Next, we show how we can use
contracts to specify the two key properties that CTFP ensures

http://ctfp.programming.systems


;; precondition for addition
(define_fun fadd32_requires ((a F32) (b F32)) Bool

(not (fadd32_deadly a b)))

;; postcondition for addition
(define_fun fadd32_ensures ((ret F32) (a F32) (b F32)) Bool

(= ret (fp.add rm a b)))

;; deadly inputs for addition
(define_fun fadd32_deadly ((a F32) (b F32)) Bool

(or (fp.isSubnormal a)

(fp.isSubnormal b)

(fp.isSubnormal (fp.add rm a b))))

Figure 6: Contract for the primitive 32-bit addition.

▶ Safety: The decorators must prevent any unsafe, timing-
sensitive values from being passed as inputs to or returned
as outputs from floating-point instructions, and

▶ Equivalence: The decorators must preserve floating-point
semantics for safe values so that the end-to-end application
behavior is unchanged.

Safety Contracts. The safety contracts are the same regardless of
Restrict or Full mode. For each operator we require that their
inputs be safe, i.e., not any of the special timing-sensitive values,
and that they do not produce timing sensitive values as output.
Dually, for each operator we ensure that the output is exactly the
result of applying the respective operator to the two inputs.

For example, for the fadd operation, we specify the contract
shown in Section 6. The precondition fadd32_requires is a
predicate over the two inputs a and b that says that the fadd must
be called with inputs that are normal, and which produce normal
outputs. The postcondition fadd32_ensures is a predicate over
the two inputs and the output ret which says that the operator
returns exactly the result of the floating-point addition of its two
inputs.
Equivalence Contracts for Restrict. We specify the equiva-

lence property for an operator op by writing contract for the top-
level decorated function corresponding to op. This contract specifies
a precondition that the inputs of the function can be called with
any input because the decorated functions must properly account
for all possible floating-point input values. However, the contract
specifies that the output value is only correct for non-dangerous
inputs that fall outside the threshold specific to the operator.

For example, for fadd we specify the contract for the top-level
function @restrictAdd1 from Figure 7 that says that (1) the
inputs must satisfy the precondition true and (2) the function return
value (ret) satisfies the postcondition:

(define_fun restrictAdd_ensures ((ret F32) (a F32) (b F32))

(= ret (fp.add rm (underflow a addMin)

(underflow b addMin))))

This postcondition ensures that outputs preserve floating-point
semantics if the inputs are not dangerous, i.e., the inputs are larger
than addMin ; otherwise, the function returns the result performing
fadd on underflowed (to zero) inputs. We precisely define the
semantics of underflowing as the SMT predicate:

define weak float @restrictAdd1(float %a, float %b){

;@ requires true

;@ ensures (restrictAdd_ensures %ret %a %b)

%1 = call float @llvm_fabs(float %a)

%2 = fcmp olt float %1, 0x3980000000000000

%3 = select i1 %2, i32 -1, i32 0

%4 = xor i32 %3, -1

%5 = bitcast float %a to i32

%6 = and i32 %4, %5

%7 = bitcast i32 %6 to float

%8 = call float @llvm_copysign(float %7, float %a)

%9 = call float @restrictAdd2(float %8, float %b)

ret float %9

}

Figure 7: LLVM code for Restrict addition.

(define_fun underflow ((val F32) (lim F32)) F32

(ite (fp_lt (fp_abs val) lim) (copysign zero val) val))

The exact threshold—here, addMin—depends on the type of the
operation op as laid out in Figure 3.
EquivalenceContracts for Full.As before, we specify the equiv-
alence contract for Full as a contract for the top-level operator,
where the precondition is true. However, this time, the contract
specifies that the output value is correct for all non-deadly inputs
and underflows otherwise:

(define_fun fullAdd_ensures ((ret F32) (a F32) (b F32)) Bool

(= ret (underflow (fp.add rm (underflow a fltmin)

(underflow b fltmin))

fltmin)))

Optimality. In addition to checking for safety and equivalence, we
use the SMT solver to determine whether our choice of thresholds
used in the Restrict decorators is optimal, i.e., the threshold C
chosen for op is as small as possible.5 To check optimality, we
change the code and conditions to use the next smaller floating-
point value forC and query the SMT solver to prove that they admit
a deadly computation. For example, for Restrict addition, we check
that the threshold addMin is optimal by checking that the SMT
solver finds a counterexample that violates the safety contracts
when we change addMin to addMin − ULP.

4.2 Verification

Next, we describe how LLVC converts LLVM programs and contract
specifications into VCs whose validity formally guarantees that the
generated code enjoys the safety and equivalence properties, i.e.,
proves the constant-time and correctness properties for all inputs.
If the VC is invalid, i.e., its negation is satisfiable, the solver returns
a counterexample: a concrete set of floating-point inputs on which
some property is violated, which we found invaluable in hunting
down tricky bugs in our CTFP implementation.

5Division has two separate thresholds for the dividend and the divisor, which we
translate to two separate properties. The threshold for the divisor is special because
we want it to be as large as possible.



Contracts for LLVM Primitives. Recall that in LLVC, the seman-
tics of all LLVM primitives are modeled as contracts. This modeling
is eased by the fact that many floating-point LLVM instructions
have a corresponding function or predicate in the SMT-LIB floating-
point theory. For example, the LLVM instruction fadd float
%1, %2 is modeled by the contract in Figure 6. The postcondition
describes the output of the operation and is modeled as a single
SMT operation, fp.add . For some instructions, we have to take
care to precisely model the semantics by combining other SMT-LIB
predicates. For example, the LLVM not-equals comparison fcmp
une float %a, %b returns true if any of the arguments of
the comparison are NaN . We model these by turning the original
comparison a ⋄b into a ⋄b ∨isNaN(a) ∨isNaN(b), via the following
postcondition:

(define_fun une_ensures ((ret F32) (a F32) (b F32)) Bool

(= ret (or (fp.isNaN a)

(fp.isNaN b)

(not (fp.eq a b)))))

Finding bugs in CTFP. The verification tool found, and helped
us fix, several subtle errors in our design of the Restrict and Full
operations:

▶ An early version of Full missed the fact that ∞−∞ = NaN;
consequently, it used an ordered (instead of an unordered
comparison), which led to large values underflowing to zero.

▶ An early version of Fullwas wrong when rounding towards
zero. In this rounding-mode there is no overflow to∞, which
breaks addition (as described in Section 3.3).

▶ The trial comparison in Fullmultiplication was off by 1 ULP.
▶ Our optimality check allowed us to improve the cutoff thresh-

olds for the Restrict addition. In earlier versions, we found
that the threshold was too conservative in that it unneces-
sarily rounded values down.

▶ Our safety check discovered that an earlier version of the
Restrict division was using a threshold that was too aggres-
sive: it was possible to generate inputs that yielded subnor-
mal output values, thereby violating CTFP’s constant-time
guarantees.

▶ Finally, the computation in predictDiv produced sub-
normal intermediate values. As a result, we developed the
extremeDiv decorator to handle specific cases of large
and small values.

In addition to the fixed issues, the verification tool discovered the
limitation that the Full multiplication and division are not exact
when the result is FLT_MIN or DBL_MIN.

We remark that every one of these issues involved tricky floating-
point semantics and special values. This made them hard to detect
manually ahead of time—LLVC’s SMT-based verification proved
invaluable for implementing CTFP.

VerifyingRestrict and FullTransformations.While the SMT
solver was able to find the above bugs in a few seconds, proving
the safety and equivalence took much longer. Figure 8 lists the op-
erations and the time taken for Z3 to verify each one. As expected,
verifying Restrict transformations is significantly faster than their
Full counterparts. The verification times also show that division is,

Verification Time

Operation Float Double # Assumes

Restrict add 0.7s 1.1s 0
Restrict sub 0.7s 1.3s 0
Restrict mul 1.4s 6.4s 0
Restrict div 120.7s — 1
Full add 10.1s 45.6s 0
Full sub 10.2s 48.7s 0
Full mul 11.2s 49.0s 1
Full div 573.7s — 6
Full sqrt 15.9s 122.5s 0

Figure 8: The time taken for Z3 to verify each operation. The last

column indicates the number of assumptions that we added.We use

the same assumptions for both bit-widths.

by far, the most complex operation to verify; this is not surprising—
division consists of many decorators and the underlying operation
itself is complex to reason about. To improve performance, we man-
ually introduce binary clauses of the form (or x (not x)) and
ask Z3 to split them into subgoals. We find this effective when we
use it on the values of the initial conditions of some of the dec-
orators. Intuitively, this is because most of our decorators check
for some bad value at the start of the function. Depending on the
outcome of that check, the possible register values are often very
different (e.g., a certain register may always be zero if the check
succeeds), so treating the two outcomes as separate subgoals can
be useful—the solver does not have to discover the variable to split
on by itself.

Figure 8 also highlights the number of assumptions we require
for verification to complete—without them, the solver does not
finish within a reasonable time limit. The assumptions that we
rely on largely help Z3 reason about scaled values (e.g., when de-
termining whether the output of an operation could be subnor-
mal). Our Restrict decorators require a single assumption: for
the Restrict division we assume the outcome of divByParts
is correct for the given range. Full is slightly more demanding in
requiring eight assumptions. Two of the Full division assumptions
are directly analogous to our Restrict assumption, one for each
divByParts performed. In addition, one of the divByParts
decorators requires an assumption that the values passed to the
following decorator fall into a specified range. The preconditions
are slightly different in both applications of the decorator, so the
reasoning about the possible values is different. Two assumptions
help Z3 reason about the extremeDiv decorator; the decorator
avoids extreme output values by scaling the inputs, our assump-
tions say that the scaled computations do not change the result.
The remaining assumptions state that our subnormal predition dec-
torators are accurate. For example, we assume that predictMul
accurately predicts whether the result is subnormal or not (except
when the result is FLT_MIN/DBL_MIN). We note that to our 64-bit
division remains unverified—verifying 64-bit divisions in a reason-
able amount of time requires many more assumptions, defeating
the purpose of using verification.



5 EVALUATION

We evaluate CTFP on three fronts—security, correctness, and per-
formance—by answering the following questions: does the CTFP-
decorated code

▶ (Section 5.1) execute in constant-time?
▶ (Section 5.2) change the input-output ranges as specified?
▶ (Section 5.3) break the behavior of applications?
▶ (Section 5.4) perform with acceptable overheads?

We find that CTFP indeed eliminates exploitable timing vulner-
abilities; i.e., the decorated floating-point operations execute in
constant-time over the range of inputs that we tested. Furthermore,
both the Full and Restrict operations do not break Skia’s ren-
dering tests or the SPECfp benchmark suite. In our experiments,
Restrict CTFP adds an overhead of 1.7–8.0x, while Full CTFP
adds an overhead of 3.5x–29x.6 We compiled all benchmarks with
Clang 6.0.0 and ran them on a machine with an Intel Core i7-7700
(Kaby Lake) CPU.

5.1 CTFP Executes In Constant Time

We time the CTFP floating-point operations with different inputs to
determine if they actually exhibit any exploitable timing variability.
Inputs and Operations. We choose normal input values and a
selection of special values from the following categories: subnor-
mal, zero, one, powers-of-two, powers-of-four, infinity, and NaN .
We test all combinations of these inputs on all original floating-
point operations and their Restrict and Full versions. We use this
method because the input space—all combinations of all floating-
point numbers—is too large to test exhaustively. Similarly, picking
random values to test would rarely yield known problematic inputs
since, for example, single-precision floating-point numbers have
232 possible values and only 223 of those are subnormals.
Testing Method. We use the rdtsc instruction to measure the
running time of executing an operation 32 times. To minimize
the effects of out-of-order execution and pipelining, we introduce
an artificial data dependency by reassigning the input: in =
m_xor_d(m_xor_d(out , res), in).7 We repeat this pro-
cess a million times to overcome timing inconsistencies like context
switches or hyper-threading and average the median 50% of mea-
surements.
Results. Figure 2 summarizes the results of running the original
single-precision floating-point operations on different CPUs. All
CPUs exhibit timing differences in multiple cases. An operation on
a value category is marked unsafe if its runtime differs from that
on normal values. Because timing differences can be very small, we
consider any consistent performance difference unsafe. In contrast,
for the CTFP versions of the floating-point operations, we found
that the execution time for all value categories on each instruction
(e.g., addition for all values) varies by less than 1%, which falls
well below the threshold of a single clock cycle. In other words, our

6Depending on the operation, these overheads are either similar or much lower than
Escort’s, since Escort effectively slows all operations to the speed of their subnormal
variants [34]. The Subnormals column in Figure 9 gives a rough estimate of the best-case
overhead for Escort.
7This is a no-op because the output out XORed with the expected output res is 0
and that XORed with the input in is simply in .

results show that CTFP eliminates any exploitable timing variability
from these FP instructions.

5.2 CTFP Changes Ranges as Specified

Both the Restrict and Full decorations change the semantics of
floating-point operations: the former only guarantees IEEE-754
semantics for input values in the safe range, and the latter, for all
computations that do not consume or produce deadly values. Next,
we check that the decorated code returns the same output as the
original code in cases where we intend to preserve semantics. Simi-
larly, we test that the decorated code changes semantics correctly
when intended, e.g., that subnormal values are indeed replaced
by zeroes. To validate the known timing channels, we test each
operation using every combination inputs from each value class. In
order to find other bugs, we enumerate one million pairs of random
inputs and verify that each operation produces the correct result
and every primitive operation never observes a deadly value on
input or output.
Full Correctness.We formally verify that our decorated floating-
point operations preserve the semantics of the underlying operation
when neither its inputs nor its output are subnormal (Section 4). As
an additional sanity check, we run micro-benchmarks to confirm
that CTFP instructions exactly match the IEEE-754 specification
with flush-to-zero and denormals-are-zero flags enabled, on various
combinations of inputs. Specifically, we test IEEE-75 compliance
for all operations over all special values in addition to one million
randomly generated pairs of inputs.
Restrict Correctness. The Restrict decorated operations di-
rectly evaluate the corresponding machine operations on values
that fall within the safe range, and hence, trivially produce equiva-
lent results. Thus, we just test that CTFP zeroes out values that fall
outside of the safe range (for a given operation).

5.3 CTFP Preserves Application Behavior

CTFP changes the semantics of floating-point operations. Hence, we
evaluate whether these changes are benign or if they can adversely
affect real applications. To this end, we evaluate CTFP on the SPEC
benchmarks and the Skia 2D graphics engine. Evaluating SPEC and
Skia did not require changing their code (and optionally included
changing only a few lines of their tests). We just linked against a
version of the MUSL -libc math library, which we created using
an LLVM pass to replace normal floating-point operations with
CTFP operations.
SPEC Benchmarks. Both the Restrict and Full operations pass
all C and C++ tests from the SPECfp benchmark suite. The SPEC
tests demonstrate that restricting the range of floating-point num-
bers still leaves enough power to complete many scientific com-
puting tasks: physics calculations, molecular dynamics, linear pro-
gramming, ray tracing, fluid dynamics, and speech recognition.
Skia Graphics Library.We test whether CTFP works on the Skia
library, since this library is widely used (e.g., in Google Chrome,
Chrome OS, Chromium OS, Firefox, Android, Firefox OS, and Sub-
lime Text 3) and has been the target of a floating-point timing at-
tack [25]. After compiling Skia with both versions of CTFP, we test
Skia’s default configuration of 1565 tests (excluding those for the



GPU). These tests comprise 913 unit tests and 654 render tests which
check the end-to-end functionality of everything from fonts to draw-
ing primitives. When we compiled Skia with the -ffast-math flag,
the test suite would not complete: it kept failing assertions and loop-
ing infinitely. This indicates that Skia is very sensitive to changes
in floating-point semantics, which makes it a particularly useful
stress test for CTFP.
Full Skia Tests. Comparing the CTFP results to those of the original
reference build, we found that Full-Skia passes the same set of
rendering tests, but fails on five floating-point-specific unit tests.
Three of the unit tests explicitly use subnormal values to test low
level vector andmatrix operations. Another unit fails in the function
SkFloatToHalf due to a multiplication by a very small constant
that may produce a subnormal result. And the final unit test fails
due to an infinite loop that assumes subnormal numbers are treated
as non-zero.
Restrict Skia Tests. Restrict-Skia fails seven unit tests but passes
all rendering tests. The failing unit tests match the failures of Full
caused by the removal of subnormals. The remaining two unit tests
fail due more limited range of Restrict.
Fixing Tests. A six line change to the SkFloatToHalf function
(using an alternate, equivalent computation) removes one failure
leaving only four failures for Full and six failures for Restrict.
Furthermore, a four line change eliminates the infinite loop found
in the last failure, safely discarding inputs that underflow to zero.
While this change removes the infinite loop and allows the test
to complete, it still reports an error because CTFP cannot handle
subnormal numbers. However, the fact that Skia passes all the
rendering tests demonstrates that CTFP’s semantic changes provide
enough to power a robust rendering library.

5.4 CTFP Has Acceptable Overheads

Micro-benchmark on Normals. We measure the overhead of
CTFP calls compared to traditional floating-point operations on
normal operands.We run each operation with two normal operands,
and measure the time that each takes using the method from Sec-
tion 5.1.8 The first two columns of Figure 9 illustrate CTFP’s over-
head for each operation. Restrict CTFP is approximately twice as
fast as the Full version for all operations except square root. This
is because the implementation of square root is identical between
the two versions as range restriction is unnecessary. Division is
much slower than the other operations because it requires far more
special cases.

In general, we find that the vectorized versions of each operation
(except square root on doubles) outperforms the scalar version by
up to 15% despite performing additional computation. This speedup
is due to poor code generation by the compiler backend—values are
often passed back and forth between SIMD registers and integer reg-
isters instead of computing exclusively on SIMD registers. To take
advantage of this, all scalar operations call the vectorized version
by leaving the remainder of the register uninitialized. Although
it may seem unsafe to operate on uninitialized values, CTFP will
safely protect every value.

8CTFP should take the same amount of time on both normals and subnormals, but
traditional floating-point computations are considerably slower on subnormals.

Op Restrict Full Subnorm

Float add 4.0x 9.8x 1.0x
Double add 4.0x 9.9x 1.0x
Float mul 4.1x 10.1x 40.2x
Double mul 4.2x 10.1x 40.4x
Float div 14.5x 31.3x 20.0x
Double div 12.2x 26.7x 17.1x
Float sqrt 9.5x 9.5x 15.1x
Double sqrt 9.5x 9.5x 14.8x

Bench Restrict Full

milc 2.0x 4.9x
namd 4.0x 12.6x
soplex 1.7x 3.5x
povray 3.3x 8.4x
lbm 8.0x 28.8x
sphinx3 4.0x 10.7x

Figure 9: Overhead introduced byCTFP onmicro-benchmarks (left)

and Spec CPU2006 benchmarks (right). The Subnorm column shows

the overhead of baselinefloating-point computations on subnormal

inputs compared to normal inputs.
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Figure 10: Overhead using 755 CPU performance tests for Skia. The

chart plots the normalized performance overhead (y-axis) against

the number of tests (x-axis). The blue line charts the overhead of

Full, the red line charts the overhead of Restrict.

Micro-benchmark on Subnormals. We also compare CTFP’s
performance to baseline floating-point operations on subnormal
inputs. 9 This comparison asks how the overhead of subnormals in
traditional floating-point operations compares to the overhead of
eliminating them these operations in CTFP. As Figure 9 shows, for
addition, multiplication, and square root, the overhead of comput-
ing with subnormals is far worse than eliminating them. However,
the overhead introduced for division is roughly 50% slower than
operating on subnormals. Even so, the division operation protects
against values beyond subnormals (e.g., zero and NaN).
Macro-benchmark.We compare CTFP’s performance to baseline
performance on the SPECfp benchmarks. The performance penalty
on Spec sometimes exceeds that on micro-benchmarks because
CTFP’s decorations hinder optimizations and efficient machine code
generation. Even so, the Restrict decorations add an overhead of
between 1.7x-8.1x on floating-point intensive code, and the Full
decorations add an overhead of 3x to 29x.

We also compare the performance overhead of CTFP using all 654
of Skia’s CPU rendering tests from the nanobench tool. Figure 10
presents the performance of CTFP using a CDF that shows the
overhead (normalized to base runtime) against the number of tests
that fall below that performance threshold. Most tests (> 90%)
incurred less than 3.7x slowdown with Restrict and less than 10x
slowdown with Full.

9CTFP’s performance on subnormals is unchanged, since CTFP is constant-time.



6 LIMITATIONS AND FUTUREWORK

Our CTFP approach has several limitations. Some of these are
inherent to our approach, while others can be addressed in future
work.
Control Flow Related Timing Channels. CTFP only applies to
handling individual FP operations that have exploitable timing vari-
ability across different operands; it does not consider the orthogonal
problem of information leakage via control flow and memory ac-
cess. A complete protection mechanism would have to combine
solutions for both kinds of timing channels, potentially leveraging
some of the techniques from [33, 34].
Scaling Verification.While the SMT solver proved to be invalu-
able in unearthing tricky corner cases, we were unable to use it
to verify the two most complex transformations without resorting
to assumptions: multiplication and division (Section 4). Addition-
ally, it would be desirable to verify all the 64-bit versions of the
transformations. SMT solvers have only recently started support-
ing floating-point decision procedures, which ultimately use “bit-
blasting” to reduce all queries down to propositional SAT formulas.
We are optimistic that with more work, the solvers will be able to
scale up to handle more complex transformations.
Subnormal-SensitiveApplications.Whilewe have demonstrated
that CTFP preserves the functionality of real-world applications
like SPEC and Skia, there are many, many more applications—some
of which may require exact IEEE-754 semantics. In future work,
it would be interesting to support these applications with a new
version of CTFP that transforms code so that all FP operations
safely operate over subnormals (like the Escort system [34]).
FullTruncation of FLT_MIN/DBL_MIN to Zero.Due to double
rounding in Full, multiplication and division may truncate an
output of FLT_MIN/DBL_MIN—the smallest normal floating-point
number—to zero. Newer CPUs support the FMA (fused multiply-
add) instruction that could eliminate the undesired double rounding
and restore correct calculation of all, non-subnormal operations.
Optimizing CTFP Output. The current code generated by CTFP
contains a number of optimization opportunities. For example,
when Full is applied the expression a+1, both the operands a
and 1 are replaced by zero if they are subnormal—however, the
constant value 1 will never be subnormal and therefore the check
may be removed. Further work may safely optimize CTFP code
while still protecting against timing channels.

7 RELATEDWORK

Next, we survey recent related work on timing channels and their
prevention, particularly focusing on systems related to floating-
point computations.
Timing Channels. Kocher’s seminal paper [24] was one of the
first to consider the security implications of covert timing channels,
in particular timing channels that arise due to data-dependencies.
Since then, many attacks against real world systems have leveraged
such timing attacks [4, 17, 19, 25, 26, 30, 32, 38].
FP Timing Channels and Defenses. Andrysco et al. were the
first to demonstrate the dangers of data-dependency of floating-
point operations by carrying out timing attacks against Firefox and

Fuzz [4]. To address these timing attacks, they presented a fixed-
point library, libfixedtimefixedpoint(FTFP), implemented in
software. FTFP has significant performance overhead, but was me-
chanically verified to be constant time [3]

In the context of crypto systems, Coppens et al. [15] and Cleem-
put et al. [13] introduced the idea of using program transformations
to pad variable-latency instructions, or to run them in parallel with
other instructions to force variable-latency instructions to run in
constant-time. The Escort system of Rane et al. [34] builds upon this
padding scheme to address the FP attacks of [4]. Escort executes
potentially deadly FP operations (which may involve subnormals)
in a parallel SIMD pipeline with a dummy subnormal operation.
Assuming the SIMD instruction retires only when both operations
are complete, Escort ensures that all FP operations are effectively
slowed down to operate at the (fixed) speed of subnormal computa-
tions.

Kohlbrenner and Shacham [25] demonstrated the danger of Es-
cort’s hardware-based padding by finding new special values that
affect the latency of instructions, thereby circumventing the Escort
system. Intel’s flush-to-zero (FTZ) and denormals-are-zero (DAZ)
CPU flags can be turned on to disable computations on subnormals;
Chrome, for example, relies on these flags when calling into the
Skia graphics library to address timing attacks [11]. Unfortunately,
these CPU flags need to be very carefully enabled and disabled
on a per library (function) basis. Kohlbrenner and Shacham [25]
demonstrate that managing the flags can be error-prone, leaving the
system vulnerable to attacks. Moreover, like the Escort’s hardware-
based method, FTZ and DAZ cannot prevent attacks that use other
(non-subnormal) special values. Nevertheless, as a defense-in-depth,
CTFP can be easily be modified to enable these CPU flags during
our program transformation pass.

Other Covert Digital Channels. To prevent attacks that lever-
age timing channels, it is insufficient to solely ensure that instruc-
tions are constant-time. Timing-attack vulnerabilities can arise
from program control flow, memory access patterns, and so on.
Previous solutions address these attacks via program transfor-
mations [2, 8, 15, 28, 33, 34], clever usage of hardware, e.g., In-
tel’s hardware transactional memory [20, 35], performance coun-
ters [14, 37], or partitioned caches [31, 32]) even black-box, whole
system mitigation techniques [5]. While many of these techniques
are orthogonal—Askarov et al.’s technique being the one exception
that can be used to tackle timing attacks more generally—we be-
lieve that CTFPwould be especially well-suited to be used alongside
the control flow and memory transformations of Racoon [33] and
Escort [34]. Both Racoon and Escort tackle leaks via control flow
and memory access patterns, but rely on constant-time elementary
floating-point operations.

SMT Verification of FP Optimizations. Alive-FP [27] and Life-
Jacket [29] both verify floating-point optimizations at the LLVM
IR level using an SMT solver. Both focus on proving total semantic
preservation. We, in contrast, translate our LLVM Restrict and
Full operations to SMT formulas in order to verify safety: that
no deadly values appear as the inputs or outputs of FP operations,
and (partial) equivalence: that semantics are preserved only for
non-dangerous or non-deadly values respectively. Escort [34] uses
an SMT solver to determine which of a program’s FP operations



are guaranteed to operate on non-subnormal values. These oper-
ations may be safely left unmodified. While they only consider
subnormals, it would be natural to extend their tool to addition-
ally consider other unsafe special values. Thus, we envision an
extension to CTFP that uses symbolic execution to automatically
eliminate the decorators when it is safe to do so.

8 CONCLUSION

Many systems rely on floating-point operations to run in constant
time for security. Unfortunately, hardware floating point units ex-
hibit timing variability for various input classes (e.g., subnormals,
zeros, infinities, and NaNs) and solutions that repurpose various
hardware features (e.g., CPU flags such as FTZ and DAZ) have not
held up.We present CTFP, a software-based approach that addresses
floating-point timing channels in an extensible and mechanically
verified fashion. CTFP translates floating-point computations to
use our constant-time operations (e.g., fadd and fmul), which
either eliminate unsafe classes of values or emulate computation
on such values in software, in constant time. CTFP breaks IEEE-
754 semantics to ensure reasonable performance. But, importantly,
CTFP does not break the semantics of real-world applications.
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