
Dynamic Witnesses for Static Type Errors ∗

(or, ill-typed programs usually go wrong)

Eric L. Seidel Ranjit Jhala
UC San Diego

{eseidel,jhala}@cs.ucsd.edu

Westley Weimer
University of Virginia
weimer@viginia.edu

Abstract
Static type errors are a common stumbling block for newcomers
to typed functional languages. We present a dynamic approach to
explaining type errors by generating counterexample witness inputs
that illustrate how an ill-typed program goes wrong. First, given an
ill-typed function, we symbolically execute the body to synthesize
witness values that make the program go wrong. We prove that
our procedure synthesizes general witnesses in that if a witness
is found, then for all inhabited input types, there exist values that
can make the function go wrong. Second, we show how to extend
the above procedure to produce a reduction graph that can be used
to interactively visualize and debug witness executions. Third, we
evaluate the coverage of our approach on two data sets comprising
over 4,500 ill-typed student programs. Our technique is able to
generate witnesses for 88% of the programs, and our reduction graph
yields small counterexamples for 81% of the witnesses. Finally, we
evaluate whether our witnesses help students understand and fix
type errors, and find that students presented with our witnesses show
a greater understanding of type errors than those presented with a
standard error message.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.3.4 [Programming Languages]: Processors—Debuggers;
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs—Type structure

General Terms Languages

Keywords debugging, testing, type errors

1. Introduction
Type errors are a common stumbling block for students trying
to learn typed functional languages like OCAML and HASKELL.
Consider the ill-typed fac function on the left in Figure 1. The
function returns true in the base case (instead of 1), and so
OCAML responds with the error message:

∗ This work was supported by NSF grants CCF-1422471, CCF-1223850,
CCF-1218344, CCF-1116289, CCF-0954024, Air Force grant FA8750-15-2-
0075, and a generous gift from Microsoft Research.

[Copyright notice will appear here once ’preprint’ option is removed.]

1 let rec fac n =
2 if n <= 0 then
3 true
4 else
5 n * fac (n-1)

Figure 1. (top-left) An ill-typed fac function, the error location
reported by OCAML is underlined; (bottom-left) Dynamically wit-
nessing the type error in fac, showing only function calls; (right)
The same trace, fully expanded.

This expression has type
bool

but an expression was expected of type
int.

This message makes perfect sense to an expert who is familiar with
the language and has a good mental model of how the type system
works. However, it may perplex a novice who has yet to develop
such a mental model. To make matters worse, unification-based
type inference algorithms often report errors far removed from their
source. This further increases the novice’s confusion and can actively
mislead them to focus their investigation on an irrelevant piece
of code. Much recent work has focused on analyzing unification
constraints to properly localize a type error [4, 21, 29, 40], but an
accurate source location does not explain why the program is wrong.

In this paper we propose a new approach that explains static type
errors by dynamically witnessing how an ill-typed program goes
wrong. We have developed NANOMALY, an interactive tool that
uses the source of the ill-typed function to automatically synthesize
the result on the bottom-left in Figure 1, which shows how the
recursive calls reduce to a configuration where the program “goes

1 2016/6/23

wrong” — i.e. the int value 1 is to be multiplied with the bool
value true. We achieve this via three concrete contributions.

1. Finding Witnesses Our first contribution is an algorithm for
searching for witnesses to type errors, i.e. inputs that cause a
program to go wrong (§ 3). This problem is tricky when we
cannot rely on static type information, as we must avoid the trap
of spurious inputs that cause irrelevant problems that would be
avoided by picking values of a different, relevant type. We solve this
problem by developing a novel operational semantics that combines
evaluation and type inference. We execute the program with holes
— values whose type is unknown — as the inputs. A hole remains
abstract until the evaluation context tells us what type it must have,
for example the parameters to an addition operation must both
be integers. Our semantics conservatively instantiates holes with
concrete values, dynamically inferring the type of the input until
the program goes wrong. We prove that our procedure synthesizes
general witnesses, which means, intuitively, that if a witness is
found for a given ill-typed function, then, for all (inhabited) input
types, there exist values that can make the function go wrong.

Given a witness to a type error, the novice may still be at a
loss. The standard OCAML interpreter and debugging infrastructure
expect well-typed programs, so they cannot be used to investigate
how the witness causes the program to crash. More importantly,
the execution itself may be quite long and may contain details not
relevant to the actual error.

2. Visualizing Witnesses Our second contribution is an interactive
visualization of the execution of purely functional OCAML pro-
grams, well-typed or not (§ 4). We extend the semantics to also
build a reduction graph which records all of the small-step reduc-
tions and the context in which they occur. The graph lets us visualize
the sequence of steps from the source witness to the stuck term. The
user can interactively expand the computation to expose intermedi-
ate steps by selecting an expression and choosing a traversal strategy.
The strategies include many of the standard debugging moves, e.g.
stepping forward or into or over calls, as well stepping or jumping
backward to understand how a particular value was created, while
preserving a context of the intermediate steps that allow the user to
keep track of a term’s provenance.

We introduce a notion of jump-compressed traces to abstract
away the irrelevant details of a computation. A jump-compressed
trace includes only function calls and returns, for example the
trace in the bottom-left of Figure 1 is jump-compressed. Jump-
compressed traces are similar to stack traces, both show a sequence
of function calls that lead to a crash, but the jump-compressed trace
also shows the return values of successful calls, which can be useful
in understanding why a particular path was taken.

3. Evaluating Witnesses Of course, the problem of finding wit-
nesses is undecidable in general. In fact, due to the necessarily
conservative nature of static typing, there may not even exist any
witnesses for a given ill-typed program. Thus, our approach is a
heuristic that is only useful if it can find compact witnesses for real-
world programs. Our third contribution is an extensive evaluation of
our approach on two different sets of ill-typed programs obtained
by instrumenting compilers used in beginner’s classes (§ 5). The
first is the UW data set [21] comprising 284 ill-typed programs.
The second is a new UCSD data set, comprising 4,407 ill-typed
programs. We show that for both data sets, our technique is able
to generate witnesses for nearly 90% of the programs, in under a
second in the vast majority of cases. Furthermore, we show that a
simple interactive strategy yields compact counterexample traces
with at most 5 steps for 57% of the programs, and at most 10 steps
for 81% of the programs.

The ultimate purpose of an error report is to help the programmer
comprehend and fix problematic code. Thus, our final contribution

is a user study that compares NANOMALY’s dynamic witnesses
against OCAML’s type errors along the dimension of comprehensi-
bility (§ 5.4). Our study finds that students given one of our witnesses
are consistently more likely to correctly explain and fix a type er-
ror than those given the standard error message produced by the
OCAML compiler.

All together, our results show that in the vast majority of cases,
(novices’) ill-typed programs do go wrong, and that the witnesses to
these errors can be helpful in understanding the source of the error.
This, in turn, opens the door to a novel dynamic way to explain,
understand, and appreciate the benefits of static typing.

2. Overview
We start with an overview of our approach to explaining (static) type
errors using witnesses that (dynamically) show how the program
goes wrong. We illustrate why generating suitable inputs to functions
is tricky in the absence of type information. Then we describe
our solution to the problem and highlight the similarity to static
type inference, Finally, we demonstrate our visualization of the
synthesized witnesses.

2.1 Generating Witnesses
Our goal is to find concrete values that demonstrate how a program
“goes wrong”.

Problem: Which inputs are bad? One approach is to randomly
generate input values and use them to execute the program until we
find one that causes the program to go wrong. Unfortunately, this
approach quickly runs aground. Recall the erroneous fac function
from Figure 1. What types of inputs should we test fac with?
Values of type int are fair game, but values of type, say, string
or int list will cause the program to go wrong in an irrelevant
manner. Concretely, we want to avoid testing fac with any type
other than int because any other type would cause fac to get stuck
immediately in the n <= 0 test.

Solution: Don’t generate inputs until forced. Our solution is to
avoid generating a concrete value for the input at all, until we can
be sure of its type. The intuition is that we want to be as lenient as
possible in our tests, so we make no assumptions about types until it
becomes clear from the context what type an input must have. This
is actually quite similar in spirit to type inference.

To defer input generation, we borrow the notion of a “hole”
from SmallCheck [33]. A hole — written ν[α] — is a placeholder
for a value ν of some unknown type α. We leave all inputs as
uninstantiated holes until they are demanded by the program, e.g.
due to a primitive operation like the <= test.

Narrowing Input Types Primitive operations, data construction,
and case-analysis narrow the types of values. For concrete values
this amounts to a runtime type check, we ensure that the value has a
type compatible with the expected type. For holes, this means we
now know the type it should have (or in the case of compound data
we know more about the type) so we can instantiate the hole with
a value. The value may itself contain more holes, corresponding to
components whose type we still do not know. Consider the fst
function:

let fst p = match p with
(a, b) -> a

The case analysis tells us that p must be a pair, but it says nothing
about the contents of the pair. Thus, upon reaching the case-analysis
we would generate a pair containing fresh holes for the fst and
snd component. Notice the similarity between instantiation of type
variables and instantiation of holes. We can compute an approximate

2 2016/6/23

type for fst by approximating the types of the (instantiated) input
and output, which would give us:

fst : (α1 * α2) -> α1

We call this type approximate because we only see a single path
through the program, and thus will miss narrowing points that only
occur in other paths.

Returning to fac, given a hole as input we will narrow the hole
to an int upon reaching the <= test. At this point we choose a
random int1 for the instantiation and concrete execution takes over
entirely, leading us to the expected crash in the multiplication.

Witness Generality We show in § 3.3 that our lazy instantiation
of holes produces general witnesses. That is, we show that if
“executing” a function with a hole as input causes the function to
“go wrong”, then there is no possible type for the function. In other
words, for any types you might assign to the function’s inputs, there
exist values that will cause the function to go wrong.

Problem: How many inputs does a function take? There is an-
other wrinkle, though; how did we know that fac takes a single
argument instead of two (or none)? It is clear, syntactically, that fac
takes at least one argument, but in a higher-order language with
currying, syntax can be deceiving. Consider the following definition:

let incAllByOne = List.map (+ 1)

Is incAllByOne a function? If so, how many arguments does it
take? The OCAML compiler deduces that incAllByOne takes
a single argument because the type of List.map says it takes
two arguments, and it is partially applied to (+ 1). As we are
dealing with ill-typed programs we do not have the luxury of typing
information.

Solution: Search for saturated application. We solve this prob-
lem by deducing the number of arguments via an iterative process.
We add arguments one-by-one until we reach a saturated applica-
tion, i.e. until evaluating the application returns a value other than a
lambda.

2.2 Visualizing Witnesses
We have described how to reliably find witnesses to type errors
in OCAML, but this does not fully address our original goal — to
explain the errors. Having identified an input vector that triggers a
crash, a common next step is to step through the program with
a debugger to observe how the program evolves. The existing
debuggers and interpreters for OCAML assume a type-correct
program, so unfortunately we cannot use them off-the-shelf. Instead
we extend our search for witnesses to produce an execution trace.

Reduction Graph Our trace takes the form of a reduction graph,
which records small-step reductions in the context in which they oc-
cur. For example, evaluating the expression 1+2+3 would produce
the graph in Figure 2. Notice that when we transition from 1+2+3
to 3+3 we collect both that edge and an edge from the sub-term
1+2 to 3. These additional edges allow us to implement two com-
mon debugging operations post-hoc: “step into” to zoom in on a
specific function call, and “step over” to skip over an uninteresting
sub-computation.

Interacting with the graph The reduction graph is useful for
formulating and executing traversals, but displaying it all at once
would quickly become overwhelming. Our interaction begins by
displaying a big-step reduction, i.e. the witness followed by the
stuck term. The user can then progressively fill in the hidden steps
of the computation by selecting a visible term and choosing one of
the applicable traversal strategies — described in § 4 — to insert
another term into the visualization.

1 With standard heuristics [6] to favor small values.

Figure 2. The reduction graph for 1+2+3. The two edges produced
by the transition from 1+2+3 to 3+3 are highlighted.

Jump-compressed Witnesses It is rare for the initial state of the
visualization to be informative enough to diagnose the error. Rather
than abandon the user, we provide a short-cut to expand the witness
to a jump-compressed trace, which contains every function call and
return step. The jump-compressed trace abstracts the computation as
a sequence of call-response pairs, providing a high-level overview
of steps taken to reach the crash, and a high level of compression
compared to the full trace. For example, the jump-compressed
trace in Figure 1 contains 4 nodes compared to the 19 in the fully
expanded trace. Our benchmark suite of student programs shows that
jump-compression is practical, with an average jump-compressed
trace size of 7 nodes and a median of 5.

3. Type-Error Witnesses
Next, we formalize the notion of type error witnesses as follows.
First, we define a core calculus within which we will work (§ 3.1).
Second, we develop a (non-deterministic) operational semantics
for ill-typed programs that precisely defines the notion of a wit-
ness (§ 3.2). Third, we formalize and prove a notion of generality
for witnesses, which states, intuitively, that if we find a single wit-
ness then for every possible type assignment there exist inputs that
are guaranteed to make the program “go wrong” (§ 3.3). Finally,
we refine the operational semantics into a search procedure that
returns concrete (general) witnesses for ill-typed programs § (3.4).
We have formalized and tested our semantics and generality theorem
in PLT-REDEX [9]. Detailed proofs for the theorems in this section
can be found in Appendix A.

3.1 Syntax
Figure 3 describes the syntax of λH , a simple lambda calculus with
integers, booleans, pairs, and binary trees. As we are specifically
interested in programs that do go wrong, we include an explicit
stuck term in our syntax. We write e to denote terms that may be
stuck, and e to denote terms that may not be stuck.

Holes Recall that a key challenge in our setting is to find witnesses
that are meaningful and do not arise from choosing values from
irrelevant types. We solve this problem by equipping our term
language with a notion of a hole, written ν[α], which represents an
unconstrained value ν that may be replaced with any value of an
unknown type α. Intuitively, the type holes α can be viewed as type
variables that we will not generalize over. A normalized value is
one that is not a hole, but which may internally contain holes. For
example node[α] ν[α] leaf[α] leaf[α] is a normalized value.

Substitutions Our semantics ensure the generality of witnesses by
incrementally refining holes, filling in just as much information as

3 2016/6/23

Expressions e ::= e | stuck
e ::= v | x | e e | e+ e

| if e then e else e
| 〈e, e〉 | case e of 〈x, x〉 → e
| node e e e | leaf

| case e of

{
leaf→ e

node x x x→ e

Values v ::= n | b | λx.e | ν[α] | tr
tr ::= node[t] v v v | leaf[t]

Integers n ::= 0, 1,−1, . . .

Booleans b ::= true | false
Types t ::= bool | int | fun

| t× t | tree t | α
Substitutions σ ::= ∅ | σ [ν[α] 7→ v]

θ ::= ∅ | θ [α 7→ t]

Contexts C ::= • | C e | v C
| C + e | v + C
| if C then e else e
| 〈C, e〉 | 〈v, C〉
| case C of 〈x, x〉 → e
| node C e e
| node v C e
| node v v C

| case C of

{
leaf→ e

node x x x→ e

Figure 3. Syntax of λH

is needed locally to make progress (inspired by the manner in which
SmallCheck uses lazy evaluation [33]). We track how the holes are
incrementally filled in, by using value (resp. type) substitutions σ
(resp. θ) that map value (resp. type) holes to values (resp. types).
The substitutions let us ensure that we consistently instantiate each
hole with the same (partially defined) value or type, regardless of
the multiple contexts in which the hole appears. This ensures we
can report a concrete (and general) witness for any (dynamically)
discovered type errors.

A normalized value substitution is one whose co-domain is
comprised of normalized values. In the sequel, we will assume
and ensure that all value substitutions are normalized. We ensure
additionally that the co-domain of a substitution does not refer to
any elements of its domain, i.e. when we extend a substitution with
a new binding we apply the substitution to itself.

3.2 Semantics
Recall that our goal is to synthesize a value that demonstrates why
(and how) a function goes wrong. We accomplish this by combining
evaluation with type inference, giving us a form of dynamic type
inference. Each primitive evaluation step tells us more about the
types of the program values. For example, addition tells us that the
addends must be integers, and an if-expression tells us the condition
must be a boolean. When a hole appears in such a context, we know
what type it must have in order to make progress and can fill it in
with a concrete value.

The evaluation relation is parameterized by a pair of functions:
called narrow (narrow) and generate (gen), that “dynamically”
perform type-checking and hole-filling respectively.

Narrowing Types The procedure

narrow : v × t× σ × θ → 〈v ∪ stuck, σ, θ〉

defined in Figure 4, takes as input a value v, a type t, and the current
value and type substitutions, and refines v to have type t by yielding
a triple of either the same value and substitutions, or yields the
stuck state if no such refinement is possible. In the case where v is
a hole, it first checks in the given σ to see if the hole has already
been instantiated and, if so, returns the existing instantiation. As the
value substitution is normalized, in the first case of narrow we do
not need to narrow the result of the substitution, the sub-hole will
be narrowed when the context demands it.

Generating Values The (non-deterministic) gen(t, θ) in Figure 5
takes as input a type t and returns a value of that type. For base
types the procedure returns an arbitrary value of that type. For
functions it returns a lambda with a new hole denoting the return
value. For unconstrained types (denoted by α) it yields a fresh hole
constrained to have type α (denoted by ν[α]). When generating a
tree t we must take care to ensure the resulting tree is well-typed.
For a polymorphic type tree α or α1 × α2 we will place holes in
the generated value; they will be lazily filled in later, on demand.

Steps and Traces Figure 6 describes the small-step contextual
reduction semantics for λH . A configuration is a triple 〈e, σ, θ〉 of
an expression e or the stuck term stuck, a value substitution σ, and
a type substitution θ. We write 〈e, σ, θ〉 ↪→ 〈e′, σ′, θ′〉 if the state
〈e, σ, θ〉 transitions in a single step to 〈e′, σ′, θ′〉. A (finite) trace τ
is a sequence of configurations 〈e0, σ0, θ0〉, . . . , 〈en, σn, θn〉 such
that ∀0 ≤ i < n, we have 〈ei, σi, θi〉 ↪→ 〈ei+1, σi+1, θi+1〉.
We write 〈e, σ, θ〉 ↪→τ 〈e′, σ′, θ′〉 if τ is a trace of the form
〈e, σ, θ〉, . . . , 〈e′, σ′, θ′〉. We write 〈e, σ, θ〉 ↪→∗ 〈e′, σ′, θ′〉 if
〈e, σ, θ〉 ↪→τ 〈e′, σ′, θ′〉 for some trace τ .

Primitive Reductions Primitive reduction steps — addition, if-
elimination, function application, and data construction and case
analysis — use narrow to ensure that values have the appropriate
type (and that holes are instantiated) before continuing the computa-
tion. Importantly, beta-reduction does not type-check its argument,
it only ensures that “the caller” v1 is indeed a function.

Recursion Our semantics lacks a built-in fix construct for defin-
ing recursive functions, which may surprise the reader. Fixed-point
operators often cannot be typed in static type systems, but our system
would simply approximate its type as fun, apply it, and move along
with evaluation. Thus we can use any of the standard fixed-point
operators and do not need a built-in recursion construct.

3.3 Generality
A key technical challenge in generating witnesses is that we have
no (static) type information to rely upon. Thus, we must avoid
the trap of generating spurious witnesses that arise from picking
irrelevant values, when instead there exist perfectly good values
of a different type under which the program would not have gone
wrong. We now show that our evaluation relation instantiates holes
in a general manner. That is, given a lambda-term f , if we have
〈f ν[α],∅,∅〉 ↪→∗ 〈stuck, σ, θ〉, then for every concrete type t,
we can find a value v of type t such that f v goes wrong.

Theorem 1. [Witness Generality] For any lambda-term f , if
〈f ν[α],∅,∅〉 ↪→τ 〈stuck, σ, θ〉, then for every (inhabited2) type
t there exists a value v of type t such that 〈f v,∅,∅〉 ↪→∗
〈stuck, σ′, θ′〉.

We need to develop some machinery in order to prove this
theorem. First, we show how our evaluation rules encode a dynamic
form of type inference, and then we show that the witnesses found
by evaluation are indeed maximally general.

2 All types in our formalism are inhabited, but in a larger language like
OCAML this may not be the case.

4 2016/6/23

narrow : v × t× σ × θ → 〈v ∪ stuck, σ, θ〉

narrow(ν[α], t, σ, θ)
.
=

〈v, σ, θ′〉 if v = σ(ν[α]), θ′ = unify({α, t, typeof(v)}, θ)
〈stuck, σ, θ〉 if v = σ(ν[α])

〈v, σ [ν[α] 7→ v] , θ′〉 if θ′ = unify({α, t}, θ), v = gen(t, θ′)

narrow(n, int, σ, θ)
.
= 〈n, σ, θ〉

narrow(b, bool, σ, θ)
.
= 〈b, σ, θ〉

narrow(λx.e, fun, σ, θ)
.
= 〈λx.e, σ, θ〉

narrow(〈v1, v2〉, t1 × t2, σ, θ)
.
= 〈〈v1, v2〉, σ, θ′′〉, if θ′ = unify({typeof(v1), t1}, θ), θ′′ = unify({typeof(v2), t2}, θ′)

narrow(leaf[t1], tree t2, σ, θ)
.
= 〈leaf[t1], σ, θ′〉, if θ′ = unify({t1, t2}, θ)

narrow(node[t1] v1 v2 v3, tree t2, σ, θ)
.
= 〈node[t1] v1 v2 v3, σ, θ

′〉, if θ′ = unify({t1, t2}, θ)
narrow(v, t, σ, θ)

.
= 〈stuck, σ, θ〉

Figure 4. Narrowing values

gen : t× θ → v
gen(α, θ)

.
= gen(θ(α), θ) if α ∈ dom(θ)

gen(int, θ)
.
= n non-det.

gen(bool, θ)
.
= b non-det.

gen(t1 × t2, θ)
.
= 〈gen(t1, θ), gen(t2, θ)〉

gen(tree t, θ)
.
= tr non-det.

gen(fun, θ)
.
= λx.ν[α] ν, α are fresh

gen(α, θ)
.
= ν[α] ν is fresh

Figure 5. Generating values

The Type of a Value The dynamic type of a value v is defined
as a function typeof(v) shown in Figure 7. The types of primitive
values are defined in the natural manner. The types of functions are
approximated, which is all that is needed to ensure an application
does not get stuck. For example,

typeof(λx.x+ 1) = fun

instead of int → int. The types of (polymorphic) trees are
obtained from the labels on their values, and the types of tuples
directly from their values.

Dynamic Type Inference We can think of the evaluation of f ν[α]
as synthesizing a partial instantiation of α, and thus dynamically
inferring a (partial) type for f ’s input. We can extract this type
from an evaluation trace by applying the final type substitution to
α. Formally, we say that if 〈f ν[α],∅,∅〉 ↪→τ 〈e, σ, θ〉, then the
partial input type of f up to τ , written ρτ (f), is θ(α).

Compatibility A type s is compatible with a type t, written s ∼ t,
if ∃θ. θ(s) = θ(t). That is, two types are compatible if there exists
a type substitution that maps both types to the same type. A value v
is compatible with a type t, written v ∼ t, if typeof(v) ∼ t, that is,
if the dynamic type of v is compatible with t.

Type Refinement A type s is a refinement of a type t, written
s � t, if ∃θ.s = θ(t). In other words, s is a refinement of t if there
exists a type substitution that maps t directly to s. A type t is a
refinement of a value v, written t � v, if t � typeof(v), i.e. if t is a
refinement of the dynamic type of v.

Preservation We prove two preservation lemmas. First, we show
that each evaluation step refines the partial input type of f , thus
preserving type compatibility.

Lemma 2. If τ .
= 〈f ν[α],∅,∅〉, . . . , 〈e, σ, θ〉 and τ ′

.
=

τ, 〈e, σ, θ〉 ↪→ 〈e′, σ′, θ′〉 (i.e. τ ′ is a single-step extension of
τ) and ρτ (f) 6= ρτ ′(f) then θ′ = θ[α1 7→ t1] . . . [αn 7→ tn].

Proof. By case analysis on the evaluation rules. α does not change,
so if the partial input types differ then θ 6= θ′. Note that only narrow
can change θ, via unify, which can only extend θ. �

Second, we show that at each step of evaluation, the partial input
type of f is a refinement of the instantiation of ν[α].

Lemma 3. For all traces τ
.
= 〈f ν[α],∅,∅〉, . . . , 〈e, σ, θ〉,

ρτ (f) � σ(ν[α]).

Proof. By induction on τ . In the base case τ = 〈f ν[α],∅,∅〉 and
α is trivially a refinement of ν[α]. In the inductive case, consider
the single-step extension of τ , τ ′ = τ, 〈e′, σ′, θ′〉. We show by
case analysis on the evaluation rules that if ρτ (f) � σ(ν[α]), then
ρτ ′(f) � σ′(ν[α]). �

Incompatible Types Are Wrong For all types that are incompati-
ble with the partial input type up to τ , there exists a value that will
cause f to get stuck in at most k steps, where k is the length of τ .

Lemma 4. For all types t, if 〈f ν[α],∅,∅〉 ↪→τ 〈e, σ, θ〉 and
t � ρτ (f), then there exists a v such that typeof(v) = t and
〈f v,∅,∅〉 ↪→∗ 〈stuck, σ′, θ′〉 in at most k steps, where k is the
length of τ .

Proof. We can construct v from τ as follows. Let

τi = 〈f ν[α],∅,∅〉, . . . , 〈ei−1, σi−1, θi−1〉, 〈ei, σi, θi〉

be the shortest prefix of τ such that ρτi(f) � t. We will show that
ρτi−1(f) must contain some other hole α′ that is instantiated at step
i. Furthermore, α′ is instantiated in such a way that ρτi(f) � t.
Finally, we will show that if we had instantiated α′ such that
ρτi(f) ∼ t, the current step would have gotten stuck.

By Lemma 2 we know that θi = θi−1[α1 7→ t1] . . . [αn 7→ tn].
We will assume, without loss of generality, that θi = θi−1[α′ 7→ t′].
Since θi−1 and θi differ only in α′ but the resolved types differ,
we have α′ ∈ ρτi−1(f) and ρτi(f) = ρτi−1(f) [t′/α′]. Let s be
a concrete type such that ρτi−1(f) [s/α′] = t. We show by case
analysis on the evaluation rules that

〈ei−1, σi−1, θi−1[α′ 7→ s]〉 ↪→ 〈stuck, σ, θ〉

Finally, by Lemma 3 we know that ρτi−1(f) � σi−1(ν[α]) and
thus α′ ∈ σi−1(ν[α]). Let

u = gen(s, θ)
v = σi−1(ν[α]) [u/ν′[α′]] [s/α′]

〈f v,∅,∅〉 ↪→∗ 〈stuck, σ, θ〉 in i steps. �

5 2016/6/23

Evaluation 〈e, σ, θ〉 ↪→ 〈e, σ, θ〉

E-PLUS-GOOD

〈n1, σ
′, θ′〉 = narrow(v1, int, σ, θ)

〈n2, σ
′′, θ′′〉 = narrow(v2, int, σ

′, θ′)
n = n1 + n2

〈C [v1 + v2] , σ, θ〉 ↪→ 〈C [n] , σ′′, θ′′〉
E-PLUS-BAD1

〈stuck, σ′, θ′〉 = narrow(v1, int, σ, θ)

〈C [v1 + v2] , σ, θ〉 ↪→ 〈stuck, σ′, θ′〉

E-PLUS-BAD2
〈stuck, σ′, θ′〉 = narrow(v2, int, σ, θ)

〈C [v1 + v2] , σ, θ〉 ↪→ 〈stuck, σ′, θ′〉
E-IF-GOOD1

〈true, σ′, θ′〉 = narrow(v, bool, σ, θ)

〈C [if v then e1 else e2] , σ, θ〉 ↪→ 〈C [e1] , σ′, θ′〉

E-IF-GOOD2
〈false, σ′, θ′〉 = narrow(v, bool, σ, θ)

〈C [if v then e1 else e2] , σ, θ〉 ↪→ 〈C [e2] , σ′, θ′〉
E-IF-BAD

〈stuck, σ′, θ′〉 = narrow(v, bool, σ, θ)

〈C [if v then e1 else e2] , σ, θ〉 ↪→ 〈stuck, σ′, θ′〉

E-APP-GOOD
〈λx.e, σ′, θ′〉 = narrow(v1, fun, σ, θ)

〈C [v1 v2] , σ, θ〉 ↪→ 〈C [e [v2/x]] , σ′, θ′〉
E-APP-BAD

〈stuck, σ′, θ′〉 = narrow(v1, fun, σ, θ)

〈C [v1 v2] , σ, θ〉 ↪→ 〈stuck, σ′, θ′〉

E-LEAF-GOOD
α is fresh

〈C [leaf] , σ, θ〉 ↪→ 〈C [leaf[α]] , σ, θ〉
E-NODE-GOOD

t = typeof(v1)
〈v′2, σ2, θ2〉 = narrow(v2, tree t, σ1, θ1)
〈v′3, σ3, θ3〉 = narrow(v3, tree t, σ2, θ2)

〈C [node v1 v2 v3] , σ, θ〉 ↪→ 〈C [node[t] v1 v
′
2 v
′
3] , σ3, θ3〉

E-NODE-BAD1

t = typeof(v1)
〈stuck, σ2, θ2〉 = narrow(v2, tree t, σ1, θ1)

〈C [node v1 v2 v3] , σ, θ〉 ↪→ 〈stuck, σ3, θ3〉
E-NODE-BAD2

t = typeof(v1)
〈v′2, σ2, θ2〉 = narrow(v2, tree t, σ1, θ1)
〈stuck, σ3, θ3〉 = narrow(v3, tree t, σ2, θ2)

〈C [node v1 v2 v3] , σ, θ〉 ↪→ 〈stuck, σ3, θ3〉

E-CASE-GOOD1
α is fresh 〈leaf[t], σ1, θ1〉 = narrow(v, tree α, σ, θ)

〈C

[
case v of

{
leaf→ e1
node x1 x2 x3 → e2

]
, σ, θ〉 ↪→ 〈C [e1] , σ1, θ1〉

E-CASE-GOOD2
α is fresh 〈node[t] v1 v2 v3, σ1, θ1〉 = narrow(v1, tree α, σ, θ)

〈C

[
case v of

{
leaf→ e1
node x1 x2 x3 → e2

]
, σ, θ〉 ↪→ 〈C [e2 [v1/x1] [v2/x2] [v3/x3]] , σ1, θ1〉

E-CASE-BAD
α is fresh 〈stuck, σ1, θ1〉 = narrow(v, tree α, σ, θ)

〈C

[
case v of

{
leaf→ e1
node x1 x2 x3 → e2

]
, σ, θ〉 ↪→ 〈stuck, σ1, θ1〉

E-CASE-PAIR-GOOD
α1, α2 are fresh 〈〈v1, v2〉, σ1, θ1〉 = narrow(v, α1 × α2, σ, θ)

〈C [case v of 〈x1, x2〉 → e] , σ, θ〉 ↪→ 〈C [e [v1/x1] [v2/x2]] , σ1, θ1〉

E-CASE-PAIR-BAD
α1, α2 are fresh 〈stuck, σ1, θ1〉 = narrow(v, α1 × α2, σ, θ)

〈C [case v of 〈x1, x2〉 → e] , σ, θ〉 ↪→ 〈stuck, σ1, θ1〉

Figure 6. Evaluation relation for λH

6 2016/6/23

typeof(n)
.
= int

typeof(b)
.
= bool

typeof(λx.e)
.
= fun

typeof(〈v1, v2〉)
.
= typeof(v1)× typeof(v2)

typeof(leaf[t])
.
= tree t

typeof(node[t] v1 v2 v3)
.
= tree t

typeof(ν[α])
.
= α

Figure 7. The dynamic type of a value.

Proof of Theorem 1. Suppose τ witnesses that f gets stuck, and let
s = ρτ (f). We show that all types t have stuck-inducing values by
splitting cases on whether t is compatible with s.

Case s ∼ t: Let τ = 〈f ν[α],∅,∅〉, . . . , 〈stuck, σ, θ〉. The value
v = σ(ν[α]) demonstrates that f v gets stuck.

Case s � t: By Lemma 4, we can derive a v from τ such that
typeof(v) = t and f v gets stuck. �

3.4 Search Algorithm
So far, we have seen how a trace leading to a stuck configuration
yields a general witness demonstrating that the program is ill-typed
(i.e. goes wrong for at least one input of every type). In particular,
we have shown how to non-deterministically find a witnesses for a
function of a single argument.

In order to convert the semantics into a procedure for finding
witnesses, we must address two challenges. First, we must resolve
the non-determinism introduced by gen. Second, in the presence of
higher-order functions and currying, we must determine how many
concrete values to generate to make execution go wrong (as we
cannot rely upon static typing to provide this information.)

The witness generation procedure GenWitness is formalized in
Figure 9. Next, we describe its input and output, and how it addresses
the above challenges to search the space of possible executions for
general type error witnesses.

Inputs and Outputs The problem of generating inputs is undecid-
able in general. Our witness generation procedure takes two inputs:
(1) a search bound k which is used to define the number of traces
to explore3 and (2) the target expression e that contains the type
error (which may be a curried function of multiple arguments). The
witness generation procedure returns as output a list of (general)
witness expressions, each of which is of the form e v1 . . . vn. The
empty list is returned when no witness can be found after exploring
k traces.

Modeling Semantics We resolve the non-determinism in the op-
erational semantics (§ 3.2) via the procedure

eval : e→ 〈v ∪ stuck, σ, θ〉∗

Due to the non-determinism introduced by gen, a call eval(e) returns
a list of possible results of the form 〈v ∪ stuck, σ, θ〉 such that
〈e,∅,∅〉 ↪→∗ 〈v ∪ stuck, σ, θ〉.

Currying We address the issue of currying by defining a procedure
Saturate(e), defined in Figure 8, that takes as input an expression e
and produces a saturated expression of the form e ν1[α1] . . . νn[αn]
that does not evaluate to a lambda. This is achieved with a simple
loop that keeps adding holes to the target application until evaluating
the term yields a non-lambda value.

3 We assume, without loss of generality, that all traces are finite.

Saturate : e→ e
Saturate(e) = case eval(e) of
〈λx.e, σ, θ〉, . . . → Saturate(e ν[α]) (ν, α are fresh)
_ → e

Figure 8. Generating a saturated application.

GenWitness : Nat× e→ e∗

GenWitness(n, e) = {σ(esat) | σ ∈ Σ}
where
esat = Saturate(e) (1)
res = take(n, eval(esat)) (2)
Σ = {σ | 〈stuck, σ, θ〉 ∈ res} (3)

Figure 9. Generating witnesses.

Generating Witnesses Finally, Figure 9 summarizes the overall
implementation of our search for witnesses with the procedure
GenWitness(k, e), which takes as input a bound k and the target
expression e, and returns a list of witness expressions e v1 . . . vn
that demonstrate how the input program gets stuck. The search
proceeds as follows.

1. We invoke Saturate(e) to produce a saturated application esat.

2. We take the first k traces returned by eval on the target esat, and

3. We extract the substitutions corresponding to the stuck traces,
and use them to return the list of witnesses.

We obtain the following corollary of Theorem 1:

Corollary. [Witness Generation] If

GenWitness(k, e) = 〈e v1 . . . vn, σ, θ〉, . . .
then for all types t1 . . . tn there exist values w1 . . . wn such that
〈e w1 . . . wn,∅,∅〉 ↪→∗ 〈stuck, σ′, θ′〉.

Proof. For any function f of multiple arguments, we can define f ′

to be the uncurried version of f that takes all of its arguments as a
single nested pair, and then apply Theorem 1 to f ′. �

4. Explaining Type Errors With Traces
A trace, on its own, is too detailed to be a good explanation of the
type error. One approach is to use the witness input to step through
the program with a debugger to observe how the program evolves.
This route is problematic for two reasons. First, existing debuggers
and interpreters for typed languages (e.g. OCAML) typically require
a type-correct program as input. Second, we wish to have a quicker
way to get to the essence of the error, e.g. by skipping over irrelevant
sub-computations, and focusing on the important ones.

In this section we present an interactive visualization of program
executions. First, we extend our semantics (§ 4.1) to record each
reduction step in a trace, producing a reduction graph alongside the
witness. Then we describe a set of common interactive debugging
steps that can be expressed as simple traversals over the reduction
graph (§ 4.2), yielding an interactive debugger that allows the user
to effectively visualize how the program goes (wrong).

4.1 Tracing Semantics
Reduction Graphs A steps-to edge is a pair of expressions e1
e2, which intuitively indicates that e1 reduces, in a single step, to
e2. A reduction graph is a set of steps-to edges:

G ::= • | e e;G

7 2016/6/23

Figure 10. A sequence of interactions with the trace of fac 1.
The stuck term is red, in each node the redex is highlighted. Thick
arrows denote a multi-step transition, thin arrows denote a single-
step transition. We start in step 1. In step 2 we jump forward from the
witness to the next function call. In step 3 we step into the recursive
fac 0 call, which spawns a new “thread” of execution. In step 4
we take a single step forward from fac 0.

Tracing Semantics We extend the transition relation (§ 3.2) to
collect the set of edges corresponding to the reduction graph.
Concretely, we extend the operational semantics to a relation of
the form 〈e, σ, θ,G〉 ↪→ 〈e′, σ′, θ′, G′〉 where G′ collects the edges
of the transition.

Collecting Edges The general recipe for collecting steps-to edges
is to record the consequent of each original rule in the trace.
That is, each original judgment 〈e, σ, θ〉 ↪→ 〈e′, σ′, θ′〉 becomes
〈e, σ, θ,G〉 ↪→ 〈e′, σ′, θ′, e e′;G〉.

4.2 Interactive Debugging
Next, we show how to build a visual interactive debugger from the
traced semantics, by describing the visualization state — i.e. what
the user sees at any given moment — and the set of commands
available to user and what they do.

Visualization State A visualization state is a directed graph whose
vertices are expressions and whose edges are such that each vertex
has at most one predecessor and at most one successor. In other
words, the visualization state looks like a set of linear lists of
expressions as shown in Figure 10. The initial state is the graph
containing a single edge linking the initial and final expressions.

Commands Our debugger supports the following commands, each
of which is parameterized by a single expression (vertex) selected
from the (current) visualization state:

• StepForward, StepBackward: show the result of a single step
forward or backward respectively,

Figure 11. Jump-compressed trace of fac 1 with subtraction
implemented as a function call.

• JumpForward, JumpBackward: show the result of taking mul-
tiple steps (a “big” step) up to the first function call, or return,
forward or backward respectively,

• StepInto: show the result of stepping into a function call in a
sub-term, isolating it in a new thread, and

• StepOver: show the result of skipping over a function call in a
sub-term.

Jump Compression A jump compressed trace is one whose edges
are limited to forward or backward jumps. In our experience, jump
compression abstracts many details of the computation that are
often uninteresting or irrelevant to the explanation. In particular,
jump compressed traces hide low-level operations and summarize
function calls as call-return pairs, see Figure 11 for a variant of
fac that implements the subtraction as a function call instead of a
primitive. Once users have identified interesting call-return pairs,
they can step into those calls and proceed with more fine-grained
steps. Note that jump compressed traces are not quite the same as
stack-traces as they show all function calls, including those that
returned successfully.

5. Evaluation
We have implemented a prototype of our search procedure and
trace visualization for a purely functional subset of OCAML —
with polymorphic types and records, but no modules, objects, or
polymorphic variants — in a tool called NANOMALY. We treat
explicit type signatures, e.g. (x : int), as primitive operations
that narrow the type of the wrapped value. In our implementation we
instantiated gen with a simple random generation of values, which
we will show suffices for the majority of type errors.

Evaluation Goals There are three questions we seek to answer
with our evaluation:

1. Witness Coverage How many ill-typed programs can we find
witnesses for?

2. Witness Complexity How complex are the traces produced by
the witnesses?

3. Witness Utility How helpful (qualitatively and quantitatively)
are the witnesses and traces in debugging type errors?

Benchmarks We answer the first two questions on two sets of
ill-typed programs, i.e. programs that were rejected by the OCAML
compiler because of a type error. The first dataset comes from
the Spring 2014 undergraduate Programming Languages (CSE
130) course at UC San Diego. We recorded each interaction with

8 2016/6/23

the OCAML top-level system over the course of the first three
assignments (IRB #140608), from which we extracted 4,407 distinct,
ill-typed OCAML programs. The second dataset — widely used
in the literature — comes from a graduate-level course at the
University of Washington [20], from which we extracted 284 ill-
typed programs. Both datasets contain relatively small programs,
the largest being 348 SLoC; however, they demonstrate a variety of
functional programming idioms including (tail) recursive functions,
higher-order functions, polymorphic and algebraic data types.

We answer the third question in two steps. First, we present a
qualitative evaluation of NANOMALY’s traces on a selection of
programs drawn from the UCSD dataset. Second, we present a
quantitative user study of students in the University of Virginia’s
Spring 2016 undergraduate Programming Languages (CS 4501)
course. As part of an exam, we presented the students with ill-typed
OCAML programs and asked them to (1) explain the type error, and
(2) fix the type error (IRB #2014009900). For each problem the
students were given the ill-typed program and either OCAML’s error
message or NANOMALY’s jump-compressed trace.

5.1 Witness Coverage
We ran our search algorithm on each program for 1,000 iterations,
with the entry point set to the function that OCAML had identified as
containing a type error. Due to the possibility of non-termination we
set a timeout of one minute total per program. We also added a naïve
check for infinite recursion; at each recursive function call we check
whether the new arguments are identical to the current arguments.
If so, the function cannot possibly terminate and we report an error.
While not a type error, infinite recursion is still a clear bug in the
program, and thus valuable feedback for the user.

Results The results of our experiments are summarized in Fig-
ure 12. In both datasets our tool was able to find a witness for 83%
of the programs in under one second, i.e. fast enough to be inte-
grated as a compile-time check. If we extend our tolerance to a 10
second timeout, we hit a maximum of 87% coverage. Interestingly,
while the vast majority of witnesses corresponded to a type-error, as
expected, 3–4% triggered an unbound variable error (even though
OCAML reported a type error) and 2–3% triggered an infinite re-
cursion error. For the remaining 12% of programs we were unable
to provide any useful feedback as they either completed 1,000 tests
successfully, or timed out after one minute. While a more advanced
search procedure, e.g. dynamic-symbolic execution, could likely
trigger more of the type errors, our experiments suggest that type er-
rors are coarse enough (or that novice programs are simple enough)
that these techniques are not necessary.

5.2 Witness Complexity
For each of the ill-typed programs for which we could find a witness,
we measure the complexity of the generated trace using two metrics.

1. Single-step: The size of the trace after expanding all of the
single-step edges from the witness to the stuck term, and

2. Jump-compressed: The size of the jump-compressed trace.

Results The results of the experiment are summarized in Figure 13.
The average number of single-step reductions per trace is 31 for the
UCSD dataset (35 for the UW dataset) with a maximum of 2,745
(986 for UW) and a median of 17 (also 17 for UW). The average
number of jumps per trace is 7 (also 7 for UW) with a maximium
of 353 (185 for UW) and a median of 4 (also 4 for UW). In both
datasets 80% or more traces have at most 10 jumps.

5.3 Qualitative Evaluation of Witness Utility
Next, we present a qualitative evaluation that compares the expla-
nations provided by NANOMALY’s dynamic witnesses with the

static reports produced by the OCAML compiler and SHERRLOC,
a state-of-the-art fault localization approach [40]. In particular, we
illustrate, using a series of examples drawn from student programs
in the UCSD dataset, how NANOMALY’s jump-compressed traces
can get to the heart of the error. Our approach highlights the conflict-
ing values that cause the program to get stuck, rather that blaming a
single one, shows the steps necessary to reach the stuck state, and
does not assume that a function is correct just because it type-checks.
For each example we will present (1) the code, (2) the error message
returned OCAML, (3) the error locations returned by OCAML (un-
derlined) and SHERRLOC (in bold),4 and (4) the jump-compressed
trace produced by NANOMALY.

Example: Recursion with Bad Operator The recursive function
sqsum should square each element of the input list and then
compute the sum of the result.

1 let rec sqsum xs = match xs with
2 | [] -> 0
3 | h::t -> (sqsum t) @ (h * h)

Unfortunately the student has used the list-append operator @ instead
of + to compute the sum. Both OCAML and SHERRLOC blame the
wrong location, the recursive call sqsum t, with the message

This expression has type
int

but an expression was expected of type
’a list

NANOMALY produces a trace showing how the evaluation of
sqsum [1] gets stuck.

The trace highlights the entire stuck term (not just the recursive
call), emphasizing the conflict between int and list rather than
assuming one or the other is correct.

Example: Recursion with Bad Base Case The function sumList
should add up the elements of its input list.

1 let rec sumList xs = match xs with
2 | [] -> []
3 | y::ys -> y + sumList ys

Unfortunately, in the base case, it returns [] instead of 0. SHER-
RLOC blames the base case, and OCAML assumes the base case is
correct and blames the recursive call on line 3:

This expression has type
’a list

but an expression was expected of type
int

4 When the locations from OCAML and SHERRLOC overlap, we just
underline the relevant code.

9 2016/6/23

Figure 12. Results of our coverage testing and the distribution of test outcomes. Our random search successfully finds witnesses for 79–85%
of the programs in under one second, improving to 87% in under 10 seconds. In both datasets we detect actual type errors about 82% of the
time, unbound variables or constructors 3–4% of the time, and diverging loops 2–3% of the time. For the remaining 11–12% of the programs
we are unable to provide any useful feedback.

Figure 13. Complexity of the generated traces. 81% of the combined traces have a jump complexity of at most 10, with an average complexity
of 7 and a median of 5.

Figure 14. A classification of students’ explanations and fixes for type errors, given either OCAML’s error or NANOMALY’s jump-compressed
trace. The students given NANOMALY’s jump-compressed trace consistently scored better (≥ 10%) than those given OCAML’s type error.

10 2016/6/23

Both of the above are parts of the full story, which is summarized by
NANOMALY’s trace showing how sumList [1; 2] gets stuck
at 2 + [].

The trace clarifies (via the third step) that the [] is the result of
the recursive call sumList [], and shows how it is incompatible
with the subsequent + operation.

Example: Bad Helper Function that Type-Checks The function
digitsOfInt should return a list of the digits of the input integer.

1 let append x xs =
2 match xs with
3 | [] -> [x]
4 | _ -> x :: xs
5
6 let rec digitsOfInt n =
7 if n <= 0 then
8 []
9 else

10 append (digitsOfInt (n / 10))
11 [n mod 10]

Unfortunately, the student’s append function conses an element
onto a list instead of appending two lists. Though incorrect, append
still type-checks and thus OCAML and SHERRLOC blame the use-
site on line 10.

This expression has type
int

but an expression was expected of type
’a list

In contrast, NANOMALY makes no assumptions about append
yielding a trace that illustrates the true error on line 4, by highlight-
ing the conflict in consing a list onto a list of integers.

Example: Higher-Order Functions The higher-order function
wwhile is supposed to emulate a traditional while-loop. It takes a

function f and repeatedly calls f on the first element of its output
pair, starting with the initial b, till the second element is false.

1 let rec wwhile (f,b) =
2 match f with
3 | (z, false) -> z
4 | (z, true) -> wwhile (f, z)
5
6 let f x =
7 let xx = x * x in
8 (xx, (xx < 100))
9

10 let _ = wwhile (f, 2)

The student has forgotten to apply f at all on line 2, and just matches
it directly against a pair. This faulty wwhile definition nevertheless
typechecks, and is assumed to be correct by both OCAML and
SHERRLOC which blame the use-site on line 10.

This expression has type
int -> int * bool

but an expression was expected of type
’a * bool

NANOMALY synthesizes a trace that draws the eye to the true
error: the match expression on line 2, and highlights the conflict in
matching a function against a pair pattern.

By highlighting conflicting values, i.e. the source and sink of the
problem, and not making assumption about function correctness,
NANOMALY focusses the user’s attention on the piece of code that
is actually relevant to the error.

5.4 Quantitative Evaluation of Witness Utility
We assigned four problems to the (n = 60) students in the course:
the sumList, digitsOfInt, and wwhile programs from § 5.3,
as well as the following append program

1 let append x l =
2 match x with
3 | [] -> l
4 | h::t -> h :: t :: l

which triggers an occurs-check error on line 4. For each problem
the students were given the ill-typed program and either OCAML’s
error message or NANOMALY’s jump-compressed trace. Due to
the nature of an in-class exam, not every student answered every
question; we received between 13 and 28 (out of a possible 30)
responses for each problem-tool pair.

We then instructed four annotators (one of whom is an author, the
other three are teaching assistants at UCSD) to classify the answers
as correct or incorrect. We performed an inter-rater reliability (IRR)
analysis to determine the degree to which the annotators consistently
graded the exams. As we had more than two annotators assigning

11 2016/6/23

nominal (“correct” or “incorrect”) ratings we used Fleiss’ kappa [11]
to measure IRR. Fleiss’ kappa is measured on a scale from 1,
indicating total agreement, to −1, indicating total disagreement,
with 0 indicating random agreement.

Threats to Validity Measuring understanding is a difficult task;
the following summarize the threats to the validity of our results.

Construct We used the correctness of the student’s explanation of,
and fix for, the type error as a proxy for her understanding, but it is
possible that other metrics would produce different results.

Internal We assigned students randomly to two groups. The first
group was given OCAML’s errors for append and digitsOfInt,
and NANOMALY’s trace for sumList and wwhile. The second
group was given the opposite assignment of errors and traces. This
assignment ensured that (1) each student was given OCAML and
NANOMALY problems, and (2) each student was given an “easy”
and “hard” problem for both OCAML and NANOMALY. Students
without sufficient knowledge of OCAML could affect the results, as
could the time-constrained nature of an exam. For these reasons we
excluded any answers left blank from our analysis.

External Our experiment is based on students in the process of
learning OCAML, and thus may not generalize to all developers.
The four programs we used were chosen manually, via a random
selection and filtering of the programs in the UCSD dataset. In some
cases we made minor simplifying edits (e.g. alpha-renaming, dead-
code removal) to the programs to make them more understandable
in the short timeframe of an exam; however, we never altered the
resulting type-error. A different selection of programs may lead to
different results.

Conclusion We collected exams from 60 students, though due to
the nature of the study not every student completed every problem.
The number of complete submissions ranges from 13 (for the
NANOMALY version of wwhile) to 28 (for the OCAML version
of sumList), out of a maximum of 30 per program-tool pair.
Collecting more responses per test pair was not possible, as it would
require having students answer the same problem twice (once with
OCAML and once with NANOMALY).

Results Figure 14 summarizes a single annotator’s results, which
show that students given NANOMALY’s jump-compressed trace
were consistently more likely to correctly explain and fix the type er-
ror than those given OCAML’s error message. Across each problem
the NANOMALY responses were marked correct 10− 30% more
often than the OCAML responses, which suggests that the students
who had access to NANOMALY’s traces had a better understanding
of the type errors. The measured kappa values were κ = 0.72 for
the explanations and κ = 0.83 for the fixes; while there is no formal
notion for what consititutes strong agreement [17], kappa values
above 0.60 are often called “substantial” agreement [18].

5.5 Discussion
To summarize, our experiments demonstrate that NANOMALY finds
witnesses to type errors: (1) with high coverage in a timespan
amenable to compile-time analysis, (2) with traces that have a low
average complexity of 7 jumps, and (3) that are more helpful to
novice programmers than traditional type error messages.

There are, of course, drawbacks to our approach. Four that
stand out are: (1) coverage limits due to random generation, (2)
the inability to handle certain instances of infinite types, (3) dealing
with an explosion in the size of generated traces, and (4) handling
ad-hoc polymorphism.

Random Generation Random test generation has difficulty gen-
erating highly constrained values, e.g. red-black trees or a pair of

equal integers. If the type error is hidden behind a complex branch
condition NANOMALY may not be able to trigger it. Exhaustive test-
ing and dynamic-symbolic execution can address this short-coming
by performing an exhaustive search for inputs (resp. paths through
the program). As our experiments show, however, novice programs
do not appear to require more advanced search techniques, likely
because the novice programs tend to be simple.

Infinite Types Our implementation does check for infinite types
inside narrow, but there are some degenerate cases where it is unable
to detect them. Consider, the following buggy replicate

let rec replicate n x =
if n <= 0 then
[]

else
replicate (n-1) [x]

This code produces a nested list (with n levels of nesting) containing
a single copy of x, instead of a list with n copies of x. OCAML
detects a cyclic’a = ’a list constraint in the recursive call
and throws a type error, whereas NANOMALY happily produces
the nested list. Strictly speaking, this function itself cannot “go
wrong”, the program would not get stuck until a client attempted to
use the result expecting a flat list. But this is not very satisfying as
replicate is clearly to blame. Furthermore, in our experience,
infinite-type errors are often difficult to debug (and to explain to
novices), so better support for this scenario would be useful.

Trace Explosion Though the average complexity of our generated
traces is low in terms of jumps, there are some extreme outliers. We
cannot reasonably expect a novice user to explore a trace containing
50+ terms and draw a conclusion about which pieces contributed to
the bug in their program. Enhancing our visualization to slice out
program paths relevant to specific values [31], would likely help
alleviate this issue, allowing users to highlight a confusing value
and ask: “Where did this come from?”

Ad-hoc Polymorphism Our approach can only support ad-hoc
polymorphism (e.g. type-classes in HASKELL or polymorphic com-
parison functions in OCAML) in limited cases where we have
enough typing information at the call-site to resolve the overloading.
For example, consider the n <= 0 test in our fac example. <=
is polymorphic in OCAML, but in this case we can make progress
because the literal 0 is not. If we parameterized fac by a lower
bound, e.g.

let rec fac n m =
if n <= m then
1

else
n * fac (n - 1) m

and called fac with two holes, we would get stuck at the n <= m
test; not because of a type error, but because all we know about n
and m at that point is that they must have the same (unknown) type.

This issue is uncommon in OCAML (we did not detect a single
instance of it across all of our benchmarks), but it would surely
be exacerbated by a language like HASKELL, which makes heavy
use of overloading. We suspect that dynamic-symbolic execution
would allow us to handle ad-hoc polymorphism, but defer a proper
treatment to future work.

6. Related Work
Localizing and Repairing Type Errors Many groups have ex-
plored techniques to pinpoint the true source of errors reported
by static type checkers. The traditional Damas-Milner type infer-
ence algorithm [8] reports the first program location where a type

12 2016/6/23

mismatch is discovered (subject to the traversal strategy [19]). As
a result the error can be reported far away from its source [25]
without enough information to guide the user. Type-error slic-
ing [12, 14, 27, 32, 34, 35] recognizes this flaw and instead produces
a slice of the program containing all program locations that are con-
nected to the type error. Though the program slice must contain
the source of the error, it can suffer from the opposite problem of
providing too much information, motivating recent work in ranking
the candidate locations. Zhang et al. [40, 41] present an algorithm
for identifying the most likely culprit using Bayesian reasoning.
Pavlinovic et al. [29, 30] translate the localization problem to a
MaxSMT optimization problem, using compiler-provided weights
to rank the possible sources.

In addition to localizing the error, Lerner et al. [21] attempt to
suggest a fix by replacing expressions (or removing them entirely)
with alternatives based on the surrounding program context. Chen
and Erwig [4] use a variational type system to allow for the
possibility of changing an expression’s type, and search for an
expression whose type can be changed such that type inference
would succeed. In contrast to Lerner et al., who search for changes
at the value-level, Chen et al. search at the type-level and are thus
complete due the finite universe of types used in the program.

In contrast to these approaches, we do not attempt to localize
or fix the type error. Instead we try to explain it to the user using
a dynamic witness that demonstrates how the program is not just
ill-typed but truly wrong. In addition, allowing users to run their
program enables experimentation and the use of debuggers to step
through the program and investigate its evolution.

Improving Error Messages The content and quality of the error
messages themselves has also been studied extensively. Marceau
et al. [23, 24] study the effectiveness of error messages in novice
environments and present suggestions for improving their quality
and consistency. Hage and Heeren [15] identify a variety of general
heuristics to improve the quality of type error messages, based
on their teaching experience. Heeren et al. [16], Christiansen [5],
and Serrano and Hage [37] provide methods for library authors
to specialize type errors with domain-specific knowledge. The
difference with our work is more pronounced here as we do not
attempt to improve the quality of the error message, instead we
search for a witness to the error and explain it with the resulting
execution trace.

Running Ill-Typed Programs Vytiniotis et al. [39] extend the
HASKELL compiler GHC to support compiling ill-typed programs,
but their intent is rather different from ours. Their goal was to allow
programmers to incrementally test refactorings, which often cause
type errors in distant functions. They replace any expression that
fails to type check with a runtime error, but do not check types
at runtime. Bayne et al. [1] also provide a semantics for running
ill-typed (JAVA) programs, but in constrast transform the program
to perform nearly all type checking at run-time. The key difference
between Bayne et al. and our work is that we use the dynamic
semantics to automatically search for a witness to the type error,
while their focus is on incremental, programmer-driven testing.

Testing NANOMALY is at its heart a test generator, and as such,
builds on a rich line of work. Our use of holes to represent un-
known values is inspired by the work of Runciman, Naylor, and
Lindblad [22, 26, 33], who use lazy evaluation to drastically reduce
the search space for exhaustive test generation, by grouping together
equivalent inputs by the set of values they force. An exhaustive
search is complete (up to the depth bound), if a witness exists it will
be found, but due to the exponential blowup in the search space the
depth bound can be quite limited without advanced grouping and
filtering techniques. Our search is not exhaustive; instead we use
random generation to fill in holes on demand. Random test genera-

tion [6, 7, 28] is by its nature incomplete, but is able to check larger
inputs than exhaustive testing as a result.

Instead of enumerating values, which may trigger the same
path through the program, one might enumerate paths. Dynamic-
symbolic execution [2, 13, 38] combines symbolic execution (to
track which path a given input triggers) with concrete execution (to
ensure failures are not spurious). The system collects a path condi-
tion during execution, which tracks symbolically what conditions
must be met to trigger the current path. Upon successfully com-
pleting a test run, it negates the path condition and queries a solver
for another set of inputs that satisfy the negated path condition, i.e.
inputs that will not trigger the same path. Thus, it can prune the
search space much faster than techniques based on enumerating
values, but is limited by the expressiveness of the underlying solver.

Our operational semantics is amenable to dynamic-symbolic
execution, one would just need to collect the path condition and
replace our implementation of gen by a call to the solver. We chose
to use lazy, random generation instead because it is efficient, and
the overhead of an external solver, and produces high coverage for
our domain of novice programs.

A function’s type is a theorem about the function’s behavior.
Thus, NANOMALY’s witnesses can be viewed as counter-examples,
thereby connecting it to work on using test generation to find counter-
examples prior to starting a proof [3, 36].

Program Exploration Flanagan et al. [10] describe a static debug-
ger for Scheme, which helps the programmer interactively visualize
problematic source-sink flows corresponding to soft-typing errors.
The debugger allows the user to explore an abstract reduction graph
computed from a static value set analysis of the program. In contrast,
NANOMALY generates witnesses and allows the user to explore
the resulting dynamic execution. Perera et al. [31] present a tracing
semantics for functional programs that tags values with their prove-
nance, enabling a form of backwards program slicing from a final
value to the sequence of reductions that produced it. Notably, they
allow the user to supply a partial value — containing holes — and
present a partial slice, containing only those steps that affected the
the partial value. Perera et al. focus on backward exploration; in con-
trast, our visualization supports forward and backward exploration,
though our backward steps are more limited. Specifically, we do not
support selecting a value and inserting the intermediate terms that
preceded it while ignoring unrelated computation steps.

Acknowledgments
We thank Ethan Chan, Matthew Chan and Timothy Nguyen for
assisting with our user study, and we thank the anonymous reviewers
and Matthias Felleisen for their insightful feedback on earlier drafts
of this paper.

References
[1] M. Bayne, R. Cook, and M. D. Ernst. Always-available static and

dynamic feedback. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, pages 521–530, New York, NY,
USA, 21 May 2011. ACM. ISBN 9781450304450. doi: 10.1145/
1985793.1985864.

[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA,
USA, 2008. USENIX Association.

[3] H. R. Chamarthi, P. C. Dillinger, M. Kaufmann, and P. Manolios.
Integrating testing and interactive theorem proving. In Proceedings of
the 10th International Workshop on the ACL2 Theorem Prover and its
Applications, ACL2 ’11, pages 4–19, 2011. doi: 10.4204/EPTCS.
70.1.

13 2016/6/23

http://dx.doi.org/10.1145/1985793.1985864
http://dx.doi.org/10.1145/1985793.1985864
http://dx.doi.org/10.4204/EPTCS.70.1
http://dx.doi.org/10.4204/EPTCS.70.1

[4] S. Chen and M. Erwig. Counter-factual typing for debugging type
errors. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, pages 583–
594, New York, NY, USA, 2014. ACM. ISBN 9781450325448.
doi: 10.1145/2535838.2535863.

[5] D. R. Christiansen. Reflect on your mistakes! lightweight domain-
specific error messages. In Preproceedings of the 15th Symposium on
Trends in Functional Programming, 2014.

[6] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random
testing of haskell programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’00, pages
268–279, New York, NY, USA, 2000. ACM. ISBN 9781581132021.
doi: 10.1145/351240.351266.

[7] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness
tester for java. Softw. Pract. Exp., 34(11):1025–1050, 1 Sept. 2004.
ISSN 0038-0644. doi: 10.1002/spe.602.

[8] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’82, pages
207–212, New York, NY, USA, 1982. ACM. ISBN 9780897910651.
doi: 10.1145/582153.582176.

[9] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. The MIT Press, 1st edition, 2009. ISBN 9780262062756.

[10] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen.
Catching bugs in the web of program invariants. In Proceedings
of the ACM SIGPLAN 1996 Conference on Programming Language
Design and Implementation, PLDI ’96, pages 23–32, New York, NY,
USA, 1996. ACM. ISBN 0-89791-795-2. doi: 10.1145/231379.
231387.

[11] J. L. Fleiss. Measuring nominal scale agreement among many raters.
Psychol. Bull., 76(5):378, Nov. 1971. ISSN 0033-2909, 1939-1455.
doi: 10.1037/h0031619.

[12] H. Gast. Explaining ML type errors by data flows. In Implementation
and Application of Functional Languages, Lecture Notes in Computer
Science, pages 72–89. Springer Berlin Heidelberg, 8 Sept. 2004. ISBN
9783540260943, 9783540320388. doi: 10.1007/11431664_5.

[13] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated ran-
dom testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, pages
213–223, New York, NY, USA, 2005. ACM. ISBN 9781595930569.
doi: 10.1145/1065010.1065036.

[14] C. Haack and J. B. Wells. Type error slicing in implicitly typed
Higher-Order languages. In Programming Languages and Systems,
Lecture Notes in Computer Science, pages 284–301. Springer Berlin
Heidelberg, 7 Apr. 2003. ISBN 9783540008866, 9783540365754.
doi: 10.1007/3-540-36575-3_20.

[15] J. Hage and B. Heeren. Heuristics for type error discovery and
recovery. In Implementation and Application of Functional Languages,
Lecture Notes in Computer Science, pages 199–216. Springer Berlin
Heidelberg, 4 Sept. 2006. ISBN 9783540741299, 9783540741305.
doi: 10.1007/978-3-540-74130-5_12.

[16] B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference
process. In Proceedings of the eighth ACM SIGPLAN international
conference on Functional programming, volume 38, pages 3–13. ACM,
25 Aug. 2003. ISBN 9781581137569. doi: 10.1145/944705.
944707.

[17] K. Krippendorff. Content Analysis: An Introduction to Its Methodology.
SAGE Publications, 2012. ISBN 9781412983150.

[18] J. R. Landis and G. G. Koch. The measurement of observer agreement
for categorical data. Biometrics, 33(1):159–174, Mar. 1977. ISSN
0006-341X.

[19] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type
inference algorithm. ACM Trans. Program. Lang. Syst., 20(4):707–723,
July 1998. ISSN 0164-0925. doi: 10.1145/291891.291892.

[20] B. Lerner, D. Grossman, and C. Chambers. Seminal: Searching for
ML type-error messages. In Proceedings of the 2006 Workshop on

ML, ML ’06, pages 63–73, New York, NY, USA, 2006. ACM. ISBN
9781595934833. doi: 10.1145/1159876.1159887.

[21] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching
for type-error messages. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’07, pages 425–434, New York, NY, USA, 2007. ACM. ISBN
9781595936332. doi: 10.1145/1250734.1250783.

[22] F. Lindblad. Property directed generation of First-Order test data. In
M. T. Morazán, editor, Proceedings of the Eighth Symposium on Trends
in Functional Programming, volume 8 of TFP ’07, pages 105–123,
2007. ISBN 9781841501963.

[23] G. Marceau, K. Fisler, and S. Krishnamurthi. Measuring the effec-
tiveness of error messages designed for novice programmers. In Pro-
ceedings of the 42Nd ACM Technical Symposium on Computer Science
Education, SIGCSE ’11, pages 499–504, New York, NY, USA, 2011.
ACM. ISBN 9781450305006. doi: 10.1145/1953163.1953308.

[24] G. Marceau, K. Fisler, and S. Krishnamurthi. Mind your language:
On novices’ interactions with error messages. In Proceedings of
the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2011, pages
3–18, New York, NY, USA, 2011. ACM. ISBN 9781450309417.
doi: 10.1145/2048237.2048241.

[25] B. J. McAdam. On the unification of substitutions in type inference.
In K. Hammond, T. Davie, and C. Clack, editors, Implementation of
Functional Languages, Lecture Notes in Computer Science, pages 137–
152. Springer Berlin Heidelberg, 9 Sept. 1998. ISBN 9783540662297,
9783540485155. doi: 10.1007/3-540-48515-5_9.

[26] M. Naylor and C. Runciman. Finding inputs that reach a target
expression. In Seventh IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM ’07, pages 133–142,
2007. doi: 10.1109/SCAM.2007.30.

[27] M. Neubauer and P. Thiemann. Discriminative sum types locate the
source of type errors. In Proceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’03, pages
15–26, New York, NY, USA, 2003. ACM. ISBN 9781581137569.
doi: 10.1145/944705.944708.

[28] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-Directed
random test generation. In 29th International Conference on Software
Engineering, ICSE ’07, pages 75–84, 2007. doi: 10.1109/ICSE.
2007.37.

[29] Z. Pavlinovic, T. King, and T. Wies. Finding minimum type error
sources. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 525–542, New York, NY, USA, 2014. ACM. ISBN
9781450325851. doi: 10.1145/2660193.2660230.

[30] Z. Pavlinovic, T. King, and T. Wies. Practical SMT-based type error
localization. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, pages 412–
423, New York, NY, USA, 2015. ACM. ISBN 9781450336697.
doi: 10.1145/2784731.2784765.

[31] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional programs
that explain their work. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’12, pages
365–376, New York, NY, USA, 2012. ACM. ISBN 9781450310543.
doi: 10.1145/2364527.2364579.

[32] V. Rahli, J. Wells, J. Pirie, and F. Kamareddine. Skalpel: A type error
slicer for standard ML. Electron. Notes Theor. Comput. Sci., 312:
197–213, 24 Apr. 2015. ISSN 1571-0661. doi: 10.1016/j.entcs.
2015.04.012.

[33] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy small-
check: Automatic exhaustive testing for small values. In Proceedings
of the First ACM SIGPLAN Symposium on Haskell, Haskell ’08, pages
37–48, New York, NY, USA, 2008. ACM. ISBN 9781605580647.
doi: 10.1145/1411286.1411292.

[34] K. Sagonas, J. Silva, and S. Tamarit. Precise explanation of success
typing errors. In Proceedings of the ACM SIGPLAN 2013 Workshop
on Partial Evaluation and Program Manipulation, PEPM ’13, pages

14 2016/6/23

http://dx.doi.org/10.1145/2535838.2535863
http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1002/spe.602
http://dx.doi.org/10.1145/582153.582176
http://dx.doi.org/10.1145/231379.231387
http://dx.doi.org/10.1145/231379.231387
http://dx.doi.org/10.1037/h0031619
http://dx.doi.org/10.1007/11431664_5
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1007/3-540-36575-3_20
http://dx.doi.org/10.1007/978-3-540-74130-5_12
http://dx.doi.org/10.1145/944705.944707
http://dx.doi.org/10.1145/944705.944707
http://dx.doi.org/10.1145/291891.291892
http://dx.doi.org/10.1145/1159876.1159887
http://dx.doi.org/10.1145/1250734.1250783
http://dx.doi.org/10.1145/1953163.1953308
http://dx.doi.org/10.1145/2048237.2048241
http://dx.doi.org/10.1007/3-540-48515-5_9
http://dx.doi.org/10.1109/SCAM.2007.30
http://dx.doi.org/10.1145/944705.944708
http://dx.doi.org/10.1109/ICSE.2007.37
http://dx.doi.org/10.1109/ICSE.2007.37
http://dx.doi.org/10.1145/2660193.2660230
http://dx.doi.org/10.1145/2784731.2784765
http://dx.doi.org/10.1145/2364527.2364579
http://dx.doi.org/10.1016/j.entcs.2015.04.012
http://dx.doi.org/10.1016/j.entcs.2015.04.012
http://dx.doi.org/10.1145/1411286.1411292

33–42, New York, NY, USA, 2013. ACM. ISBN 9781450318426.
doi: 10.1145/2426890.2426897.

[35] T. Schilling. Constraint-Free type error slicing. In Trends in Func-
tional Programming, Lecture Notes in Computer Science, pages 1–16.
Springer Berlin Heidelberg, 16 May 2011. ISBN 9783642320361,
9783642320378. doi: 10.1007/978-3-642-32037-8_1.

[36] E. L. Seidel, N. Vazou, and R. Jhala. Type targeted testing. In
Proceedings of the 24th European Symposium on Programming on
Programming Languages and Systems, ESOP ’15, pages 812–836,
New York, NY, USA, 2015. Springer-Verlag New York, Inc. ISBN
978-3-662-46668-1. doi: 10.1007/978-3-662-46669-8_33.

[37] A. Serrano and J. Hage. Type error diagnosis for embedded DSLs
by Two-Stage specialized type rules. In Programming Languages
and Systems, Lecture Notes in Computer Science, pages 672–698.
Springer Berlin Heidelberg, 3 Apr. 2016. ISBN 9783662494974,
9783662494981. doi: 10.1007/978-3-662-49498-1_26.

[38] N. Tillmann and J. de Halleux. Pex–White box test generation for .NET.
In B. Beckert and R. Hähnle, editors, Tests and Proofs, Lecture Notes in

Computer Science, pages 134–153. Springer Berlin Heidelberg, 2008.
ISBN 9783540791232. doi: 10.1007/978-3-540-79124-9_
10.

[39] D. Vytiniotis, S. Peyton Jones, and J. P. Magalhães. Equality proofs
and deferred type errors: A compiler pearl. In Proceedings of the 17th
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’12, pages 341–352, New York, NY, USA, 2012. ACM. ISBN
9781450310543. doi: 10.1145/2364527.2364554.

[40] D. Zhang and A. C. Myers. Toward general diagnosis of static
errors. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, pages 569–
581, New York, NY, USA, 2014. ACM. ISBN 9781450325448.
doi: 10.1145/2535838.2535870.

[41] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones. Diagnosing
type errors with class. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2015, pages 12–21, New York, NY, USA, 2015. ACM. ISBN
9781450334686. doi: 10.1145/2737924.2738009.

15 2016/6/23

http://dx.doi.org/10.1145/2426890.2426897
http://dx.doi.org/10.1007/978-3-642-32037-8_1
http://dx.doi.org/10.1007/978-3-662-46669-8_33
http://dx.doi.org/10.1007/978-3-662-49498-1_26
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://dx.doi.org/10.1145/2364527.2364554
http://dx.doi.org/10.1145/2535838.2535870
http://dx.doi.org/10.1145/2737924.2738009

A. Proofs for Section 3
Proof of Lemma 3. By induction on τ . In the base case τ =
〈f ν[α],∅,∅〉 and α is trivially a refinement of ν[α]. In the induc-
tive case, consider the single-step extension of τ , τ ′ = τ, 〈e′, σ′, θ′〉.
We show by case analysis on the evaluation rules that if θ(α) �
σ(ν), then θ′(α) � σ′(ν).

We can immediately discharge all of the E-*-BAD rules (except
for E-NODE-BAD1) as the calls to narrow return stuck. An
examination of narrow shows that if narrow returns stuck then
σ and θ are unchanged.

Case E-PLUS-GOOD: We narrow v1 and v2 to int, so we must
consider the narrow(ν[α], t, σ, θ) and narrow(n, int, σ, θ)
cases. The narrow(n, int, σ, θ) case is trivial as it does not
change σ or θ. In the narrow(ν[α], t, σ, θ) we will either find
that ν ∈ σ or we will generate a fresh int and extend σ. Note
that when we extend σ we also extend θ due to the call to unify,
thus in the ν[∈]σ we cannot actually refine either ν or α and thus
the refinement is preserved. When we extend σ with a binding
for ν, the call to unify ensures that we add a compatible binding
for α if one was not already in θ, thus the refinement relation
must continue to hold.

Case E-IF-GOOD{1,2}: Similar to E-PLUS-GOOD.
Case E-APP-GOOD: Similar to E-PLUS-GOOD.
Case E-LEAF-GOOD: This step cannot change σ or θ thus the

refinement relation continues to hold trivially.
Case E-NODE-GOOD: We narrow v2 and v3 to tree t, so we

must consider three cases of narrow.
narrow(ν[α], t, σ, θ): Similar to E-PLUS-GOOD.
narrow(leaf[t1], tree t2, σ, θ): This case may extend θ but

not σ, so the refinement continues to hold trivially.
narrow(node[t1] v1 v2 v3, tree t2, σ, θ): Same as leaf[t1].

Case E-CASE-GOOD{1,2}: Similar to E-PLUS-GOOD.
Case E-CASE-PAIR-GOOD: Similar to E-PLUS-GOOD.

�

Proof of Lemma 4. We can construct v from τ as follows. Let

τi = 〈f ν[α],∅,∅〉, . . . , 〈ei−1, σi−1, θi−1〉, 〈ei, σi, θi〉
be the shortest prefix of τ such that ρτi(f) � t. We will show that
ρτi−1(f) must contain some other hole α′ that is instantiated at step
i. Furthermore, α′ is instantiated in such a way that ρτi(f) � t.
Finally, we will show that if we had instantiated α′ such that
ρτi(f) ∼ t, the current step would have gotten stuck.

Since θi−1 and θi differ only in α′ but the resolved types differ,
we have α′ ∈ ρτi−1(f) and ρτi(f) = ρτi−1(f) [t′/α′]. Let s be
a concrete type such that ρτi−1(f) [s/α′] = t. We show by case
analysis on the evaluation rules that

〈ei−1, σi−1, θi−1[α′ 7→ s]〉 ↪→ 〈stuck, σ, θ〉

Case E-PLUS-GOOD: Here we narrow v1 and v2 to int, so the
first case of narrow must apply (narrow(n, int, σ, θ) cannot ap-

ply as it does not change θ). In particular, since we extended θi−1

with [α′ 7→ t′] we know that α′ = α and t′ = int. Let s be any
concrete type that is incompatible with int and θs = θi−1[α 7→
s], narrow(ν[α], int, σi−1, θs]) = 〈stuck, σi−1, θs〉.

Case E-PLUS-BAD{1,2}: These cases cannot apply as narrow
does not update θ when it returns stuck.

Case E-IF-GOOD{1,2}: Similar to E-PLUS-GOOD.
Case E-IF-BAD: This case cannot apply as narrow does not update

θ when it returns stuck.
Case E-APP-GOOD: Similar to E-PLUS-GOOD.
Case E-APP-BAD: This case cannot apply as narrow does not

update θ when it returns stuck.
Case E-LEAF-GOOD: This case cannot apply as it does not update

θ.
Case E-NODE-GOOD: Here we narrow v2 and v3 to tree t, so

we must consider three cases of narrow.
narrow(ν[α], t, σ, θ): Similar to E-PLUS-GOOD.
narrow(leaf[t1], tree t2, σ, θ): For this case to extend θ with

[α′ 7→ t′], either t1 or t2 must contain α′. Let s be any con-
crete type that is incompatible with t′ and θs = θi−1[α 7→
s], narrow(ν[α], int, σi−1, θs]) = 〈stuck, σi−1, θs〉.

narrow(node[t1] v1 v2 v3, tree t2, σ, θ): Same as leaf[t1].
Case E-NODE-BAD1: This case cannot apply as narrow does not

update θ whe it returns stuck.
Case E-NODE-BAD2: Similar to E-NODE-GOOD.
Case E-CASE-GOOD{1,2}: Here we narrow v to tree α, so we

must consider three cases of narrow.
narrow(ν[α], t, σ, θ): Similar to E-PLUS-GOOD.
narrow(leaf[t1], tree t2, σ, θ): This case cannot extend θ

with [α′ 7→ t′] as we use a fresh α, which cannot be refer-
enced by ρτi−1(f), in the call to narrow, and thus it cannot
apply.

narrow(node[t1] v1 v2 v3, tree t2, σ, θ): Same as leaf[t1].
Case E-CASE-BAD: This case cannot apply as narrow does not

update θ whe it returns stuck.
Case E-CASE-PAIR-GOOD Here we narrow v to α1×α2, so we

must consider two cases of narrow.
narrow(ν[α], t, σ, θ): Similar to E-PLUS-GOOD.
narrow(〈v1, v2〉, t1 × t2, σ, θ): This case cannot extend θ with

[α′ 7→ t′] as we use a fresh α1 and α2, which cannot be
referenced by ρτi−1(f), in the call to narrow, and thus it
cannot apply.

Case E-CASE-PAIR-BAD: This case cannot apply as narrow does
not update θ whe it returns stuck.

Finally, by Lemma 3 we know that ρτi−1(f) � σi−1(ν) and thus
α′ ∈ σi−1(ν[α]). Let u = gen(s, θ) and v = σi−1(ν) [u/ν′[α′]] [s/α′],
〈f v,∅,∅〉 ↪→∗ 〈stuck, σ, θ〉 in i steps.

�

16 2016/6/23

	Introduction
	Overview
	Generating Witnesses
	Visualizing Witnesses

	Type-Error Witnesses
	Syntax
	Semantics
	Generality
	Search Algorithm

	Explaining Type Errors With Traces
	Tracing Semantics
	Interactive Debugging

	Evaluation
	Witness Coverage
	Witness Complexity
	Qualitative Evaluation of Witness Utility
	Quantitative Evaluation of Witness Utility
	Discussion

	Related Work
	Proofs for Section 3

