
FaCT: A DSL for Timing-Sensitive Computation

Sunjay Cauligi† Gary Soeller† Brian Johannesmeyer† Fraser Brown⋆ Riad S. Wahby⋆

John Renner† Benjamin Grégoire♠ Gilles Barthe♣♦ Ranjit Jhala† Deian Stefan†

†UC San Diego, USA ⋆Stanford, USA ♠INRIA Sophia Antipolis, France
♣MPI for Security and Privacy, Germany ♦IMDEA Software Institute, Spain

Abstract

Real-world cryptographic code is often written in a subset
of C intended to execute in constant-time, thereby avoiding
timing side channel vulnerabilities. This C subset eschews
structured programming as we know it: if-statements, loop-
ing constructs, and procedural abstractions can leak timing
information when handling sensitive data. The resulting
obfuscation has led to subtle bugs, even in widely-used high-
profile libraries like OpenSSL.
To address the challenge of writing constant-time cryp-

tographic code, we present FaCT, a crypto DSL that pro-
vides high-level but safe language constructs. The FaCT com-
piler uses a secrecy type system to automatically transform
potentially timing-sensitive high-level code into low-level,
constant-time LLVM bitcode. We develop the language and
type system, formalize the constant-time transformation,
and present an empirical evaluation that uses FaCT to imple-
ment core crypto routines from several open-source projects
including OpenSSL, libsodium, and curve25519-donna. Our
evaluation shows that FaCT’s design makes it possible to
write readable, high-level cryptographic code, with efficient,
constant-time behavior.

CCS Concepts · Security and privacy → Cryptogra-

phy; · Software and its engineering → General pro-

gramming languages; · Theory of computation→ Op-

erational semantics.

Keywords domain-specific language, program transforma-
tion, cryptography

ACM Reference Format:

Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown,

Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles Barthe,

Ranjit Jhala, and Deian Stefan. 2019. FaCT: A DSL for Timing-

Sensitive Computation. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6712-7/19/06.

https://doi.org/10.1145/3314221.3314605

(PLDI ’19), June 22ś26, 2019, Phoenix, AZ, USA. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3314221.3314605

1 Introduction

Despite many strides in language design over the past half-
century, modern cryptographic routines are still typically
written in C. This is good for speed but bad for keeping
secrets. Like most general-purpose languages, C gives the
programmer no way to denote which data is sensitiveÐand
therefore gives the programmer no warnings about code that
inadvertently divulges secrets.
One possible avenue for secret leaks is a timing side-

channel, wherein code executes for observably different time
depending on the value of secret information. For example, a
textbook implementation of RSA decryption takes a different
amount of time depending on the individual key bits [35]Ð
each ‘1’ bit requires an additional bignum multiplication and
thus more time. The cumulative effects of these operations
on the running time is large enough for the attacker to recon-
struct the value of the secret key. Timing vulnerabilities like
these are not merely of academic interest: they have been
found in implementations of both RSA [23] and AES [13, 46],
where they allowed even remote network attackers to divine
the values of secret keys.

The only recourse developers have to avoid timing vulner-
abilities is to make their code ugly. Specifically, they use a
selection of recipes to turn dangerous but readable code into
safe but obfuscated code: they re-write potentially secret-
revealing constructs like branches into low level sequences
of assignments that operate in constant-time regardless of
the values of secret data. For example, the readable

if (secret) x = e

which branches on a secret bit is replaced by

x = (-secret & e) | (secret - 1) & x

which, unlike the branch, executes in the same amount of
time no matter the value of secret.

This is a sorry state of affairs. First, developers apply the
recipes in an ad-hoc way, and any untransformed computa-
tion is left vulnerable to attack. Second, the recipes obfuscate
the code, making it harder to determine whether the routine
is even computing the desired value. Third, it can be tricky
for developers to correctly apply the recipes. For example,

96

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3314221.3314605

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Cauligi et al.

an attempt to use a recipe to fix a timing attack vulnerabil-
ity in TLS [40] led to the Lucky13 timing vulnerability in
OpenSSL [2], and the purported fix for Lucky13 opened the
door to yet another vulnerability [57]!
In this paper, we introduce FaCT, a domain-specific lan-

guage and compiler for writing readable and timing-secure

cryptographic routines. FaCT lets developers write readable
code using high-level control-flow constructs like branches
and procedural abstractions, but then automatically com-
piles this code into efficient, constant-time executables. We
develop FaCT via four contributions:

1. Language design. Our first contribution is the design of
a language for writing cryptographic code. The language
allows programmers to use standard control-flow constructs
like if and return statements. However, the language is
equipped with an information-flow type system that pro-
grammers can use to specify which data are secret. The type
system prevents leaks by ensuring that secrets do not explic-
itly or implicitly influence the public-visible outputs (ğ3).

2. Public safety. Our second contribution is the observa-
tion that not all programs are amenable to constant-time
compilation. Specifically, we show that naive application of
constant-time recipes can mangle otherwise safe programs,
causing memory errors or undefined behavior. We address
this problem by introducing a notion called public safety that
characterizes the source programs that can be compiled to
constant-time without introducing errors (ğ3.2.3).

3. Constant-time compilation. Our third contribution is
a compiler that automatically converts (public safe) source
programs into constant-time executables. The FaCT compiler
is based on the key insight that we can exploit the secrecy
types to automatically apply the recipes that developers have
hitherto applied by hand, and can do so systematically, i.e.,
exactly where needed to prevent the exposure of secrets via
timing. We formalize the compiler with two transformations,
return deferral and branch removal, and prove that compila-
tion yields constant-time executables with source-equivalent
semantics (ğ4).

4. Implementation & evaluation. Our final contribution
is an implementation of FaCT that produces LLVM IR from
high-level sources, and uses LLVM’s clang to generate the fi-
nal object or assembly file. We evaluate FaCT’s usability with
a user study, surveying students in an upper-level, under-
graduate programming languages course at a U.S. university,
where 57% of the participants found FaCT easier to write
than C (compared to 15% who found C easier). We evaluate
FaCT’s expressiveness and performance by using our imple-
mentation to port 7 cryptographic routines from 3 widely
used libraries: OpenSSL, libsodium, and curve25519-donna,
totaling about 2400 lines of C source. The unoptimized FaCT
codeÐwhich we formally guaranteed to be constant-timeÐis
between 16ś346% slower than the C equivalent. The clang-
optimized FaCT codeÐwhich we empirically check to be

constant-time using dudect [52]Ðis between 5% slower to
21% faster than the C equivalent, showing that FaCT yields
readable constant-time code whose performance is competi-
tive with C (ğ5).

We make all source and data available under an open source
license at: https://fact.programming.systems.

2 Background

Some common C constructsÐbranches, returns, and array
updatesÐcan reveal secrets via timing channels. In this sec-
tion, for each potentially dangerous construct, we explain:
(1) how that construct could introduce bugs in real-world
projects; (2) how developers must use recipes to avoid the
dangerous construct; and, (3) how FaCT allows programmers
to forgo recipes and write readable yet safe code.

Branching on secret values. A first class of vulnerabil-
ity arises from directly branching on the value of a secretÐ
attackers can often reconstruct control flow through a pro-
gram, and thus secret condition values (e.g., because the true
branch takes orders of magnitude longer to execute than
the false branch) [49]. To avoid this type of vulnerability,
developers manually translate branching code to straight-
line code by replacing if-statements with constant-time
bitmasks. Consider the following example from OpenSSL
(edited slightly for brevity), which formats a message before
computing a message authentication code (MAC):

for (j = 0; j < md_block_size; j++, k++) {

b = data[k - header_length];

b = constant_time_select_8(is_past_c, 0x80, b);

b = b & ~is_past_cp1;

b &= ~is_block_b | is_block_a;

block[j] = b;

}

It’s hard to tell, but this snippet (1) iterates over plaintext
message data, (2) terminates the message with standard-
defined 0x80, and (3) pads the terminated message to fill a
hash blockÐall while keeping data secret. To this end, even
the selection operator constant_time_select_8(mask, a, b)

is a series of bitmasks: (mask & a) | (~mask & b).
Translating each line of this OpenSSL code to FaCT leads

to drastically more readable code:

for (uint64 j from 0 to md_block_size) {

k += 1;

b = is_past_c ? 0x80 : data[k - (len header)];

if (is_past_cp1 || (is_block_b && !is_block_a)) {

b = 0;

}

block[j] = b;

}

With FaCT, the programmer declares the sensitive variables
as used in the conditions as secret. After doing so, they
are free to use plain conditional expressions and ternary
operators to compute the final value of b. The FaCT compiler

97

https://fact.programming.systems

FaCT: A DSL for Timing-Sensitive Computation PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

automatically uses the type annotations to generate machine
code equivalent to the C example.

Early termination. Both loops and procedures can termi-
nate early depending on the value of a secret, thereby leaking
the secret. A well-known padding oracle attack in older ver-
sions of OpenSSL exploits an early function return [61]: a
packet processing function would decrypt a packet and then
check that the padding was valid, and, in the case of invalid
padding, would return immediately. An attacker could ex-
ploit this to recover the SSL session key by sending specially
crafted packets and use timing measurements to determine
whether or not the padding of the decrypted packet was
valid. Similarly, if the number of loop iterations in a program
depends on a secret, attackers can use timing to uncover the
value of that secret (e.g., in the Lucky13 attack [2]).

C programmers again use special recipes, turning idiomatic
programs into hard-to-read constant-time code. Consider the
following buffer comparison code from the libsodium cryp-
tographic library:

for (i = 0; i < n; i++)

d |= x[i] ^ y[i];

return (1 & ((d - 1) >> 8)) - 1;

This snippet compares the first n bytes of the arrays x and
y, returning 0 if they are the same, and -1 otherwise. To
avoid leaking information about the contents of the arrays,
though, the loop cannot simply return early when it detects
differing values; instead, the programmer must maintain a
łflagž (d), and update it at each iteration to signal success
or failure. While iterating inside the loop, if the values x[i]
and y[i] are the same, then x[i] ^ y[i] will be 0, leaving
d unchanged. However, if x[i] and y[i] are different, then
their XOR will have at least one bit set, causing d to also have
a non-zero value. After the loop, the code uses a complex
shift-and-mask dance to collapse d into the value -1 if any
bits are set, and 0 otherwise.
FaCT lets programmers avoid the łflagž contortions:

for (uint64 i from 0 to n)

if (x[i] != y[i])

return -1;

return 0;

With FaCT, the programmer can readily express returning
-1 in the case of failure as the compiler automatically gen-
erates a special variable for the return value, and uses the
secret type to translate returns-under-secret conditions into
(constant-time) updates to this variable, producing machine
code roughly equivalent to the C recipe above.

Memory access. Memory access patterns that depend on
secret data can also inadvertently leak that secret data. An
attacker co-located on the same machine as a victim process,
for example, can easily infer secret memory access patterns
by observing their own cache hits and misses [33, 46]; alarm-
ingly, attackers might even learn such information across a
datacenterÐor even over the Internet [23, 53].

To avoid leaking information via memory access patterns,
developers rely on recipes that avoid accessing memory
based on secrets. The following C code (from the łdonnaž
Curve25519 implementation), for example, swaps the values
of array a with array b based on the value of a secret (swap):

for (i = 0; i < 5; ++i) {

const limb x = swap & (a[i] ^ b[i]);

a[i] ^= x;

b[i] ^= x;

}

To avoid leaking the value of the secret swap, the code always
accesses both a[i] and b[i] at each loop iteration, and uses
bitmask operations that only change them if swap is a mask
of all 1-bits.
FaCT, again, makes such subterfuge unneccessary:

if (swap != 0) {

for (uint64 i from 0 to 5) {

secret uint64 tmp = a[i];

a[i] = b[i];

b[i] = tmp;

}

}

Once the programmer has marked swap as secret, the com-
piler will automatically synthesize masked array reads simi-
lar to those from the original Curve25519 code.

3 FaCT

FaCT is a high-level, strongly-typed C-like DSL, designed
for writing constant-time crypto code. In this section, we
describe the DSL and its type system, one that both disal-
lows certain unsafe programs and specifies how the compiler
should transform code to run in constant-time.1 We describe
the type-directed transformations in ğ4.

3.1 Core language

FaCT is designed to be embedded into existing crypto projects
(e.g., OpenSSL), and not to be used as a standalone language.
As such, FaCT łprogramsž are organized as collections of pro-
cedures. As shown in Figure 1, developers can export these
procedures as C functions to the embedding environment.
They can also import trusted procedures. This is especially
useful when using FaCT to implement error-prone glue code
around already known-safe C crypto primitives (e.g., build-
ing a block cipher mode that calls an AES primitive).
FaCT procedures are composed of a sequence of state-

ments (e.g., if statements, for loops, etc.), which are them-
selves composed of expressions. Both statements and ex-
pressions are mostly standard. We only remark on the more

1The surface language as used by developers is slightly less verbose than

the core language presented in this section. For example, our surface syntax

allows procedures to be called in expressions; FaCT desugars such expres-

sions into core language procedure-call statements. We refer to both the

surface and core languages as FaCT.

98

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Cauligi et al.

Procedure definitions

fdef ::=

| f (®x : ®β) { S } : β internal procedure

| export f (®x : ®β) { S } : β exported procedure

| extern f (®x : ®β) : β external procedure

Statements

S ::=

| S ; S sequence
| β x = e variable declaration
| β x = f (®e) procedure call
| e := e assignment
| if (e) { S } else { S } conditional
| for (x from e to e) { S } range-for
| return e return

Expressions

e ::=

| true | false boolean literal
| n numeric literal
| x variable
| ⊖ e unary op
| e ⊕ e binary op
| e[e] array get
| len e array length
| zeros(β , e) zero array
| clone(e) array clone
| view(e, e, e) array view
| declassify(e) declassify
| assume(e) assume
| ref e reference
| deref e dereference
| ctselect(e, e, e) constant-time selection

Figure 1. (Subset of) FaCT grammar.

notable language constructs we add to make writing crypto-
graphic code more natural.
First, FaCT includes a number of array primitives to cap-

ture common idioms in cryptographic routines, and to re-
place unsafe pointer arithmetic. The operation len e returns
the length of an array e; zeros(β, e) creates an array of ze-
ros of type β of length e; clone(e) copies the array e; and
view(e1, e2, elen) returns a slice of array e1 starting at position
e2 and with length elen . We introduce views to make up for
the lack of pointers: views allow developers to efficiently
compute on small pieces of large buffers.

Second, we provide vector primitives: parallel vector arith-
metic and vector shuffle instructions. These instructions
allow developers to implement crypto algorithms that lever-
age fast SIMD instructions (e.g., SSE4 in x86_64) without
resorting to architecture-specific inline assembly or com-
piler intrinsics.

Labels

ℓ ::= Pub | Sec
Size

s ::= 8 | 16 | . . . | 128

Array size

sz ::= ∗ | 0 | 1 | . . .
Mutability

m ::= R | RW

Base types

β ::= Boolℓ | (U)Int
s
ℓ
| Refm[β] | Arrsz[β] |

{

®x : ®β
}

Figure 2. FaCT types.

Third, we expose ctselect, a constant-time selection prim-
itive. The operation ctselect(e1, e2, e3) evaluates to either
e2 or e3, depending on whether e1 is true or false, respec-
tively. The compiler guarantees that ctselect compiles to
constant-time code (e.g., as a series of bitmasks or the CMOV
instruction on x86_64). Developers need not use ctselect

directly; instead, they can use our higher-level if-statements,
which our compiler transforms to such ctselects (ğ4).

Lastly, FaCT includes a declassify primitive that takes a
secret expression as input and returns a public value. De-
velopers can use this primitive to bypass FaCT’s typing re-
strictions (described below) and explicitly make information
public. This is useful, e.g., for implementing encryption: a
buffer containing a secret message must be treated with care,
but if the buffer is encrypted in-place, it is thereafter safe to
declassify because it contains ciphertext.

3.2 Type system

The most important feature of the FaCT language is its static
information-flow type system. We rely on this type system
to: (1) provide a way for developers to demarcate the sensi-
tivity of dataÐwhether it is secret or public; (2) reject unsafe
programs, i.e., programs that are not information-flow se-
cure or cannot be safely transformed to constant-time code;
and (3) direct the compiler when applying transformations.
Below, we give an overview of our type system and explain
how it fulfills the first two roles; we leave the third for ğ4.
Like previous information-flow type systems [42, 43, 55,

62], FaCT decorates each base type with a secret or public
secrecy label2. Figure 2 summarizes our base types; they are
largely standard. Reference types wrap another base type
and inherit its secrecy label; they are also access controlled,
i.e., they can be read-only or read-write. In the FaCT surface
syntax, we disallow recursively-typed referencesÐonly ref-
erences of integer and boolean types are expressible. Array
types, like references, inherit the secrecy of their base type;
arrays have a size which is either a statically known constant

2Labels are partially ordered according to ⊑ as usual: Pub ⊑ ℓ and ℓ ⊑ Sec

holds true for any label ℓ. The join of two labels is similarly standard: ℓ1⊔ℓ2

is Sec if either label is Sec, and Pub otherwise. For brevity, we also use these

operators on types (operating on the underlying label), much like previous

work (e.g., [42, 43]).

99

FaCT: A DSL for Timing-Sensitive Computation PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

or dynamically determined (∗). Struct types do not carry a
secrecy label; instead, each struct field is individually labeled.

Developers explicitly specify labels when they declare vari-
ables and procedures. FaCT’s type system, in turn, uses these
labels to reject unsafe programs and specify how the com-
piler should transform high-level code that uses seemingly
unsafe constructs (e.g., secret if-statements) to constant-
time code. Below, we walk through our typing rules for
expressions, statements, and procedures.

3.2.1 Expression typing

FaCT’s expression typing judgment Γ ⊢ e : β states that
under the type context Γ, which maps variables to their
declared types, the expression e has the type β . We write
x : β ∈ Γ when variable x maps to type β in the context Γ.

Figure 3 gives the typing rules for the most interesting
expressions. The rule for ctselect, for example, ensures that
(1) the result is at least as secret as all the arguments to
ctselect and (2) all the arguments can be cast to integersÐ
since, internally, ctselectmay be implemented as a series of
constant-time bitmasks. The typing rules for other constructs
similarly preserve secrecy.
The type system also disallows certain kinds of unsafe

computations. For example, we reject programs that index
memory based on secrets: the rules for T-Arr-Get and T-

Arr-View ensure that array indices are public and in-bounds.

The in-bounds checks are highlighted , and detailed in ğ3.2.3.

3.2.2 Statement and procedure typing

FaCT allows developers to write code whose control flow de-
pends on sensitive data. Unfortunately, not all such code can
be safely or efficiently transformed. For example, to safely
allow writes to arrays using a secret-dependent index we
must (transform the code to) write to all indices [39, 47, 51];
such a transformation would be expensive, and FaCT in-
stead disallows such computations. As such, typing rules for
statements and procedures rely on a secrecy context, which
comprises a pair of secrecy labels pc, rc called the path and
return context, respectively.
The path context label pc for a statement is secret if

the statement is contained withinÐi.e., is control-dependent
uponÐa secret branch. Since a procedure caller’s path con-
text must persist through to the callee’s path context, the
initial path context label of a procedure is secret if it is ever
called from a secret context; otherwise the initial path con-
text label is public. We use ω to map procedures to their
initial path context labels.

The return context label rc for a statement is secret if the
statement may be preceded by a return statement that is
itself control-dependent on a secret value. A procedure’s
return context label is always initially public. Thus, the se-
crecy context (pc⊔ rc) for a statement represents whether the
flow of control (to get to the statement) can be influenced

by secret values. For example, if the conditional expression
of an if statement is secret, then the statements of each
branch are judged with pc = Sec, and are thus typed under
a secret context.

Statement typing. FaCT’s statement typing judgment is of
the form ω, pc, βr ⊢ S : Γ, rc → Γ

′, rc′, where βr is the re-
turn type of the procedure containing the statement S . This
judgment states that, given a type- and security- context de-
fined by ω, pc, βr and initial Γ, rc, the statement S : (1) can be
safely compiled into constant-time code, and (2) yields a new
updated type context Γ′ and return context rc′. This typing
judgment accounts for new variable declarations and ensures
that the secrecy context influences subsequent statements.
For example, if a return statement resides within a secret

branch, then all statements executed after that branch must
also be typed under a secret context, since their execution
now depends on the return.

Figure 4 shows themost interesting statement typing rules.
For example, (T-Asgn) checks that when updating a refer-
ence, the current secrecy context does not exceed the secrecy
label of the value e2 being assigned. This ensures that secret
data cannot be leaked via control flow. Rules (T-If) and (T-
Ret) account for such secret contexts; the latter additionally
ensures that the procedure cannot return a value more sen-
sitive than specified by the procedure return type.

Rule (T-For) is more restricting: it ensures that secrets do
not influence the running time of for loops by requiring that
the loop boundsÐand therefore the number of iterationsÐ
be public. The updated return context rc′ must both be a
fixpoint of the loop, and must be no lower than the original
return context rc. In practice, our type checker only assigns
rc′ to be secret if it cannot assign it to be public.

The typing for procedure calls given by (T-Call) is slightly
more complex. In particular, this rule ensures that procedures
can only be called with suitable inputs and checks that the
output type is compatible with the variable being assigned.
To this end, we ensure that if the procedure f has visible
effects, then its initial path context ω(f) must be at least the
label of the calling context. This, in effect, ensures that in
a secret context we cannot call procedures that (1) modify
public parameters, i.e., take mutable public references as
input parameters; (2) are externally defined and so possibly
have publicly visible side-effects; or (3) are exported (top-
level) procedures.

Procedure typing. Figure 5 shows rules for typing proce-
dure definitions. FaCT’s procedure typing judgment is of the

form ω ⊢ f (®x : ®β) { S } : βr , which states that under ω, the

procedure f with named parameters ®x of types ®β has return
type βr . Procedures in FaCT may only return simple types
(i.e., boolean values or integers), but there are no such restric-
tions on the types of parameters. When typing procedures,
the initial type context Γ is formed from the procedure’s pa-
rameters, and the initial path context pc is given byω(f). The

100

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Cauligi et al.

T-Ct-Sel
Γ ⊢ e1 : Boolℓ

β is numeric or Bool Γ ⊢ e2 : β Γ ⊢ e3 : β

Γ ⊢ ctselect(e1, e2, e3) : β ⊔ ℓ

T-Arr-Get

Γ ⊢ e1 : Arr
sz[β] Γ ⊢ e2 : UInt

s
Pub Γ ⇒ e2 < len e1

Γ ⊢ e1[e2] : β

T-Arr-View
Γ ⊢ e1 : Arr

sz[β] Γ ⊢ e2 : UInt
s
Pub

Γ ⊢ elen : UIntsPub sz′ = szOfExpr(elen)

Γ ⇒ e2 < len e1 Γ ⇒ elen ≤ len e1 − e2

Γ ⊢ view(e1, e2, elen) : Arr
sz′[β]

Figure 3. (Subset of) FaCT expression typing rules.

return context rc always starts as Pub, as the procedure body
S (vacuously) has no preceding secret-dependent return
statements. The return type βr is taken from the procedure
definition. If the body S is well-typed under these initial
contexts, then the procedure itself is considered well-typed.

3.2.3 Public safety

The FaCT type system ensures that procedures can be trans-
formed using constant-time recipes without giving up safety.
Naively applying recipes can inadvertently introduce safety
and security vulnerabilities while making the code constant-
time. Consider the following procedure:

void potential_oob(secret mut uint32[] buf

, public uint64 i

, secret uint64 secret_index) {

assume(secret_index <= len buf);

if (i < secret_index)

buf[i] = 0;

...

}

This code is memory safe as the branch condition ensures
that we only update buf[i] when i is within bounds. How-
ever, the update is predicated upon a secret condition. To
make the above code constant-time, we must ensure that
the access to buf[i] happens regardless of that condition,
or else the memory access pattern will reveal the secret.
Consequently, the constant-time recipesÐthat we discuss in
ğ4Ðwould compile the code into:

cond = (i < secret_index);

buf[i] = ctselect(cond, 0, buf[i]);

Such a naive transformation introduces a potential out-of-
bounds access. In other cases it can introduce yet different
kinds of undefined behavior.

Public safety. We avoid the above problem with the key
observation that for a program to be amenable to constant-
time compilation, the source must be publicly safe: It must

T-Call

ω ⊢ f (®β) : β hasEffects(f) ⇒ pc ⊔ rc ⊑ ω(f)
Γ ⊢ ei : βi Γ

′
= Γ,x : β

ω, pc, βr ⊢ β x = f (®e) : Γ, rc → Γ
′
, rc

T-Asgn

Γ ⊢ e1 : RefW[β]

Γ ⊢ e2 : β pc ⊔ rc ⊑ β

ω, pc, βr ⊢ e1 := e2 : Γ, rc → Γ, rc

T-If

Γ ⊢ e : Boolℓ
ω, pc ⊔ ℓ, βr ⊢ S1 : Γ ∧ e , rc → Γ1, rc1
ω, pc ⊔ ℓ, βr ⊢ S2 : Γ ∧ ¬e , rc → Γ2, rc2

ω, pc, βr ⊢ if (e) { S1 } else { S2 } : Γ, rc → Γ, rc1 ⊔ rc2

T-For

Γ ⊢ e1 : UIntPub Γ ⊢ e2 : UIntPub
Γ
′
= Γ,x : UIntPub ∧ e1 ≤ x < e2

rc ⊑ rc′ ω, pc, βr ⊢ S : Γ′, rc′ → Γ
′′
, rc′

ω, pc, βr ⊢ for (x from e1 to e2) { S } : Γ, rc → Γ, rc′

T-Ret

Γ ⊢ e : βr pc ⊔ rc ⊑ βr

ω, pc, βr ⊢ return e : Γ, rc → Γ, pc ⊔ rc

T-Assume

Γ ⊢ e : Boolℓ Γ
′
= Γ ∧ e

ω, pc, βr ⊢ assume(e) : Γ, rc → Γ
′
, rc

Figure 4. (Subset of) FaCT statement typing rules.

T-Fn

pc = ω(f)

Γ = {®x : ®β}
βr is numeric or Bool

ω, pc, βr ⊢ S : Γ, Pub → Γ
′
, rc′

ω ⊢ f (®x : ®β) { S } : βr

T-Fn-Extern

ω(f) = Pub

βr is numeric or Bool

ω ⊢ extern f (®x : ®β) : βr

Figure 5. (Subset of) FaCT procedure typing rules.

be memory-safe and free from buffer overflows and unde-
fined behavior using only public-visible information, i.e., the
code must be safe even after removal of secret-dependent
control-flow. We formalize the notion of public safety in
FaCT’s type system by extending the type environment Γ
to track public-visible path conditions, using these condi-
tions to check safety. In Figures 3 and 4 these public safety

extensions are highlighted .

Public views. We first define the judgment Γ ⊢i e to mean
that e is immutable in Γ; that is, e is only composed of con-
stants, immutable variables, array lengths, or operations

101

FaCT: A DSL for Timing-Sensitive Computation PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

thereon. Next, we define the operation Γ ∧ e , which conjoins

Γ with a public view of the condition e: if e is a public bool

(Γ ⊢ e : BoolPub) and e is immutable (Γ ⊢i e), then Γ ∧ e

represents the environment Γ with the additional assump-
tion that e is true. Otherwise, Γ ∧ e = Γ, i.e., conjoining Γ

with a secret condition does not add any new assumptions
to Γ. Rules T-If and T-For in Figure 4 show how we prop-
agate public views, tracking (public) conditions and loop
ranges to use when type checking statements.
For cases where the public safety checker is incomplete,

we allow developers to add assumptions directly to the en-
vironment Γ with the assume primitive (Figure 1). This is
useful for aiding the checker by, e.g., adding preconditions
to a procedure.

Checking public safety. Finally, we define Γ ⇒ e to mean
that the conditions in Γ imply e . This is checked via an SMT
solver. We use this predicate in the expression typing rules
T-Arr-Get and T-Arr-View (Figure 3) to check that memory
accesses are never out of bounds. In the example program
given earlier, since the expression i < secret_index is of
type BoolSec, it is not added to Γ; thus the predicate Γ ⇒
i < len buf does not hold when typing the expression buf[i],
and the program (correctly) does not type check.
The FaCT type system also prevents undefined behavior

from invalid operand values (not shown in Figure 3). For
example, integer division has the additional requirement
Γ ⇒ e2 , 0, and the left- and right-shift operators have the
requirement Γ ⇒ 0 ≤ e2 < s where s is the bitwidth of e1.

4 Front-end compiler

The FaCT compiler consists of two passes. The first pass is a
source to source transformationÐit compiles well-typed code
into semantically equivalent FaCT constant-time code whose
observable timing is secret-independent. The second pass is
straightforwardÐit takes the secret-independent code and
generates LLVM bitcode. In the rest of the section, we thus
only describe and formalize FaCT’s transformation pass.

Since our type checker (ğ3.2) already ensures that memory
accesses, loop iterations, and variable-time instructions are
secret-independent, the transformations need only make
procedure returns and branches secret-independent. FaCT
does this in two steps, return deferral and branch removal.

The first step replaces secret-dependent return statements
by (1) creating a boolean that represents whether the pro-
cedure has returned and (2) conditioning all later code on
that boolean to prevent statements from executing after the
original procedure would have terminated. That is, return
deferral converts control flow in terms of secret returns
into control flow in terms of secret ifs.
The second step turns all secret-dependent conditional

branches into straight-line code. This includes both secret

if statements in the original source as well as those gener-
ated by return deferral. Thus, by eliminating secret ifsÐthe

Tr-Ret-Dec

Φ = (ω, {®x : ®β}, βr) Φ,ω(f), Pub ⊢ S → S ′

ω ⊢ f (®β) { S } : βr →

f (®β) { RefRW[βr] rval = init(βr);
RefRW[BoolSec] notRet = true;

S ′; return rval } : βr

Tr-Ret-Guard-Pub

Φ, pc, Pub ⊢ S → S ′

Φ, pc, Pub ⊢ S ⇝ S ′

Tr-Ret-Guard-Sec

Φ, pc, Sec ⊢ S → S ′

Φ, pc, Sec ⊢ S ⇝ if (notRet) { S ′ }

Tr-Ret

pc ⊔ rc = Sec

Φ, pc, rc ⊢ return e → rval := e; notRet := false

Tr-Ret-Seq

Φ = (ω, Γ, βr) ω, pc, βr ⊢ S1 : Γ, rc → Γ
′
, rc′

Φ, pc, rc ⊢ S1 → S ′1 Φ, pc, rc′ ⊢ S2⇝ S ′2

Φ, pc, rc ⊢ S1; S2 → S ′1; S
′
2

Tr-Ret-For

Φ = (ω, Γ, βr) rc ⊑ rc′

ω, pc, βr ⊢ S : Γ, rc′ → Γ
′
, rc′ Φ, pc, rc′ ⊢ S ⇝ S ′

Φ, pc, rc ⊢ for (x from e1 to e2) { S } →
for (x from e1 to e2) { S

′ }

Figure 6. Return deferral transformation rules.

last source of secret-dependent timingÐthis transformation
yields constant-time code.

4.1 Return deferral

As previously mentioned, early returns that depend on se-
crets often leak information. Consider the following snippet:

if (sec) { return 1; }

// long-running computation ...

Here, an attacker can determine whether sec is true by ob-
serving a quick computation, or false by observing a slow
computation.
FaCT prevents code from leaking such secrets by defer-

ring returns to the end of each procedure. For example, the
compiler transforms the above code to:

secret mut uint32 rval = 0;

secret mut bool notRet = true;

if (sec) { rval = 1; notRet = false; }

if (notRet) {

// long-running computation ...

}

return rval;

The new notRet variable tracks whether or not the proce-
dure would have returned, and any statement that could be
executed after the return is guarded by the notRet variable.

102

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Cauligi et al.

Finally, the actual return occurs at the very end of each
procedure, returning the value stored in rval.

Transformation rules. We formalize return deferral us-
ing three kinds of rewrite rules, shown in Figure 6. The

first procedure-transformation rule ω ⊢ f (®x : ®β) { S } :

βr → f (®x : ®β) { S ′ } : βr is used to rewrite the body S of
a procedure f into a secret-independent body S ′. (This is
accomplished using the other two rewrite rules.) The sec-
ond guarded-execution rule Φ, pc, rc ⊢ S ⇝ S ′ transforms a
statement S , given a secrecy context pc, rc, into S ′ by making
implicit control flow (due to secret returns) explicit. Finally,
the return-elimination rule Φ, pc, rc ⊢ S → S ′ transforms
S into S ′ by replacing all secret returns with assignments.
Below, we walk though some of these rules in detail.

1. Procedure transformation. The Tr-Ret-Dec rule de-
clares two special (mutable) variables notRet and rval that
respectively hold the secret-dependent return state and the
value to be returned. The return state notRet is set to true,
while the return value rval is initialized to a default value for
its type. The rule then eliminates all secret returns from S and
inserts a (deferred) return after, as the very last statement
of the transformed body S ′.

2. Guarded execution. Rules Tr-Ret-Guard-Pub and Tr-

Ret-Guard-Sec are used to transform statements that appear
after any secret returns. Both of these rules first eliminate
secret returns from S to obtain S ′. If the original statement
S is typed with rc = Sec, i.e., S may be preceded by a secret
return, then the rule Tr-Ret-Guard-Sec additionally guards

the execution of S ′ with the condition notRet.

3. Return elimination. The bulk of the transformation is
done by the remaining rules in Figure 6. We omit rules where
we either do not transform the statement, or simply recur-
sively transform any sub-statements. Rule Tr-Ret replaces
secret returns by updating rval with the (deferred) return
value and setting notRet to false, to signal that subsequent
code should not be executed.

Rule Tr-Ret-Seq handles sequenced statements S1; S2 by
guarding the execution of instructions in S2 against possi-
ble secret returns in S1. The rule first eliminates the secret
returns from the first block to get S ′1. Next, it extracts the
secrecy context rc′ produced by type checking S1. Finally,
the rule uses rc′ to derive a guarded version of the second
statement S ′2.
The Tr-Ret-For rule handles secret returns inside loops.

As control flow can jump back to the beginning of a loop, a
secret return inside a loop body S can affect the execution
of the entire body, as in the following example:

for (uint32 i from 0 to 5) {

b[i] = 1;

if (i == sec) { return i; }

a[i] = 2;

}

Tr-Br-Dec

Φ = (ω, {®x : ®β}, βr)
ω(f) = Pub Φ, true ⊢ S → S ′

ω ⊢ f (®x : ®β) { S } : βr → f (®x : ®β) { S ′ } : βr

Tr-Br-Dec-Sec

Φ = (ω, {®x : ®β}, βr)
ω(f) = Sec Φ, callCtx ⊢ S → S ′

ω ⊢ f (®x : ®β) { S } : βr →

f (®x : ®β , callCtx : BoolSec) { S
′ } : βr

Tr-Br-If

Φ = (ω, Γ, βr) Γ ⊢ e : BoolSec freshmt , mf

Φ, (p &mt) ⊢ S1 → S ′1 Φ, (p &mf) ⊢ S2 → S ′2

Φ,p ⊢ if (e) { S1 } else { S2 } →
{ BoolSec mt = e;

BoolSec mf = ¬mt ;

S ′1; S ′2 }

Tr-Br-Assign

p , true

Φ,p ⊢ e1 := e2 →
e1 := ctselect(p, e2, e1)

Tr-Br-Call

ω(f) = Sec

Φ,p ⊢ β x = f (®e) →
β x = f (®e,p)

Figure 7. Rules for branch removal.

Here, if i == sec becomes true, the program must stop over-
writing the elements in both a and b. The rule accounts for
returns in the body S by using the secrecy context rc′ from
type checking the body, and in turn, uses this to derive the
guarded form of the body S ′. In our example, the secret-
dependent return makes the return context rc′ = Sec, and
so the entire body is guarded by notRet, to obtain the trans-
formed program:

for (uint32 i from 0 to 5) {

// for-loop rule

if (notRet) {

b[i] = 1;

if (i == sec) { rval = i; notRet = false; }

// sequencing rule

if (notRet) { a[i] = 2; }

}

}

4.2 Branch removal

Return deferral eliminates secret returns by introducing
secret-dependent branches. In this section we eliminate
secret-dependent control flow as the final step towards pro-
ducing constant-time code.

To this end, FaCT replaces secret branches with constant-
time selections. Consider the following snippet:

if (sec1) { a[1] = 3; }

else if (sec2) { a[2] = 4; }

103

FaCT: A DSL for Timing-Sensitive Computation PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

The updates to a[1] and a[2] are guarded by the secret

values sec1 and sec2 and, therefore, produce memory access
patterns that can reveal the values of those secrets when left
untransformedÐthis is the classic implicit flows problem [55].
We eliminate the implicit flow in two steps. First, we track
the control predicates that correspond to (the conjunction
of) the secret-conditions. Then, we perform both memory
writes, but use ctselect to preserve conditional semantics:

a[1] = ctselect(sec1 , 3, a[1]);

a[2] = ctselect(~sec1 & sec2, 4, a[2]);

Our general strategy is to transform each conditional array
assignment into a re-assignment to a conditional (ctselect).
Transforming code that calls procedures is less straight-

forward: if a procedure takes a mutable parameter, the pro-
cedure may update that parameter’s value in a way that is
visible to the caller. For example:

void foo(secret mut uint32 x) { x = 5; }

...

if (sec) {

foo(x);

// x is now 5

}

The transformation of this codemust ensure that updates to x
only occur if sec is true. We do so using a call-context param-
eter passed to callee foo; this parameter is the caller control
predicateÐin this case, secÐwhich we use to guard updates
in foo. Our compiler converts the above into semantically
equivalent constant-time code:

void foo(secret mut uint32 x,

secret bool callCtx) {

x = ctselect(callCtx, 5, x);

}

...

foo(x, sec);

// x is 5 only if sec is true

Transformation rules. We formalize branch removal using
two kinds of rules, shown in Figure 7. The procedure transfor-

mation rule ω ⊢ f (®x : ®β) { S } : βr → f (®x ′ : ®β ′) { S ′ } : βr
transforms the body S of the procedure f to S ′, much like
for secret-return removals. This rule, however, additionally
extends f ’s set of parameters ®x to include the extra call-

context parameter callCtx. The statement transformation rule
Φ,p ⊢ S → S ′, transforms S to S ′ given context Φ and con-
trol predicate p. We walk though some of the rules below.

1. Procedure transformation rule. Both Tr-Br-Dec and
Tr-Br-Dec-Sec remove branches from procedures. Tr-Br-
Dec transforms procedures that do not depend on secret

contexts by transforming each procedure’s body S into S ′

using the initial control predicate true. Tr-Br-Dec-Sec, on
the other hand, transforms a procedure f if ω(f) = Sec, i.e.,
where f depends on the caller’s secret context. The rule
adds a new parameter secret bool callCtx that holds the

control predicate at each call-site, and then transforms the
body S starting with the initial control predicate callCtx.

2. Branch elimination. The remaining rules in Figure 7 re-
move branches from statements. Rule Tr-Br-If, for example,
eliminates secret-dependent conditional branches by saving
the condition (resp. its negation) in the variablemt (resp.mf).
The łthenž statement S1 (resp. łelsež statement S2) is then
transformed after conjoining mt (resp. mf) to the control
predicate p. To prevent name collision when transforming
nested conditionals, the freshmetafunction guarantees that
allmt andmf variables have unique names. The declarations
ofmt ,mf and transformed branches S ′1, S

′
2 are sequenced to

obtain the final result.
RuleTr-Br-Assign handles side-effecting assignment state-

ments, using the control predicate to ctselect the old or new
values. But, if the assignment occurs under the trivial con-
trol predicate (i.e., the literal true), the assignment is left
unchanged.

Finally, rule Tr-Br-Call handles calls toω-Sec procedures
f by explicitly passing the control predicate p as the call-
context parameter. This ensures that updates within f only
occur according to the caller’s control flow.

4.3 Compiler correctness and security

In this section, we prove that our compiler preserves se-
mantics and outputs constant-time procedures. To formalize
these claims, we define an instrumented semantics that de-
scribes procedure behavior and leakage, i.e., the sequence
of branches taken, the memory addresses accessed, and the
operands to variable-time instructions. Intuitively, a proce-
dure is constant-time if its leakage is not influenced by any
secret values [9].

In particular, we consider a big-step semantics of the form
F : (®v,h) ψ

−−→ (v,h′) where F is shorthand for a procedure

f (®x : ®β) { S } : βr , the term ®v represents the values of
parameters, h and h′ are heaps mapping pointers to values,
v is the final value of the procedure, and ψ is the leakage.
The semantics is parametrized by an allocation function,
and the proofs of the claims below rely on several (minor)
assumptions on this function. We give these assumptions,
formal definition, and complete proofs in [25].
We first prove the correctness of our compiler, using the

notationω ⊢ F → F ′ to denote the combined return deferral
and branch removal transformations. Compiler correctness
states that the compiler preserves the meaning of well-typed
statements. To account for new references and variables
that are introduced by the compiler pass itself, we show
equivalence of the final heaps h′ and h′′, i.e., for any pointer
p ′ in h′, there is an equivalent pointer p ′′ in h′′ such that
h′(p ′) and h′′(p ′′) are either equal values, or are themselves
equivalent pointers.

104

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Cauligi et al.

Theorem 4.1 (Compiler correctness). If ω ⊢ F → F ′ and

F ′ is well-typed, then F : (®v,h) ψ
−−→ (v,h′) implies that F ′ :

(®v,h) ψ ′
−−→ (v,h′′) and h′ and h′′ are equivalent.

Proof sketch. By induction on the derivation. □

Note that our compiler correctness theorem does not make
any claim about leakage. We separately prove that the com-
piler produces constant-time procedures. To this end, we
first define the notion of a constant-time procedure.

Definition 4.2. A procedure F where ω ⊢ F is constant-
time iff for every pair of executions F : (®v1,h1)

ψ1−−→ (v1,h
′
1)

and F : (®v2,h2)
ψ2−−→ (v2,h

′
2), we have ®v1,h1 ≡ ®v2,h2 implies

ψ1 = ψ2, where ≡ is a suitably parametrized notion of equiv-
alence (e.g., public or łlowž equivalence [5, 9, 62]).

Much like CT-Wasm [62], we cannot prove that all FaCT
procedures are constant-timeÐFaCT allows procedures to de-
classify secret data and call external procedures over which
it has no control. We can, however, provide guarantees for a
safe subset of declassify-free procedures, i.e., procedures that
do not contain any declassify statements nor call other pro-
cedures unless they too are declassify-free (and not extern).

Theorem 4.3 (Compiler security). If F is declassify-free and

ω ⊢ F → F ′, then F ′ is constant-time.

Proof sketch. We define two additional type systems that
impose stricter constraints on programs, and prove type-
preservation for return deferral and branch removal. We
then conclude by proving that the final type system guaran-
tees that programs are constant-time. It is important to note
that these type systems are merely proof artifacts, i.e., type
checking is not performed again after transformations.
Informally, the two type systems are incremental restric-

tions on the FaCT type system. The first type system, which
we denote by ⊢rd , rejects programs that contain secret re-
turns; the second type system, denoted ⊢ct , rejects programs
that branch on secrets.
We then establish type-preservation for return deferral

and branch removal:

▶ If ω ⊢ F and ω ⊢rd F → F ′ then ω ⊢rd F ′.
▶ If ω ⊢rd F and ω ⊢ct F → F ′ then ω ⊢ct F

′.

Both are proved by induction on derivations, using adequate
ancillary statements for the induction to go through.
We conclude by proving that ⊢ct guarantees that pro-

grams are constant-time. The proof follows from a łlocally
preservesž unwinding lemma, stating that equivalent states
yield equivalent final configurations and equal leakage. □

5 Implementation and evaluation

We implement a prototype compiler for FaCT in ∼6000 lines
of OCaml. The compiler transforms FaCT source code into
LLVM IR, which it passes to clang (version 6.0.1) to generate
assembly or object code. The compiler uses the Z3 SMT
solver [29] to check public safety assertions (ğ3.2.3).

We evaluate FaCT by asking the following questions:

▶ Is FaCT expressive enough to implement real-world cryp-
tographic algorithms?

▶ Does FaCT produce constant-time code?

▶ What is FaCT’s performance overhead?

▶ Compared to C, does FaCT improve non-experts’ experi-
ence reading and writing constant-time code?

We answer the first three questions with case studies in
which we integrate FaCT into real-world projects (ğ5.1). We
find that FaCT is expressive enough to implement a range
of cryptographic primitives. We use dudect [52] to empir-
ically check that our implementations, including compiler
optimizations, are constant-time. We find that, compared
to optimized C code, unoptimized FaCT code runs 16ś346%
more slowly, while optimized FaCT code ranges from 5%
slower to 21% faster.
We answer the fourth question with a study comparing

user experiences reading and writing FaCT and C (ğ5.2). In
sum, a plurality of participants found FaCT easier to read
than C, and a majority found FaCT easier to write.

5.1 Case studies

We integrate FaCT into three popular open source libraries
by porting pieces of these libraries from C to FaCT:

▶ The NaCl secretbox API for symmetric-key authenticated
encryption and decryption. We port the entire libsodium
(version 1.0.16) [30] secretbox API, including the two un-
derlying primitives, the Poly1305 message authentication
code (MAC) and the XSalsa20 stream cipher.

▶ The Curve25519 Elliptic-Curve Diffie-Hellman (ECDH)
primitive for asymmetric key exchange. We port Adam
Langley’s curve25519-donna library [36] in whole.

▶ The OpenSSL [45] ssl3_cbc_digest_record function used
to verify decrypted SSLv3 messages. At its core, this func-
tion computes the MAC of a padded message without re-
vealing the padding length. Our implementation invokes
OpenSSL’s SHA-1 hash primitive as an extern (ğ3.1).

▶ The OpenSSL aesni_cbc_hmac_sha1_cipher function used
in the MAC-then-Encode-then-CBC-Encrypt (MEE-CBC)
construction. This function performsAES-CBC decryption
and then verifies the MAC and padding of the decrypted
message. Our implementation invokes OpenSSL’s AES
and SHA-1 primitives as externs.

We choose these functions because they (1) are complex
enough to exercise all of the FaCT language features; (2) im-
plement a range of algorithms; and (3) demonstrate that
FaCT can be used in different settings, from implementing
individual procedures to large portions of libraries.

Method. We port in three steps. First, we port the C code
to FaCT by translating C constructs to their corresponding
FaCT counterparts. During this translation process, we label
sensitive messages, keys, etc. as secret, and add assume and

105

FaCT: A DSL for Timing-Sensitive Computation PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Table 1. Case study summary: lines of code (per cloc) and
uses of assume (#A), declassify (#D), and extern (#E).

Case study
Lines of code

#A #D #E
C FaCT

libsodium secretbox 984 1068 16 1 0

curve25519-donna 310 342 0 0 0

OpenSSL record validate 92 91 3 0 2

OpenSSL MEE-CBC 201 219 10 1 4

declassify statements as appropriate to ensure the code
typechecks (ğ5.1.1); we also replace łbit hacksž (ğ2) with
high-level FaCT constructs (e.g., if). Second, we check the
correctness of our ports using each library’s test harness, and
we empirically check that the ports are constant-time using
dudect (ğ5.1.2). Finally, we use each library’s benchmarking
suite to compare our ports to the C implementations (ğ5.1.3).

5.1.1 Expressiveness

Table 1 summarizes our ports. FaCT implementations are
at worst ∼10% longer than the corresponding C code. Much
of the extra length is because FaCT does not have a macro
system; instead, we translated macro definitions and then
manually expanded them. (We note that it would be straight-
forward to instead use the C preprocessor with FaCT.) FaCT
code is also more verbose than C when processing buffers:
since FaCT has no pointer arithmetic, FaCT code must use
extra variables to track offsets into arrays.
Our ports make sparing use of extern, declassify, and

assume. For example, our ports use assume to help the pub-
lic safety verifier track values through memory and reason
across procedure and language boundaries.We declassify in
two cases: in libsodium secretbox decryption and inOpenSSL
MEE-CBC verification; these declassifications are permit-
ted by the libraries’ respective attacker models [19, 27, 37].
Finally, we use extern to invoke existing primitives (e.g.,
OpenSSL’s SHA-1 implementation).

5.1.2 Security

Weprove that FaCT’s transformations produce constant-time
code (ğ4.3), but this applies only to the unoptimized LLVM
IR produced by the FaCT compiler.3 Since we use clang to
generate optimized object code, an LLVM optimization pass
might break FaCT’s constant-time guarantees.

To empirically check that our case study implementations
run in constant-time, even after optimization, we use the
dudect [52] analysis tool. At a high level, dudect tests for
constant-time execution by running the code under test for a
large number of iterations and collecting timing information
using the CPU’s cycle counters. It then tests the collected
timing information for statistically significant variation in
execution time that are correlated with changes to secret

3And to procedures that do not use declassify.

Table 2. Overhead of FaCT ports compared to optimized C,
for each benchmark. secretbox results are for encryption
and decryption overhead, respectively.

Benchmark
% Overhead of FaCT

Unoptimized Optimized

secretbox (reference) 345.57/373.49% -20.92/-14.56%

secretbox (vectorized) 427.21/427.09% -6.54/-4.99%

curve25519-donna 144.42% 2.21%

OpenSSL record validate 30.13ś35.16% 0.64ś4.62%

OpenSSL MEE-CBC 16.15ś31.97% -2.56ś4.16%

inputs. In our evaluation, we configure dudect to collect
50 million measurements for each benchmark. It finds no
statistically significant timing variation.

Several other works concerned with constant-time crypto
implementation [8, 52, 56, 62] have reported using dudect.
In our testing, we found the tool to quickly and reliably
find timing differences in buggy code. We note, however,
that dudect is only a checkÐnot a proofÐof constant-time
behavior; we discuss further in Section 6.

5.1.3 Performance

Table 2 shows the performance cost of porting C to FaCT.
We benchmark each implementation on an Intel i7-6700K
at 4GHz with 64GB of RAM using clang 6.0.1. We compare
both unoptimized and optimized FaCT implementations with
C implementations that are compiled at the corresponding
project’s default optimization level.4 Our optimized FaCT
code uses the same optimization flags as the C code.

For libsodium and curve25519-donna, we use the library’s
benchmarking suites. We measure the mean of ∼224 and
∼217 iterations, respectively, and report the median of five
such measurements. For the OpenSSL implementations, we
use OpenSSL’s s_server and s_client commands to mea-
sure throughput when transferring 256MB, 1GB, and 4GB
files. We compute the median throughput of five transfers at
each file size, and report the minimum and maximum result;
overhead was uncorrelated with file size.
For most benchmarks, we find that optimized FaCT is

comparable to C: the overhead is never more than 5%. No-
tably, the FaCT implementation of libsodium secretbox is
15-20% faster than the C reference implementation. We at-
tribute this speedup to vectorization: inspecting the XSalsa20
assembly code, we find that clang generates vector instruc-
tions for the FaCT implementation, but not for C. To explore
this discrepancy, we measure performance of secretboxwith
XSalsa20 explicitly vectorized (using vectors in FaCT, intrin-
sics in C). In this case, FaCT is still 5-6% faster than C, but
this speedup appears to be an artifact of LLVM’s applying
different optimizations to different code.

4For OpenSSL, -O3; for other projects, -O2.

106

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Cauligi et al.

5.2 User study

We evaluate the usability of FaCT by conducting a user study
as part of an upper-level, undergraduate programming lan-
guages course at UC San Diego.5 Prior to the study, we dedi-
cated three lectures to timing side-channels, constant-time
programming in general, and constant-time programming
specifically in C and FaCT. As an optional assignment, stu-
dents were asked to (1) explain the behavior of constant-time
code written in C and FaCT, and (2) implement constant-time
algorithms in both C and FaCT. Of the 129 enrolled students,
77 completed the study over a nine-day period. We describe
methods and conclusions below; in [25], we give further
lessons from the study, e.g., compilation errors participants
ran into frequently.

Method. The user study is a sequence of web-based tasks.
For each task, the participant is first given a warm-up code
comprehension question, whose answer is subsequently re-
vealed. The participant is then given a second, related ques-
tion. This question is repeated twice, in C and in FaCT; we
randomize the order of the languages per participant, i.e.,
half the participants’ tasks are in C and then FaCT, and vice-
versa. On a given question, participants can repeatedly check
partial answers for correctness; once finished, the participant
submits a final answer, which can no longer be viewed or
revised. A task is complete if the participant submits a final
answer for both C and FaCT; we discard incomplete tasks.
The user study was built on an earlier version of FaCT

which did not enforce public memory safety. Nevertheless,
we believe the results largely translate to the version pre-
sented in this paper, because the surface language did not
change significantly.

5.2.1 Understanding constant-time code

To evaluate participants’ understanding of C and FaCT code,
we asked them to describe the behavior of two functions.
The first function takes two input buffersÐa header and a
messageÐand copies the header and message to an output
buffer and adds padding up to a fixed size. The second func-
tion implements long division: it computes a quotient and
remainder, writes each to an output buffer, and returns a
status code indicating success or failure.
We graded participants on their ability to correctly de-

scribe each function’s behavior. In both cases, we find that
participants showed slightly better understanding of FaCT
than of C: for the first function, the mean score was 57% for
FaCT and 53% for C; for the second, it was 40% for FaCT
and 32% for C. Participants also reported a slight preference
for FaCT; specifically, 31 participants found FaCT easier to
understand compared to 10 that found C easier and 28 that
reported similar difficulty.

5Our study was reviewed and exempted by the IRB.

Table 3. Number of participants (out of 77) that submit-
ted correct and constant-time solution for each task. The
check_pkcs7_padding task was misconfigured, and marked
variable-time code as constant-time (16 submissions); we re-
port these numbers for completeness (ğ5.2.2).

Programming task FaCT C

remove_secret_padding 62 49

check_pkcs7_padding 35 32 (16)

remove_pkcs7_padding 34 24

5.2.2 Writing constant-time code

To evaluate participants’ ability to write constant-time code
in FaCT and C, we had them implement three functions:

▶ remove_secret_padding: given a buffer and secret length,
this function removes any secret padding, i.e., sets every
element of the buffer past the length to zero.

▶ check_pkcs7_padding: this function checks whether a
supplied buffer contains a valid PKCS#7 [34] message.

▶ remove_pkcs7_padding: this function removes padding
from a supplied buffer, if it contains a valid message.

Participants could compile their code, run a test suite, and,
for C code, check constant-time correctness with ct-verif [5].
They could also give up on a task and move to the next one.

Table 3 summarizes our findings. Of the 68 participants
that completed the first task, 62 submitted correct and constant-
time FaCT code, and 49 submitted correct and constant-time
C code. For the third task, 34 participants submitted correct,
constant-time FaCT code compared to 24 participants for C.
In the survey, 40 participants reported finding FaCT easier
to write, 11 found C easier, and 18 found them similar.

We cannot draw conclusions from check_pkcs7_padding,
because the task had a bug that incorrectly marked variable-
time code as constant-time; only 16 of the 32 C submissions
marked łcorrectž were constant-time. The bug was limited
to this task, but because check_pkcs7_padding is required
for remove_pkcs7_padding, some participants needed to
correct their code to pass the third task.

6 Limitations and future work

We think FaCT makes it easier to write constant-time code,
but it is not perfect. Limitations and future work include:

The type system. The type system lacks polymorphism and
flow sensitivity [43, 55], which reduces both expressivity and
performance. For example, our type system cannot express a
program that branches on a buffer’s public contents and then
decrypts the buffer in-place, upgrading its label to secret.
We leave such extensions to future work.

The public safety checker. FaCT’s public safety checker
does not reason about mutable variables or properties across
function calls. For example, indexing an array based on a
mutable variable requires assume-ing the index is in bounds.

107

FaCT: A DSL for Timing-Sensitive Computation PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

The brittleness of constant-time behavior. FaCT’s com-
piler only guarantees constant-time behavior for the LLVM
IR that it produces. Crucially, this means that LLVM’s op-
timization passes and lowering to assembly can introduce
variable-time behavior. Though many optimizations do pre-
serve constant-time property [10], FaCT relies on dudect to
empirically check that a piece of code is constant-time.
Sound, symbolic verification of constant-time behavior

using ct-verif [5] would give much stronger guarantees. Un-
fortunately, ct-verif currently has limited support for de-
classification and vector instructions. Extending ct-verif to
support these primitives and applying it to optimized FaCT
code is future work.

The evaluation. Our evaluation of FaCT is preliminary
and thus incomplete. For example, we relied on extern ver-
sions of SHA-1 and AES (ğ5.1) because we preferred to focus
on porting higher-level OpenSSL functions with a history
of timing attacks. Moreover, some of the low-level primi-
tives we ported (XSalsa20, Poly1305, and Curve25519) were
explicitly designed for ease of constant-time implementa-
tion [14, 15, 17]. Future work is expanding FaCT’s repertoire
with potentially more challenging algorithms.

Finally, our user study has limited scope and involves only
non-expert users; remedying these issues is also future work.

7 Related work

This work supersedes an initial design we previously de-
scribed in [24]. In particular, we present a design and imple-
mentation of a DSL for writing constant-time crypto, provide
a formal semantics and security guarantees for FaCT, and
evaluate FaCT on several dimensions; in [24] we outlined the
vision for such a DSL. Our implementation and formaliza-
tion efforts revealed insights previously missed in [24]Ðe.g.,
the need for public safety (ğ3.2.3) and challenges with using
ct-verif [5] to verify code with inline declassifications. At
the same time, in this paper, we did not explore parts of the
design space outlined in [24]Ðe.g., we do not expose some
hardware-specific instructions like add-with-carry, which
could simplify asymmetric-key crypto implementations.

Domain-specific languages. There are several efforts de-
signing DSLs for implementing cryptographic primitives
and protocols. Bernstein’s qhasm is a low-level portable as-
sembly for writing high-speed crypto routines [16]; it does
not distinguish secret data from public data, so does not
prevent information leaks by construction.
Vale [21] and Jasmin [3] are DSLs for writing and verify-

ing high-performance assembly code. Vale developers write
platform-independent assembly code and specify the tar-
get architecture; the Vale compiler uses Dafny to verify se-
mantics and non-interference. Jasmin allows developers to
use architecture-specific instructions alongside higher-level
code, and the verified Jasmin compiler rejects non-constant-
time programs. Low* is a higher-level, embedded (in F*)

DSL that compiles to verified constant-time C [50]. The veri-
fied NaCl [18] library, HACL* [68], is written in Low*. CT-
Wasm [62] is a formally verified extension to the WebAssem-
bly language [63] for writing crypto code in the browser.
CT-Wasm uses a strict label-based type system to enforce its
constant-time policy. These languages provide support for
high-level control flow constructs and procedures, but they
require developers to manually write constant-time code.
Constant-Time Toolkit (CTTK) is a C library [48] that

follows recipes in [28, 49] to provide functionsÐincluding
low-level constant-time primitivesÐfor crypto libraries, but
developers must compose these low-level blocks.

Verification. There is a growing body of work on both build-
ing verified cryptographic implementations and verifying
existing libraries. Bhargavan et. al verify an implementation
of TLS, including low-level cryptographic primitives [20].
Barthe et. al [9] verify constant-time properties of various
PolarSSL implementations. Ye et. al [65] verify the mbedTLS
implementation of HMAC-DRBG. Appel [7] and Beringer
et. al [12] respectively verify OpenSSL’s implementation
of SHA-256 and HMAC. Tsai et. al [60] verify core parts of
X25519. Almeida et. al [4] verify AWS Lab’s s2nMEE-CBC im-
plementation (after identifying a vulnerability); they also ver-
ify security properties of NaCl libraries [6]. Erbsen et. al [32]
synthesize and verify elliptic curve implementations from
high-level descriptions. Almeida et. al develop ct-verif [5]
and verify constant-time properties of several cryptographic
algorithms. Many of these verification efforts are specific
to the projects being analyzed. Additionally, developers still
bear the burden of manually writing constant-time code,
which FaCT aims to alleviate.

General techniques for eliminating timing-channels.
FaCT uses an information flow control type system to elimi-
nate programs that may introduce information leaks or are
otherwise inefficient (or impossible) to transform to constant-
time. Our label-based type system is a standard IFC type
system [55] that borrows explicit mutability from ownership-
based systems [26]. Previous solutions have also relied on
type- and static-analysis techniques (e.g., [9, 31, 54, 59, 66])
to address timing leaks. FaCT automatically transforms se-
cret sub-computations into constant-time straight-line code.
Our approach follows several previous efforts on eliminating
timing channels via source code transformations [1, 11, 41,
44, 47, 51]. Most similar in ethos is SC-Eliminator [64]. This
system takes as input a program and a list of secrets, and
uses tag propagation to transform LLVM IR into its constant-
time equivalent. Though both projects perform transforma-
tions, they use orthogonal approaches: SC-Eliminator re-
pairs already-existing code, while FaCT is a language for
writing such code from the start. Finally, many other ef-
forts employ system-level techniques to eliminate and detect
timing-channels [22, 33, 38, 52, 58, 67].

108

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Cauligi et al.

Acknowledgments

We thank the anonymous PLDI and PLDI AEC reviewers and
our shepherd Limin Jia for their suggestions and insightful
comments. We thank the participants of the Dagstuhl Semi-
nar on Secure Compilation for early feedback on this work,
especially Tamara Rezk. We thank Ariana Mirian for han-
dling the IRB for our user study, ShravanNarayan for his help
in understanding the subtleties of LLVM, and Joseph Jaeger
and Jess Sorrell for helping us understand elliptic curve im-
plementations. We also thank the CSE 130 TAs for their help
in testing our user study, and the CSE 130 students for partic-
ipating in the user study. This work was supported in part by
gifts from Fujitsu and Cisco, by the National Science Foun-
dation under Grant Number CNS-1514435, by ONR Grant
N000141512750, and by the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

References
[1] Johan Agat. 2000. Transforming out timing leaks. In 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

ACM.

[2] Nadhem J. Al Fardan and Kenneth G. Paterson. 2013. Lucky Thirteen:

Breaking the TLS and DTLS record protocols. In 34th IEEE Symposium

on Security and Privacy. IEEE.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,

Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,

Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-

Assurance and High-Speed Cryptography. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security.

ACM.

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François

Dupressoir. 2016. Verifiable Side-Channel Security of Cryptographic

Implementations: Constant-Time MEE-CBC. In Fast Software Encryp-

tion. Springer.

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-

soir, and Michael Emmi. 2016. Verifying constant-time implementa-

tions. In 25th USENIX Security Symposium. USENIX Association.

[6] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira.

2013. Formal verification of side-channel countermeasures using self-

composition. Science of Computer Programming (2013).

[7] Andrew W. Appel. 2015. Verification of a cryptographic primitive:

SHA-256. ACM Transactions on Programming Languages and Systems

(2015).

[8] Jean-Philippe Aumasson and Yolan Romailler. 2017. Automated testing

of crypto software using differential fuzzing. Black Hat USA (2017).

[9] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David

Pichardie. 2014. System-level non-interference for constant-time cryp-

tography. In Proceedings of the 2014 ACM SIGSAC Conference on Com-

puter and Communications Security. ACM.

[10] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Se-

cure compilation of side-channel countermeasures: the case of crypto-

graphic łconstant-timež. In Computer Security Foundations Symposium.

[11] Gilles Barthe, Tamara Rezk, and Martijn Warnier. 2006. Preventing

timing leaks through transactional branching instructions. Electronic

Notes in Theoretical Computer Science (2006).

[12] Lennart Beringer, Adam Petcher, Q. Ye Katherine, and Andrew W.

Appel. 2015. Verified Correctness and Security of OpenSSL HMAC. In

24th USENIX Security Symposium.

[13] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. Technical

Report. https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[14] Daniel J. Bernstein. 2005. The Poly1305-AES message-authentication

code. In Fast Software Encryption. IACR.

[15] Daniel J. Bernstein. 2006. Curve25519: new Diffie-Hellman speed

records. In International Workshop on Public Key Cryptography.

Springer.

[16] Daniel J. Bernstein. 2007. qhasm: tools to help write high-speed soft-

ware. https://cr.yp.to/qhasm.html

[17] Daniel J. Bernstein. 2008. The Salsa20 family of stream ciphers. In

New Stream Cipher Designs. Springer.

[18] Daniel J. Bernstein. 2009. Cryptography in NaCl. Technical Report.

http://cr.yp.to/highspeed/naclcrypto-20090310.pdf.

[19] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. 2012. The security

impact of a new cryptographic library. In International Conference on

Cryptology and Information Security in Latin America. Springer.

[20] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo

Pironti, and Pierre-Yves Strub. 2013. Implementing TLS with verified

cryptographic security. In 2013 IEEE Symposium on Security and Privacy.

IEEE.

[21] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,

Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure

Thompson. 2017. Vale: Verifying High-Performance Cryptographic

Assembly Code. In 26th USENIX Security Symposium. USENIX Associ-

ation.

[22] Benjamin A. Braun, Suman Jana, and Dan Boneh. 2015. Robust

and efficient elimination of cache and timing side channels. (2015).

arXiv:1506.00189

[23] David Brumley and Dan Boneh. 2005. Remote timing attacks are

practical. Computer Networks (2005).

[24] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer,

Yunlu Huang, Ranjit Jhala, and Deian Stefan. 2017. FaCT: A Flexi-

ble, Constant-Time Programming Language. In Secure Development

Conference (SecDev). IEEE.

[25] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown,

Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit

Jhala, and Deian Stefan. 2019. FaCT: A DSL for Timing-Sensitive Com-

putation. Technical Report. https://fact.programming.systems/FaCT_

extended.pdf

[26] David G. Clarke, John M. Potter, and James Noble. 1998. Ownership

Types for Flexible Alias Protection. In Proceedings of the 13th ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages,

and Applications (OOPSLA ’98). ACM, New York, NY, USA, 48ś64.

[27] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn

De Sutter. 2009. Practical mitigations for timing-based side-channel

attacks on modern x86 processors. In 30th IEEE Symposium on Security

and Privacy,. IEEE.

[28] Cryptography Coding Standard. 2016. Coding Rules. Retrieved June

9, 2017 from https://cryptocoding.net/index.php/Coding_rules

[29] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An efficient SMT

solver. Tools and Algorithms for the Construction and Analysis of Systems

(2008).

[30] Frank Denis. [n. d.]. libsodium. Retrieved November 17, 2018 from

https://github.com/jedisct1/libsodium

[31] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke.

2015. Cacheaudit: A tool for the static analysis of cache side channels.

ACM Transactions on Information and System Security (2015).

[32] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam

Chlipala. 2018. Systematic Generation of Fast Elliptic Curve Cryptogra-

phy Implementations. Technical Report. https://people.csail.mit.edu/

jgross/personal-website/papers/2018-fiat-crypto-pldi-draft.pdf

[33] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey

of microarchitectural timing attacks and countermeasures on contem-

porary hardware. Journal of Cryptographic Engineering (2018).

109

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/qhasm.html
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://arxiv.org/abs/1506.00189
https://fact.programming.systems/FaCT_extended.pdf
https://fact.programming.systems/FaCT_extended.pdf
https://cryptocoding.net/index.php/Coding_rules
https://github.com/jedisct1/libsodium
https://people.csail.mit.edu/jgross/personal-website/papers/2018-fiat-crypto-pldi-draft.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2018-fiat-crypto-pldi-draft.pdf

FaCT: A DSL for Timing-Sensitive Computation PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

[34] Burt Kaliski. 1998. PKCS #7: Cryptographic Message Syntax Version

1.5. RFC 2315.

[35] Paul Kocher. 1996. Timing attacks on implementations of Diffie-

Hellman, RSA, DSS, and other systems. In Advances in Cryptology.

Springer.

[36] Adam Langley. [n. d.]. curve25519-donna. Retrieved November 17,

2018 from https://github.com/agl/curve25519-donna

[37] Adam Langley. 2013. ImperialViolet - Lucky Thirteen attack on TLS

CBC. Retrieved November 13, 2018 from https://www.imperialviolet.

org/2013/02/04/luckythirteen.html

[38] Chang Liu, Michael Hicks, and Elaine Shi. 2013. Memory trace oblivi-

ous program execution. In IEEE 26th Computer Security Foundations

Symposium. IEEE.

[39] John C. Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman.

2012. Information-flow control for programming on encrypted data.

In Computer Security Foundations Symposium (CSF). IEEE.

[40] BodoMoeller. 2004. Security of CBC ciphersuites in SSL/TLS: Problems

and countermeasures. https://www.openssl.org/~bodo/tls-cbc.txt

[41] David Molnar, Matt Piotrowski, David Schultz, and David Wagner.

2006. The Program Counter Security Model: Automatic Detection

and Removal of Control-Flow Side Channel Attacks. In Information

Security and Cryptology. Springer.

[42] Andrew C. Myers. 1999. JFlow: Practical mostly-static information

flow control. In 26th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. ACM.

[43] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,

and Nathaniel Nystrom. 2006. Jif: Java information flow. Retrieved

November 15, 2018 from http://www.cs.cornell.edu/jif

[44] Van Chan Ngo, Mario Dehesa-Azuara, Matthew Fredrikson, and Jan

Hoffmann. 2017. Verifying and synthesizing constant-resource im-

plementations with types. In 38th IEEE Symposium on Security and

Privacy. IEEE.

[45] The OpenSSL Project. [n. d.]. OpenSSL. Retrieved November 17, 2018

from https://github.com/openssl/openssl

[46] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks

and countermeasures: the case of AES. In Cryptographers’ Track at the

RSA Conference. Springer.

[47] Jérémy Planul and John C.Mitchell. 2013. Oblivious program execution

and path-sensitive non-interference. In Computer Security Foundations

Symposium (CSF), 2013 IEEE 26th. IEEE.

[48] Thomas Pornin. [n. d.]. Constant-Time Toolkit. Retrieved November

15, 2018 from https://github.com/pornin/CTTK

[49] Thomas Pornin. 2016. Why Constant-Time Crypto? Retrieved

November 15, 2018 from https://www.bearssl.org/constanttime.html

[50] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina

Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine

Delignat-Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Four-

net, and Nikhil Swamy. 2017. Verified Low-Level Programming Em-

bedded in F*. Proceedings of the ACM on Programming Languages

(2017).

[51] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing

Digital Side-Channels through Obfuscated Execution.. In 24th USENIX

Security Symposium. USENIX Association.

[52] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. 2017. Dude, is

my code constant time?. In 2017 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE.

[53] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

2009. Hey, you, get off of my cloud: exploring information leakage in

third-party compute clouds. In Proceedings of the 16th ACM conference

on Computer and communications security. ACM.

[54] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F.

Aranha. 2016. Sparse representation of implicit flows with applications

to side-channel detection. In 25th International Conference on Compiler

Construction. ACM.

[55] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based

information-flow security. IEEE Journal on Selected Areas in Com-

munications (2003).

[56] Laurent Simon, David Chisnall, and Ross J. Anderson. 2018. What

You Get is What You C: Controlling Side Effects in Mainstream C

Compilers. In 3rd IEEE European Symposium on Security and Privacy.

IEEE.

[57] Juraj Somorovsky. 2016. Curious Padding oracle in OpenSSL (CVE-

2016-2107). Retrieved November 15, 2018 from https://web-in-security.

blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html

[58] Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy, David Terei,

Alejandro Russo, and David Mazières. 2013. Eliminating cache-based

timing attacks with instruction-based scheduling. In European Sympo-

sium on Research in Computer Security. Springer.

[59] Josef Svenningsson and David Sands. 2009. Specification and verifi-

cation of side channel declassification. In International Workshop on

Formal Aspects in Security and Trust. Springer.

[60] Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2017. Certified

Verification of Algebraic Properties on Low-Level Mathematical Con-

structs in Cryptographic Programs. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security. ACM.

[61] Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding Ð

Applications to SSL, IPSEC, WTLS. . . . In International Conference on

the Theory and Applications of Cryptographic Techniques. Springer.

[62] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian

Stefan. 2019. CT-Wasm: Type-driven Secure Cryptography for the

Web Ecosystem. Proceedings of the ACM on Programming Languages

(2019).

[63] WebAssembly Community Group. 2018. WebAssembly. Retrieved

November 15, 2018 from http://webassembly.org

[64] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018.

Eliminating Timing Side-channel Leaks Using Program Repair. In

Proceedings of the 27th ACM SIGSOFT International Symposium on

Software Testing and Analysis. ACM, 12.

[65] Katherine Q. Ye,MatthewGreen, Naphat Sanguansin, Lennart Beringer,

Adam Petcher, and Andrew W. Appel. 2017. Verified correctness and

security of mbedTLS HMAC-DRBG. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security. ACM.

[66] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers.

2015. A hardware design language for timing-sensitive information-

flow security. ACM SIGPLAN Notices (2015).

[67] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. 2016. A software

approach to defeating side channels in last-level caches. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications

Security. ACM.

[68] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan

Protzenko, and Benjamin Beurdouche. 2017. HACL*: A verified

modern cryptographic library. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. ACM.

110

https://github.com/agl/curve25519-donna
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.openssl.org/~bodo/tls-cbc.txt
http://www.cs.cornell.edu/jif
https://github.com/openssl/openssl
https://github.com/pornin/CTTK
https://www.bearssl.org/constanttime.html
https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
http://webassembly.org

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Cauligi et al.

A FaCT Grammar

Program

program ::=
[

fdef | sdef
]

. . .

Structure definition

sdef ::= struct name { β x ; . . . }

Procedure definitions

fdef ::=

| f (®x : ®β) { S } : β internal procedure

| export f (®x : ®β) { S } : β exported procedure

| extern f (®x : ®β) : β external procedure

Statements

S ::=

| { S } block
| S ; S sequence
| β x = e variable declaration
| β x = f (®e) procedure call
| f (®e) void procedure call
| e := e assignment
| e ⊕= e binop assignment
| if (e) { S } conditional

[

else if (e) { S }
]

. . .
[

else { S }
]

| for (x from e to e) { S } range-for
| return e | return return

Unary ops

⊖ ::=

| ! boolean not
| - negate
| ~ bitwise not

Binary ops

⊕ ::=

| + | - | * | / | % arithmetic
| == | != equality
| < | <= | > | >= comparison
| && | || logical
| & | | | ^ bitwise
| << | >> bitshift
| <<< | >>> bit rotate

Expressions

e ::=

| (e) parentheses
| true | false boolean literal
| n numeric literal
| x variable
| ⊖ e unary op
| e ⊕ e binary op
| e ? e : e ternary op
| ctselect(e, e, e) constant-time selection
| UInts (e) | Ints (e) numeric cast
| [e, . . .] array literal
| e[e] array get
| len e array length
| zeros(β, e) zero array
| clone(e) array clone
| view(e, e, e) array view
| ref e reference
| deref e dereference
| ⟨n, . . .⟩ vector literal
| e ⟨n, . . .⟩ vector select/shuffle
| {x : e, . . . } struct literal
| e .x struct access
| f (®e) procedure expression
| declassify(e) declassify
| assume(e) assume

111

	Abstract
	1 Introduction
	2 Background
	3 FaCT
	3.1 Core language
	3.2 Type system

	4 Front-end compiler
	4.1 Return deferral
	4.2 Branch removal
	4.3 Compiler correctness and security

	5 Implementation and evaluation
	5.1 Case studies
	5.2 User study

	6 Limitations and future work
	7 Related work
	Acknowledgments
	References
	A FaCT Grammar

