
HMC: Verifying Functional Programs
Using Abstract Interpreters

Ranjit Jhala1, Rupak Majumdar2, and Andrey Rybalchenko3

1UC San Diego 2MPI-SWS 3TU München

Abstract. We present Hindley-Milner-Cousots (HMC), an algorithm that allows
any interprocedural analysis for first-order imperative programs to be used to ver-
ify safety properties of typed higher-order functional programs. HMC works as
follows. First, it uses the type structure of the functional program to generate a
set of logical refinement constraints whose satisfaction implies the safety of the
source program. Next, it transforms the logical refinement constraints into a simple
first-order imperative program that is safe iff the constraints are satisfiable. Thus,
in one swoop, HMC makes tools for invariant generation, e.g., based on abstract
domains, predicate abstraction, counterexample-guided refinement, and Craig in-
terpolation be directly applicable to verify safety properties of modern functional
languages in a fully automatic manner. We have implemented HMC and describe
preliminary experimental results using two imperative checkers – ARMC and IN-
TERPROC– to verify OCAML programs. Thus, by composing type-based reasoning
grounded in program syntax and state-based reasoning grounded in abstract inter-
pretation, HMC opens the door to automatic verification of programs written in
modern programming languages.

1 Introduction

Automatic verification of semantic properties of modern programming languages is an
important step toward reliable software systems. For higher-order functional program-
ming languages with inductive and polymorphic datatypes, the main verification tool
has been type systems, which traditionally capture only coarse data-type properties (e.g.,
functions expecting ints are only passed ints), but not precise semantic properties (e.g.,
the second argument of a division is non-zero, or an array index is within bounds).

For first-order imperative programming languages, automatic tools based on abstract
interpretation, such as ASTREE [4], SLAM [2], BLAST [11], etc., can infer program in-
variants and prove many semantic properties of practical interest. Most of these systems
faithfully model the sematics of base values like ints, but are overly imprecise on mod-
ern programming features such as closures, higher-order functions, inductive datatypes
or polymorphism.

We present Hindley-Milner-Cousots (HMC), an algorithm that combines type-based
reasoning for higher-order languages with invariant generation for first-order languages
to prove semantic properties of programs without additional programmer annotations.
In particular, our algorithm allows any verifier for first-order imperative programs (e.g.,
C) to be used for verifying safety properties of typed higher-order functional programs
(e.g., ML). Thus, in one swoop, HMC makes first-order program verifiers based on

abstract interpretation (e.g., [4,21]), CEGAR (e.g., [2,12,13,22,28]), invariant generation
(e.g., [10, 31]), etc. directly applicable to the verification of safety properties of modern
higher-order languages in a fully automatic manner.

To get from ML to C, our HMC algorithm uses a path paved by the notion of re-
finement type checking [3, 18, 25, 34], a type-based analogue of Floyd-Hoare logic. A
refinement type is a type whose “leaves” are base types decorated with refinement pred-
icates. For example, the refinement type {x :int | x < 100} list describes a list of
integers, each of which is smaller than 100 and int → {x :int | x 6= 0} → int de-
scribes the integer division function whose second (curried) argument must be non-zero.
By piggybacking atop type-structure, refinements can express sophisticated data struc-
ture invariants as well [6, 8, 16]. While refinement type checking can be used to verify
functional programs, the programmer must manually provide the refinements which is
analogous to the burden of writing loop-invariants and pre- and post-conditions in the
imperative setting. HMC eliminates the need for programmer annotations and thereby
enables automatic checking via a two-step process.

Step 1: Constraint Generation. HMC generates a set of refinement constraints whose
satisfaction implies the safety of the source program. To verify safety of a functional
program, we need to compute safe overapproximations of the sets of values that various
expressions can evaluate to (i.e., the functional analogue of “reachable states” in the im-
perative setting.) With refinement types, overapproximation is formalized via subtyping.
Thus, in the first phase, HMC makes a syntax directed pass over the functional program
to generate a set of subtyping constraints over refinement templates which represent the
unknown refinement types for various program expressions. The templates employ re-
finement variables κ as placeholders for the unknown refinement predicates that deco-
rate the leaves of the complex types. Crucially, as the overapproximation is structured
via types, we can use the standard rules for subtyping complex types to reduce the com-
plex subtyping constraints to a set of simple κ implication constraints, whose satisfaction
implies program safety [17, 29].

Step 2: Constraint Translation. Next, HMC transforms the implication constraints into a
first-order imperative program that is safe iff the constraints are satisfiable. This transla-
tion, our main technical contribution, is founded upon two key insights. First: the refine-
ment variables κ, normally viewed as placeholders for (unknown) refinement predicates,
semantically represent (unknown) n-ary relations over (i.e., sets of tuples of) the value
being defined by the refinement type and the n−1 variables that are in scope at the point
where the type is defined. Second: the constraints on each κ can be used to encode a
simple first-order imperative function Fκ whose input-output semantics (i.e., the sets of
tuples of n − 1 inputs and output of the function) correspond to an n-ary relation that
satisfies the constraints on κ. Using these insights we design an algorithm that translates
type-bindings into function calls, implications into assigments and assumes, yielding a
first-order imperative program that is safe iff the constraints are satisfiable, i.e., whose
safety implies the safety of the source functional program.

Thus, the two-step HMC algorithm uses type-structure to reduce the safety of a
higher-order functional program to the safety of a first-order imperative program. The
most immediate dividend of our approach is that HMC allows one to apply any of the

2

well-developed semantic imperative program analyses to the verification of modern soft-
ware with polymorphism, inductive datatypes, and higher-order functions. Instead of
painstakingly reworking each semantic analysis for imperative programs to the higher
order setting, possibly re-implementing them in the process, HMC allows us to apply
any existing analysis “as is”.

More importantly, HMC provides a “separation-of-concerns” that can open the door
to a suite of precise model checkers and abstract interpreters capable of handling lan-
guages with advanced features. In particular, using HMC, the analysis designer can
factor the analysis into two parts: a syntactic, type-system based component that ana-
lyzes macroscopic language concerns like collections, inductive types, polymorphism,
closures, etc., and a semantic, abstract interpretation-based component that analyzes
microscopic language concerns like invariant relationships between primitive integers,
booleans, and strings. Thus, HMC provides a simple way to incorporate independent
progress in type systems for specifying complex control and dataflow and in invariant
generation techniques into the verification flow. For example, one can tune the precision
and scalability of an analysis either by changing the amount of context-sensitivity in
the type system (e.g., via intersection types) or by using a more or less precise abstract
domain (e.g., using polyhedra instead of octagons), as needed in a given application
domain. Moreover, the constraint translation is entirely independent of the source lan-
guage, and hence, HMC can be applied to any language for which suitable refinement
constraints can be generated, e.g., ML [29] and C [30].

To demonstrate the feasibility of our approach, we have developed two OCAML
safety verifiers – HMC(ARMC) and HMC(INTERPROC) – which use the CEGAR-based
ARMC [28] software model checker and the Polyhedra-based INTERPROC [21] analyzer,
respectively, to verify the translated programs. This allows fully automatic verification
of a set of OCAML benchmarks for which previous approaches either required manual
annotations (either the refinement types [34] or their constituent predicates [29]), or an
elaborate customization and adaptation of the counterexample-guided abstraction refine-
ment paradigm [32]. Thus, we show, for the first time, how abstract interpretation can
be lifted “as-is” to the automatic safety verification of modern, higher-order functional
languages.

Related Work. Our starting point was the vast body of work in the verification of imper-
ative programs (see, e.g., [15] for a survey), including tools such as Slam [2], Blast [12],
and Astree [4], and to “lift” the techniques to higher-order programming languages. We
were influenced by work on refinement types [9,17] implemented in dependent ML [34]
and, more recently, combined with predicate abstraction [16,29], but wanted to eliminate
the need for explicit annotations (or predicates).

Kobayashi [19,20] gives an algorithm for model checking arbitrary µ-calculus prop-
erties of finite-data programs with higher order functions by a reduction to model check-
ing for higher-order recursion schemes (HORS) [24], which has been augmented to per-
form CEGAR [32, 33]. For safety verification, HMC shows a promising alternative, en-
abling us to use the vast literature on invariant generation for first order programs (using
abstract interpreters or model checkers).

While we restrict to a simple input language for ease of explanation, our constraint
language is generic and can express refinement constraints arising out of quite expressive
source languages, such as the source languages used in liquid types [29], F9 [3], or

3

let rec iteri i xs f =
match xs with
| [] -> ()
| x::xs’ -> f i x;

iteri (i+1) xs’ f

let mask a xs =
let g j y = a.(j) <- y && a.(j) in
if Array.length a = List.length xs then
iteri 0 xs g

Fig. 1. ML Example

C [30], which include module signatures, recursive and contextual types, mutable state,
etc.. Thus, through the collaboration of types and invariants, HMC opens the door to the
automatic safety verification of complex properties of programs in modern languages.

2 Overview

We begin with an example that illustrates how HMC reduces safety verification of ML
programs with polymorphism, higher-order functions and recursive structures to safety
verification of first-order, imperative programs.

An ML Example. Figure 1 shows a simple ML program that updates an array a using
the elements of the list xs. The program comprises two functions. The first function is
a higher-order list indexed-iterator, iteri, that takes as arguments a starting index i, a
(polymorphic) list xs, and an iteration function f. The iterator goes over the elements
of the list and invokes f on each element and the index corresponding to the element’s
position in the list. The second function is a client, mask, of the iterator iteri that takes
as input a boolean array a and a list of boolean values xs, and if the lengths match, calls
the indexed iterator with an iteration function g that masks the jth element of the array.

Suppose that we wish to statically verify the safety of the array reads and writes in
function g; that is to prove that whenever g is invoked, 0 ≤ j < len(a). As this example
combines higher-order functions, recursion, data-structures, and arithmetic constraints
on array indices, it is difficult to analyze automatically using either existing type systems
or abstract interpretation implementations in isolation. The former do not precisely han-
dle arithmetic on indices, and the latter do not precisely handle higher-order functions
and are often imprecise on data structures. We show how our technique can automatically
prove the correctness of this program.

Refinement Types. To verify the program, we compute program invariants that are ex-
pressed as refinements of ML types with predicates over program values [3, 17, 29]. The
predicates are additional constraints that must be satisfied by every value of the type. A
base value, say of type β, can be described by the refinement type {ν :β | p} where ν
is the value variable of the refinement type that names the value being defined, and p
is a refinement predicate which constrains the range of ν to a subset of β. For example,

4

{ν :int | 0 ≤ ν < len(a)} denotes the set of integers that are between 0 and the value of
the expression len(a). Thus, the (unrefined) type int abbreviates {ν :int | true}. Base
types can be combined to construct dependent function types, where the value variable
for the input type, i.e., the name of the formal parameter, can appear in the refinement
predicates in the output type, thereby expressing a “post-condition” that relates the func-
tion’s outputs with its inputs. For example, {x :int | 0 ≤ x} → {ν :int | ν = x + 1} is
the type of a function which takes a non-negative integer parameter and returns an output
which is one more than the input. Thus, the input and output types describe pre- and post-
conditions for the function. In the following, we write x :β for the type {x :β | true}, and
x :r for {x :β | r}, when β is clear from the context,

Safety Specification. Refinement types can be used to specify safety properties by en-
coding pre-conditions into primitive operations of the language. For example, consider
the array read a.(j) (resp. write a.(j) <- e) in g which is an abbreviation for
get a j (resp. set a j e.) By giving get and set the types

a :α array→ {i :int | 0 ≤ i < len(a)} → α ,

a :α array→ {i :int | 0 ≤ i < len(a)} → α→ unit ,

we can specify that in any program the array accesses must be within bounds. More gen-
erally, arbitrary safety properties can be specified [29] by giving assert the refinement
type {p :bool | p = true} → unit.

Safety Verification. The ML type system is too imprecise to prove the safety of the
array accesses in our example as it infers that g has type j :int→ y :bool→ unit,
i.e., that g can be called with any integer j. If the programmer manually provides the
refinement types for all functions and polymorphic type instantiations, refinement-type
checking [3, 8, 34] can be used to verify that the provided types were consistent and
strong enough to prove safety. This is analogous to providing pre- and post-conditions
and loop-invariants for verifying imperative programs. For our example, a refinement
type system could check the program if the programmer provided the types:

iteri :: i :int→ {xs :α list | 0 ≤ len(xs)} →
({j :int | i ≤ j < i + len(xs)} → α→ unit)→ unit

g :: {j :int | 0 ≤ j < len(a)} → bool→ unit

Automatic Verification via HMC. As even this simple example illustrates, the anno-
tation burden for verification can be quite high. Instead, we show how our algorithm
combines type-based reasoning for complex language features and abstract interpreta-
tion for first-order control flow to automatically verify the program without requiring
refinement annotations.

Our HMC algorithm proceed as follows. First, we use the source program to gener-
ate a set of constraints which is satisfiable if the program is safe. Second, we translate the
constraints into an equivalent imperative target program which is safe iff the set of con-
straints is satisfiable. After these two steps, we can analyze the target program with any
first-order safety analyzer. If the analyzer determines the target is safe, we can soundly

5

conclude that the constraints are satisfiable, and hence, the source program is safe. Next,
we illustrate these steps using the source program from Figure 1.
Step 1: Constraint Generation First, we generate a system of refinement constraints
for the source program [17, 29]. To do so, we (a) build templates that refine the ML
types with refinement variables that stand for the unknown refinements, and (b) make a
syntax-directed pass over the program to generate subtyping constraints that capture the
flow of values.

Templates. For the functions iteri and g from Figure 1, with the respective ML types

i :int→ xs :α list→ (j :int→ α→ unit)→ unit

j :int→ bool→ unit

we generate the templates

i :int→ xs :{0 ≤ len(xs)} → (j :κ1(j, i, xs)→ α→ unit)→ unit

j :κ2(j, a, xs)→ bool→ unit

The templates refine the ML types with parameterized refinement variables that rep-
resent the unknown refinements. κ1(j, i, xs) represents the unknown refinement that
describes the values passed as the first input to the function f that is used by the iterator
iteri. The values are the first elements of tuples belonging to a ternary relation between
the values of j and the two other program variables in-scope at that point, namely i and
xs. κ2(j, a, xs) represents the unknown refinement that describes the values passed as
the first input to g. In this case, the values belong to a ternary relation over j: the formal
and the two variables a and xs in scope at that program point.

For clarity of exposition, we have use the trivial refinement true for some variables
(e.g., for α and bool); HMC would automatically infer these refinements. We model
the length of lists (resp. arrays) with an uninterpreted function len from the lists (resp.
arrays) to integers, and (again, for brevity) add the refinement stating xs has a non-
negative length in the type of iteri.

Constraints. After creating the templates, we make a syntax-directed pass over the pro-
gram to generate constraints that reduce the flow of values within the program into sub-
typing relationships that must hold between the source and target of the flow. Each con-
straint is of the formG ` T1 ≺ T2, whereG is an environment comprising a sequence of
type bindings, and T1 and T2 are refinement templates. The constraint intuitively states
that under the environment G, the type T1 must be a subtype of T2. The subtyping con-
straints are generated syntactically from the code. First consider the function iteri. The
call to f generates

G ` {ν :int | ν = i} ≺ {ν :int | κ1(ν, i, xs)} (c1)

where ν is the parameter’s value, and the environment bindings are

G
.= i :int; {xs :α list | 0 ≤ len(xs)}; x :α;

{xs′ :α list | 0 ≤ len(xs′) = len(xs)− 1}

6

The constraint ensures that at the call-site, the refinement of the actual is included in (i.e.,
a subtype of) the refinement of the formal. The bindings in the environment are simply
the refinement templates for the variables in scope at the point the value flow occurs.
The refinement type system yields the information that the length of xs′ is one less than
xs as the former is the tail of the latter [16, 34]. Similarly, the recursive call to iteri
generates

G ` j :κ1(j, i, xs)→ α→ unit ≺ (j :κ1(j, i, xs)→ α→ unit)[i + 1/i][xs′/xs]

which states that type of the actual f is a subtype of the third formal parameter of iteri
after applying substitutions [i + 1/i] and [xs′/xs] that represent the passing in of the ac-
tuals i+1 and xs′ for the first two parameters respectively. By pushing the substitutions
inside and applying the standard rules for function subtyping this constraint simplifies to

G ` j :κ1(j, i + 1, xs′) ≺ j :κ1(j, i, xs) (c2)

Next, consider the function mask. The array accesses in g generate

G′; j :κ2(j, a, xs); y :bool ` {ν = j} ≺ {0 ≤ ν < len(a)} (c3)

a “bounds-check” constraint where G′ has bindings for the other variables in scope,
namely a :bool array and {xs :bool list | 0 ≤ len(xs)}. Finally, the flow due to
the third parameter for the call to iteri yields

G′; len(a) = len(xs) ` j :κ2(j, a, xs)→ bool→ unit ≺
j :κ1(j, 0, xs)→ bool→ unit

where, on the RHS, we have substituted the actuals 0 and xs for the formals i and
xs. The last conjunct in the environment represents the guard from the if under whose
auspices the call occurs. By standard function subtyping, the above reduces to

G′; len(a) = len(xs) `j :κ1(j, 0, xs) ≺ j :κ2(j, a, xs) (c4)

We prove that (Theorem 1) if the set of constraints (c1), (c2),(c3), and (c4) is satisfiable,
then there is a valid refinement typing of the program, and hence the program is safe.

Step 2: Translation to Imperative Program The constraints generated in Step 1 en-
code the semantics of program computations. In the second step, we reduce the con-
straint satisfiability problem to checking the safety of a simple, imperative program. Our
translation is based on two observations.

Refinements are Relations. The first observation is that refinement variables in the con-
straints stand for relations between program variables: the set of values denoted by a
refinement type {x0 :β0 | p} where p is a predicate that refers to the program variables
x0, . . . , xn of base types β0, . . . , βn is equivalent to

{t0 | ∃(t1, . . . , tn) s.t. (t0, . . . , tn) ∈ Rp ∧ni=1 ti = xi}

7

where Rp is an (n + 1)-ary relation in β0 × . . . × βn defined by p. For example,
{ν :int | ν ≤ i} is equivalent to the set {t0 | ∃t1 s.t. (t0, t1) ∈ R≤ ∧ t1 = i} , where
R≤ is the standard ≤-ordering relation over the integers. In other words, each parame-
terized refinement variable κ(x0, . . . , xn) can be seen as the projection on the first co-
ordinate of a (n + 1)-ary relation over the variables (x0, . . . , xn). Thus, the problem of
determining the satisfiability of the constraints is analogous to the problem of determin-
ing the existence of appropriate relations.

From Relations to Imperative Programs. The second observation is that the problem of
finding appropriate relations can be reduced to the problem of analyzing a simple im-
perative program, which encodes each refinement variable with a function whose input-
output semantics correspond to the relation described by the refinement variable. In par-
ticular, for each parameterized refinement variable κi with arity n+1, the imperative pro-
gram has a function Fi that enjoys the function property: Fi takes n arguments v1, . . . , vn
and (non-deterministically) returns a value v0 iff the constraints demand that the tuple
v0, . . . , vn be in the relation corresponding to κi. Following this intuition, an environ-
ment binding x :κi(y1, . . . , yn) can be encoded as a function call x ← Fi(y1, . . . , yn)
and each lower-bound constraint on kvari, i.e., where κi appears on the RHS can be
encoded as a return from Fi after a prefix of instructions that establishes the conditions
of the LHS of the lower-bound constraint.

Functions. Figure 2 shows the imperative program translated from the constraints for
our running example. The function F1 encodes the function property for κ1. The formals
z1, z2 encode the second and third elements of the relation κ1. The return value encodes
the first element of the relation κ1. The body of the function is the non-deterministic
choice between a set of two blocks which encode κ1’s lower-bound constraints (c1) and
(c2) respectively. Similarly, the function F2 encodes the function property for κ2, via
a single block that encodes κ2’s only lower-bound constraint (c4). The main function
F0, in which execution starts, encodes the concrete-upper-bound (i.e., “bounds-check”)
constraint (c3) which stipulates that the value of the variable j is within bounds. The
body of F0 translates the constraint to an assertion over the corresponding variables. As
with the other functions, the main function is the non-deterministic choice of all the
blocks that encode the individual upper-bound constraints.

Blocks. Each constraint is encoded as block of instructions Each environment binding
is encoded as a local variable. The block has a sequence of assignments that define
these local variables. An environment binding that corresponds to a concrete refinement
p, is encoded as a non-deterministic assignment followed by an assume operation (a
conditional) that establishes that the value assigned satisfied the given refinement p. An
environment binding that corresponds to a parameterized refinement κj(y0, . . . , ym) is
encoded as a function call y0 ← Fj(y1, . . . , ym). The block is terminated by either a
return of the first element of the tuple defined by the lower-bound constraint, or an assert
stating that the tuple satisfies the concrete predicate of an upper-bound constraint.

Consider the constraint (c2) which is translated to the second block in F1 (i.e., the
block after the non-deterministic choice []). The (trivial) environment binding i :int, is
encoded as a non-deterministic assignment i ← nondet() followed by the (elided) as-
sume assume true . The (non-trivial) environment binding {xs :α list | 0 ≤ len(xs)}

8

is encoded as
xs← nondet(); assume (0 ≤ len(xs))

where in the encoded program xs takes on values of a basic uninterpreted type ui, and
len is an uninterpreted function from ui to int. Similarly xs′ gets assigned an arbitrary
value, that has non-negative length and whose length is 1 less than that of xs. The LHS of
(c2) corresponds to the environment binding j :κ1(j, i + 1, xs′). Thus, in the encoded
block, the local j is defined via a (recursive) call to F1(i+1, xs′). The block is terminated
by returning the value j, after assuming that function parameters z1 and z2 equal the
tuple elements i and xs of the RHS parameterized refinement, thereby ensuring that the
right set of tuples populate corresponding refinement κ1.

HMC Algorithm The HMC algorithm takes the ML program, generates constraints
and translates them into an imperative program. After this, we can run any off-the-shelf
abstract interpretation or invariant generation tool on the translated program, and use the
result of the analysis to determine whether the original ML program is safe.

For the translated program shown in Figure 2, the CEGAR-based software model
checker ARMC [28] or the abstract interpretation tool INTERPROC [21] finds that the
assertion is never violated. From the invariants computed by the tools, we can find solu-
tions to the refinement variables:

κ1
.= i ≤ ν < i + len(xs) κ2

.= 0 ≤ ν < len(a)

which suffice to typecheck the original ML program. Indeed, these predicates are easily
shown to satisfy the constraints (c1), (c2), (c3) and (c4).

The attractiveness of the HMC translation is the separation of concerns between
the handling of advanced language features (through syntactic subtyping) and of data
invariants (through abstract interpretation of imperative programs). This, in particular,
implies that the translated programs fall in a particularly pleasant subclass which do
not have any advanced language features like higher-order functions, polymorphism,
and recursive data structures, or variables over complex datatypes that are the bane of
semantic analyses for imperative programs.

In contrast, the HMC algorithm uses type structure to reduce verification of advanced
language features to verification of simple imperative programs that are amenable to
analysis by a wide variety of analysis algorithms and tools.

3 Formalization

We now formalize the details of the HMC algorithm. We briefly describe constraint
generation, which is similar to prior work [29], and focus on the translation to first-order
programs which is the main technical contribution of our work. The reader may consult
the appendix for complete details.

We work with a fixed set of base types β, comprising int for integer values, bool
for boolean values, and ui, a family of uninterpreted types that encode complex source
language types such as products, sums, recursive types etc.Let X be a set of variables.
We use ν, x, y, z and subscripted versions thereof to range over X . A state σ is a partial
map from variablesX to values in the universe U(β) of values of type β. We lift states to

9

F0 (){
a← nondet();
xs← nondet(); assume (0 ≤ len(xs));
j← F2(a, xs);
assert (0 ≤ j < len(a));

}

F2 (z1, z2){
a← nondet();
xs← nondet(); assume (0 ≤ len(xs));
assume (len(a) = len(xs));
j← F1(0, xs);
assume (z1 = a ∧ z2 = xs);
return j;

}

F1 (z1, z2){
i← nondet();
xs← nondet(); assume (0 ≤ len(xs));
xs′ ← nondet(); assume (0 ≤ len(xs′) = len(xs)− 1);
j← nondet(); assume (j = i);
assume (z1 = i ∧ z2 = xs);
return j;

[]
i← nondet();
xs← nondet(); assume (0 ≤ len(xs));
xs′ ← nondet(); assume (0 ≤ len(xs′) = len(xs)− 1);
j← F1(i + 1, xs′);
assume (z1 = i ∧ z2 = xs);
return j;

}

Fig. 2. Translated Program

maps from expressions to values and predicates to boolean values in the standard manner.
We write [·] for the state with empty domain, and write σ[z 7→ v] for the state that maps
the variable z to v and all other variables y to σ(y).
From µML to Constraints In the first step, HMC generates a set of refinement con-
straints whose satisfaction implies that the program is safe.

Functional Language. The source functional language for HMC is µML, a vari-
ant of the λ-calculus with ML-style parametric polymorphism. The language’s syn-
tax includes variables, constants, λ-abstractions (functions), applications (calls) and let-
bindings (Figure 3). We formalize the eager, call-by-value semantics of µML using the
standard small-step operational semantics (Figure 3). To facilitate safety specifications,
µML includes a special assert function that returns an error value Err when called
with the value false. Let e be a µML program. We say that e is µML-safe if there is no
derivation of the form e

∗
; Err, i.e., if e never reduces to Err.

Constraints. A refinement r is either a concrete predicate p drawn from the refinement
logic (Figure 4), or a parameterized refinement variable κ(x0, . . . , xn), where κ is a re-
finement variable of arity n. We assume, without loss of generality, that each κ has a
fixed arity. A refinement type binding ρ is a triple {x :β | r} comprising a variable x that

10

is being bound, a base type β describing the base type of x, and a refinement r that de-
scribes an invariant satisfied by all the values bound to x. A refinement environmentG is a
sequence of refinement bindings. A refinement constraint G ` {x :β | r1} ≺ {x :β | r2}
states that when the program variables satisfy the invariants described in G, the set of
values described by the refinement r1 must be included in the set of values described by
the refinement r2.

Satisfaction. Figure 5 formalizes the notion of constraint satisfaction. A relational in-
terpretation for κ of arity n, is a subset of U(β)n. A relational model Σ is a map from
refinement variables κ to relational interpretations. Figure 5 formalizes a satisfaction re-
lation between a relational interpretation Σ and an inclusion constraint. A state satisfies
a predicate if the predicate evaluates to true in the state. A state satisfies a predicate
refinement binding if the tuple of values of relevant variables belongs to the relation cor-
responding to the refinement. A state satisfies an environment if it satisfies each binding
in the environment. A relational interpretation satisfies a constraint if every state that
satisfies the LHS of the constraint also satisfies the RHS of the constraint. A relational
interpretation satisfies a set of constraints if it satisfies each constraint in the set.

Constraint Generation. The first step of HMC is a syntax-directed procedure
Generate(e), summarized in Figure 7 that takes as input a µML program e, and uses
the type structure of the program to generate a set of constraints whose satisfiability
implies the safety of the program.

Theorem 1. If Generate(e) is satisfiable then e is µML-safe.

Our constraint generation process is similar to that of refinement type constraints [3,
9,17,29], except for the explicit “refinements-as-relations” view which critically enables
the translation in the second step.
From Constraints to µC In the second step, formalized in Figure 8, HMC translates
the set of constraints into an imperative program.

Imperative Language. The target imperative language for HMC is µC, a first-order
imperative language with a single kind of variables of base type β. An instruction is ei-
ther an assignment, an assume, an assert, or the sequential or non-deterministic (branch)
composition of two instructions. A function comprises a sequence of formal parameters
z1, . . . , zn, a body instruction I, and a return variable z0. A program is a set of func-
tions including a distinguished entry function that takes no arguments. We formalize the
semantics of µC using a standard big-step transition relation. Let P be a µML program.
We say that P is µC-safe if there is no transition P, I0 ` [·] ↪→ Err.

Function Translation. The translation of a set C of constraints maps each refinement
variable κi to a function Fi. The result of the translation of the refinement variables
is a system of mutually recursive functions, as we describe below. Consider a refine-
ment variable κi(x0, . . . , xn). The translated function Fi has the function property that
Fi(v1, . . . , vn) returns v0 iff every relational model that satisfies C maps κi to a set that
includes the tuple v0, . . . , vn.

For the example in Section 2, we create two functions F1 and F2 for the refinement
variables κ1 and κ2.

11

Bound Translation. The translation gathers all the constraints whose RHS have concrete
refinements into a set

C ↓⊥ .= {c ∈ C | c ≡ ` ≺ p}

and translates these constraints into the entry function f0. Intuitively, in such constraints
the RHS defines a concrete “upper bound” on the set of tuples that satisfy LHS. In the
translated µC program, the entry function enforces the upper bound via assert instruc-
tions as described below.

In Section 2, the function F0 encodes the constraint (c3).

Block Translation. To ensure that Fi satisfies the function property, we first gather the
set C ↓κi of constraints where κi appears on the RHS of the constraint. Formally,

C ↓κi
.= {c ∈ C | c ≡ ` ≺ κi()}

Each constraint in the set C ↓κi is individually translated into a block of straight-line
assignments and assumes that has the block property that the state at the end of the block,
maps the formals z1, . . . , zn and the return value z0 to a tuple of values that must belong
in every relational model of κi that satisfies the constraint. Thus, the body instruction
of Fi, i.e., the choice composition of all the blocks is such that each tuple of inputs and
output of Fi belongs in every relational interpretation of κi.

To ensure that the translation of each constraint G ` {x1 :β | r1} ≺ {x2 :β | r2} in
C ↓κi has the block property, we translate the constraint into a straight-line block of
instructions with three parts: a sequence of instructions that establishes the environment
bindings ([[G]]), a sequence of instructions that “gets” the values corresponding to the
LHS ([[{x :β | r1}get]]) and a sequence of instructions that “sets” the return value of Fi
appropriately ([[{x :β | r2}]]set).

Get Instructions. Each environment binding gets translated as a “get” operation as fol-
lows. Bindings with unknown refinements κi(x0, . . . , xn) are translated into calls to Fi
with arguments x1, . . . , xn, with the return value assigned to x0. Bindings with concrete
refinements p are translated into non-deterministic assignments followed by an assume
enforcing that the non-deterministically assigned values satisfy p.

Set Instructions. Each RHS refinement is translated into a “set” operation as follows.
A concrete refinement p is translated into an assert which enforces that the RHS
refinement is indeed an upper bound on the values populating the corresponding type in
the inclusion constraints. A parameterized refinement κi(x0, . . . , xn) is translated into an
assume that establishes the equalities between each xi and the formal zi representing
the ith tuple element, followed by a return x0. Thus, the translation guarantees that any
execution that reaches the end of the block is such that the tuple of values of the return
variable and formals of Fi satisfies the constraint to which the RHS refinement (over κi)
belongs.

In Figure 2, the function F1 encodes the two constraints (c1), (c2) as a nondetermin-
istic choice between their block translations. For each constraint, its block consists of
the “get” and “set” operations as described above. The following theorem formalizes the
correctness of [[C]].

12

Theorem 2. [Translation] C is satisfiable iff [[C]] is µC-safe.

The HMC Algorithm We combine the the constraint generation and translation proce-
dures to obtain the HMC algorithm. A safety verifier V is a procedure that takes an input
program and returns Safe or Unsafe. V is sound for a language if for each program x in
the language, V(x) = Safe implies that x is safe. HMC converts a verifier for the (first-
order, imperative) language µC to a verifier for the (higher-order, functional) language
µML in the following way:

HMC(V) .= λe.V([[Generate(e)]])

The correctness of HMC follows by combining Theorems 1 and 2.

Theorem 3. [HMC Algorithm] If V is a sound verifier for µC, then HMC(V) is a sound
verifier for µML.

4 Experiments

To demonstrate the feasibility of HMC, we have instantiated it for OCAML with two off-
the-shelf imperative verifiers. We use the liquid types types infrastructure implemented
in DSOLVE [29] to generate refinement constraints from OCAML programs. The imple-
mentation uses OCAML’s implementation of Hindley-Milner type inference to obtain the
ML types for each expression, after which the refinement constraints are generated via a
syntax-directed pass similar to Figure 7. Instead of parameterized refinement variables,
these constraints have variables with pending substitutions and a separate set of well-
formedness (WF) constraints that define the scope of each κ. In a first post-processing
step, we use the WF constraints to introduce parametrized refinement variables in place
of the pending substitutions. In a second post-processing step, we perform constraint
simplifications like constant propagation and resolution.

We use two back-end imperative verifiers to verify the translated programs:
ARMC [28], a counterexample-guided software model checker based on predicate ab-
straction and interpolation-based refinement, and INTERPROC [21], a static analyzer for
recursive programs that uses a set of numerical domains such as polyhedra and octagons
to compute invariants over numeric variables. In our experiments, we invoked INTER-
PROC with a polyhedral domain implemented using the Polka library [14]. For each
benchmark, the invariants computed by ARMC and INTERPROC could be used to syn-
thesize refinement types for the original source ML program.

Results. Table 1 shows the results of running the two verifiers on suite of small OCAML
examples. In addition to the running time, we report the number of predicates discovered
by ARMC. The rows with prefix na_ are a subset of the array manipulating programs
from [29], where the safety objective is to prove array accesses are within bounds. The
other rows correspond to the benchmark suite used to evaluate the DEPCEGAR veri-
fier [32], where each program contains a set of assertions designed to enforce safety.
For each program we created a buggy version that contains a manually inserted safety
violation. We observe that despite our blackbox treatment of ARMC and INTERPROC

13

Program ARMC (s) ARMC Preds. INTERPROC (s)
correct / buggy correct / buggy

na_dotprod-m 0.04 / 0.04 2 0.55 / 0.56
na_arraymax-m 0.32 / 0.05 6 0.40 / 0.23
na_bcopy-m 0.09 / 5.94 3 0.33 / 0.38
na_bsearch-m 0.91 / 0.10 11 9.73 / 2.76
na_insertsort 0.03 / 0.03 0 40.11 / 7.38
na_heapsort DNF / DNF *27.99 / 28.26
boolflip 0.23 / 0.19 5 0.05 / 0.09
lock 0.03 / 0.03 0 *0.19 / 0.23
mult-cps-m 0.03 / 0.03 0 0.08 / 0.12
mult-all-m 0.03 / 0.03 1 0.13 / 0.07
mult 0.03 / 0.03 2 0.08 / 0.06
sum-all-m 0.03 / 0.03 1 0.10 / 0.08
sum 0.03 / 0.03 2 0.02 / 0.02
sum-acm-m 0.04 / 0.03 2 *0.10 / 0.13

Table 1. Experimental Results: ARMC (s) denotes the time taken (in seconds) by ARMC to
analyze the translated program in its correct and buggy version; DNF indicates that the tool did
not finish on the benchmark. ARMC Preds. denotes the number of predicates iteratively found by
ARMC in order to verify the safe benchmarks. INTERPROC (s) denotes the time (in seconds) taken
by INTERPROC to analyze the translated program in its correct and buggy version; * indicates that
INTERPROC was not precise enough to prove all assertions, i.e., raised false alarms.

we obtain running times that are competitive with DEPCEGAR on most of the exam-
ples (DEPCEGAR uses a customized procedure for unfolding constraints and creating
interpolation queries that yield refinement types).

Refinements Discovered. Most of the atomic predicates discovered by ARMC and IN-
TERPROC fall into the two-variables-per-inequality fragment. However, the example
MASK from Section 2 required a predicate that refers to three variables, and thus could
not be verified using a simpler domain (e.g., octagons). In this case, INTERPROC deter-
mined the following relationship between the input and output variables of F1 and F2

(after existentially eliminating local variables):

F1 :: z1 ≤ ν ≤ z1 + len(z2)− 1
F2 :: 0 ≤ ν ≤ len(z1)− 1 ∧ len(z1) = len(z2)

These invariants are sufficient to show that the assertion in F0 always holds.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Func-
tional Programming, 1:375–416, 1991.

2. T. Ball and S.K. Rajamani. The SLAM project: debugging system software via static analysis.
In POPL, pages 1–3. ACM, 2002.

3. J. Bengtson, K. Bhargavan, C. Fournet, A.D. Gordon, and S. Maffeis. Refinement types for
secure implementations. In CSF, 2008.

14

4. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. A static analyzer for large safety-critical software. In PLDI, pages 196–207, 2003.

5. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using non-linear
constraint solving. In CAV. Springer, 2003.

6. S. Cui, K. Donnelly, and H. Xi. Ats: A language that combines programming with theorem
proving. In FroCos, 2005.

7. L. Damas and R. Milner. Principal type-schemes for functional programs. In POPL, 1982.
8. J. Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon University,

Pittsburgh, PA, USA, 2007.
9. T. Freeman and F. Pfenning. Refinement types for ML. In PLDI, 1991.

10. A. Gupta and A. Rybalchenko. InvGen: An efficient invariant generator. In CAV, 2009.
11. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from proofs. In

POPL 04. ACM, 2004.
12. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL, 2002.
13. H. Jain, F. Ivancic, A. Gupta, and M. K. Ganai. Localization and register sharing for predicate

abstraction. In TACAS, 2005.
14. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis.

In CAV, pages 661–667, 2009.
15. R. Jhala and R. Majumdar. Software model checking. ACM Comput. Surveys, 2009.
16. M. Kawaguchi, P. Rondon, , and R. Jhala. Type-based data structure verification. In PLDI,

pages 304–315, 2009.
17. K. Knowles and C. Flanagan. Type reconstruction for general refinement types. In ESOP,

2007.
18. K.W. Knowles and C. Flanagan. Hybrid type checking. ACM TOPLAS, 32(2), 2010.
19. N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In POPL, 2009.
20. N. Kobayashi and C.-H.L. Ong. A type system equivalent to modal µ-calculus model checking

of recursion schemes. In LICS, 2009.
21. G. Lalire, M. Argoud, and B. Jeannet. Interproc. http://bit.ly/8Y310m.
22. K. L. McMillan. Lazy abstraction with interpolants. In CAV. 2006.
23. M. Naik and J. Palsberg. A type system equivalent to a model checker. ACM Trans. Program.

Lang. Syst., 30(5), 2008.
24. C.-H.L. Ong. On model-checking trees generated by higher-order recursion schemes. In

LICS, 2006.
25. X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with dependent types. In

IFIP TCS, pages 437–450, 2004.
26. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
27. B. C. Pierce and D. N. Turner. Local type inference. In POPL, pages 252–265, 1998.
28. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model checking

with abstraction refinement. In PADL, 2007.
29. P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.
30. P. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types. In POPL, 2010.
31. S. Sankaranarayanan, H.B. Sipma, and Z. Manna. Scalable analysis of linear systems using

mathematical programming. In VMCAI, 2005.
32. T. Terauchi. Dependent types from counterexamples. In POPL. ACM, 2010.
33. H. Unno and N. Kobayashi. Dependent type inference with interpolants. In PPDP, 2009.
34. H. Xi and F. Pfenning. Dependent types in practical programming. In POPL, 1999.

15

A Definitions

In this section, we formally define the key players of HMC, namely a source higher-order
functional language, an intermediate logical constraint language, and a target first-order
imperative language. For ease of exposition, we restrict the description to a minimal set
of language features. However, our implementation deals with other language features,
such as those described in Section 2.

Base Types. Our language has a fixed set of base types, comprising int for integer
values, bool for boolean values, and ui, a family of uninterpreted types that are used to
encode complex source language types such as products, sums, recursive types etc.In the
sequel, for ease of exposition, we assume that there is a single base type β containing
the universe of base values U(β).

Variables and States. Let X be a set of variables. We use ν, x, y, z and subscripted
versions thereof to range over X . A state σ is a partial map from variables X to values
U(β). We lift states to maps from expressions to values and predicates to boolean values
in the standard manner. We write [·] for the state whose domain is empty, and write
σ[z 7→ v] for the state that maps the variable z to v and all other variables y to σ(y).

A.1 µML: Higher-Order Functional Language

We start by formalizing the syntax and semantics of µML, a variant of the λ-calculus
with ML-style polymorphism.

Terms. An expression e of µML is generated by the grammar

e ::= x | c | λx.e | e e | let x = e in e

where x ranges over variables and c over constants. Terms λx.e are called λ-
abstractions, e e called function applications, and let x = e1 in e2 let-bindings. We
discuss µML types in Section B.1.

Constants. The basic units of computation are the constants c built into µML,
which include base constants, corresponding to integers and boolean values, and
primitive functions, which encode various operations like addition, comparison, and
so on. Recursive functions are expressed via the fixpoint combinator constant fix.
Thus, an OCAML-style let-rec binding let rec f x = e1 in e2 is expressed in µML
as let f = fix (λf.λx.e1) in e2. Safety properties are expressed via the constant
assert which is a primitive operation that takes as input a boolean and returns the
input if it is true and returns the error value Err otherwise.

Semantics. The call-by-value dynamic semantics of µML are formalized using the stan-
dard small-step (contextual) operational semantics, whose rules are shown in Figure 3.
We write ; for the single evaluation step relation for µML expressions, and write ∗

;

to describe the reflexive, transitive closure of ; .

16

v ::= Values:
| c constants
| λx.e λ-terms

C ::= Contexts:
| • hole
| C e application left
| v C application right
| let x = C in e let-binding

µML Transition Relation e ; e′

v ∈ Dom([[c]])

c v ; [[c]](v)
[CON]

v 6∈ Dom([[c]])

c v ; Err
[CON-E]

(λx.e) v ; e[v/x]
[APP]

let x = v in e ; e[v/x]
[LET]

e ; e
′

C[e] ; C[e′]
[CTX]

e ; Err

C[e] ; Err
[CTX-E]

Fig. 3. µML Syntax and Semantics

Safety. The set of values includes the constants, functions, and a special Err value. If
a constant is applied to a value that is not in the domain of the constant (e.g., calling
division with zero as the second parameter, or calling assert with false), then the
application reduces to Err. Let e be a µML program. We say that e is µML-safe if there
is no derivation of the form e

∗
; Err. In other words, a µML program is safe if it never

reduces to Err.

A.2 Refinement Constraints

Next, we formalize logical refinement constraints, by defining the syntax of refinements
and constraints and the semantics of constraint satisfaction.

Syntax

Expressions and Predicates. Figure 4 shows the syntax of refinement predicates. We
leave the concrete syntax of expressions expressions e unspecified, but assume that func-
tion applications are treated as applications of uninterpreted functions. For example, in
our implementation, e comprised terms in linear arithmetic together with uninterpreted
functions. Predicates comprise atomic comparisons of expressions, or boolean combi-
nations of (sub-)predicates.

Refinements. A refinement r is either a concrete predicate p drawn from the refinement
logic, or a parameterized refinement variable κ(x0, . . . , xn), where κ is a refinement
variable of arity n. We assume, without loss of generality, that each κ has a fixed arity.
That is, in a given set of constraints, every occurrence of κ is parameterized with exactly

17

e ::= . . . Expressions
p ::= Predicates:

| e1 ./ e2 comparison
| ¬p negation
| p1 ∧ p2 conjunction
| p1 ⇒ p2 implication

r ::= Refinements:
| p predicate
| κ(x0, . . . , xn) param. reft. variable

β ::= Types:
| int base type of integers
| bool base type of booleans
| ui unint. type

ρ ::= {x :β | r} Refined Types

G ::= Environments:
| G;ρ binding
| ∅ empty

c ::= G ` {x1 :β | r1} ≺ {x2 :β | r2} Constraints

Fig. 4. Predicates, Refinements and Constraints.

n + 1 arguments. Concrete predicates represent known invariants, while the parameter-
ized variables represent unknown invariants that hold of different program values. The
notion of parameterized refinement variables offers a flexible way of capturing the value
flow that arises in the context of function parameter passing (in the functional setting), or
assignment (in the imperative setting), even when the underlying invariants are unknown.
This notion is closely related to the notion of variables with pending substitutions [1,17]
and with invariant templates [5].

Refinement Type Bindings and Environments. A refinement type binding ρ is a triple
{x :β | r} comprising a variable x that is being bound, a base type β describing the base
type of x, and a refinement r that describes an invariant satisfied by all the values bound
to x. A refinement environment G is a sequence of refinement bindings.

A refinement type binding (or just refinement type) describes the set of concrete
values of the underlying type which additionally satisfy the refinement predicate. For
example, {x :int | x 6= 0} says x is bound to a value from the set of non-zero integers,
and {a :int | a < x + y} says a is bound to a value from the set of integers less than the
sum of (the values bound to) x and y.

Path-sensitive branch information can be captured by adding suitable bindings to the
refinement environment. For example, the fact that some expression is only evaluated
under the if-condition that x > 100 can be captured in the environment via a refinement
type binding {xb :bool | x > 100}.

Constraints. Figure 4 shows the syntax of constraints. Informally,

G ` {x :β | r1} ≺ {x :β | r2}

18

Predicates σ |= p iff σ(p) = true

Environments Σ, [·] |= ∅
Σ, σ |= G;{x :β | r} iff Σ, σ \ x |= G and

Σ, σ |= {x :β | r}
Refinements Σ, σ |= {x :β | p} iff σ |= p

Σ, σ |= {x :β | κ(y0, . . . , yn)} iff (σ(y0), . . . , σ(yn)) ∈ Σ(κ)

Constraints Σ |= G ` {x1 :β | r1} ≺ {x2 :β | r2} iff For all σ :
Σ, σ |= G;{ν :β | r1} implies
Σ, σ |= {x1 :β | r2[x1/x2]}

Fig. 5. Constraint Satisfaction

states that when the program variables satisfy the invariants described in G, the set of
values described by the refinement r1 must be included in the set of values described by
the refinement r2.

Semantics Refinements represent known and unknown relations between program vari-
ables at different places in the program. The inclusion constraints describe (set) inclu-
sion relationships that must hold between different relations. Next, we crystallize this
intuition, and define the semantics of constraints, by formally defining the notion of con-
straint satisfaction.

Relational Interpretations. A relational interpretation for κ of arity n, is a subset of
U(β)n. A relational modelΣ is a map from refinement variables κ to relational interpre-
tations. In the sequel, we only consider relational models that map each κ to a relation
of the arity of κ.

Satisfaction. Figure 5 formalizes the notion of when a relational interpretation Σ satis-
fies an inclusion constraint. A state satisfies a predicate if the predicate evaluates to true
in the state. A state satisfies a predicate refinement binding if the tuple of values of rel-
evant variables belongs to the relation corresponding to the refinement. A state satisfies
an environment if it satisfies each binding in the environment. A relational interpretation
satisfies a constraint if every state that satisfies the LHS of the constraint also satisfies
the RHS of the constraint. A relational interpretation satisfies a set of constraints if it
satisfies each constraint in the set.

A.3 µC: A First-Order Imperative Language

We conclude this section by formalizing the syntax and semantics of µC, a core, first-
order imperative language.

Syntax A µC program has a single kind of base variables drawn from X , which range
over values of type β. An instruction (I) is either an assignment x ← e, an assume
assume p, an assert assert p using predicates over the base variables (cf. Figure 4),

19

or the sequencing I; I or non-deterministic choice I[]I of two instructions. We write
skip as an abbreviation for assume true . An assignment to a target variable is of one
of three kinds. Either (1) x ← e: an expression e over the variables (cf. Figure 4) is
evaluated and assigned to the target variable x, or, (2) x ← nondet(): an arbitrary non-
deterministically chosen value of the appropriate base type is assigned to x, i.e., the target
variable is “havoc-ed”, or (3) x ← F(y1, . . . , yn): a function F is called, and its return
value is assigned to the target variable x. A function definition (F) has a name F, sequence
of formal parameters z1, . . . , zn, a function body I, and a return variable z0. A program
(P) is a set of functions F0, . . . , Fm, where F0 is a distinguished entry function that takes
no arguments.

Next, we formalize the big-step operational semantics of µC. The big-step formu-
lation avoids the need for adding an explicit stack to the semantics, and simplifies the
exposition of the proofs of the main equivalence theorems.

Configurations. A configuration is either a state, i.e., a partial map from variables X to
values, or a special unsafe configuration Err. All the variables in an µC program are local.
That is, the variables of each (state) configuration describe the values of the variables of
a single “stack-frame”.

Transitions. µC is a standard lexically scoped, imperative language with call-by-value
semantics. The transition relation is described by the judgment P, I ` σ ↪→ σ′ that stip-
ulates that in the program P, the execution of the instruction I causes the machine to
move from a configuration σ to the configuration σ′. The expression and havoc assign-
ments update the target variable with the RHS and a non-deterministically chosen value
respectively. The call assignment updates the target value with any of the possible values
returned by the callee (i.e., the value of the return variable of the callee in the exit config-
uration of the callee.) Dually, the return instruction simply assigns the return value into
the return variable z0. The assume instruction proceeds without updating the state only if
the corresponing predicate holds (and otherwise, the program halts). Thus, µC eschews
if-then-else instructions in favor of the the more general assume and choice instructions.
The assert instruction is like the assume, but if the predicate does not hold, the system
transitions into the configuration Err (in which it remains forever.) We give the formal
details in Figure 10 in the Appendix.

Safety. Let P be an µC program, whose entry function F0 has the body I0. We say that P
is µC-safe if there is no transition P, I0 ` [·] ↪→ Err.

B Algorithm

In this section, we describe how we reduce the safety of a µML program to a set of
constraints (Section B.1) and how we reduce the satisfiability of constraints into safety of
an µC program (Section B.2). Together the steps combine to yield the HMC Algorithm
(Section B.3).

20

e ::= . . . Typed Expressions:
| e :τ annotation
| [Λα]e type-abstraction
| [β]e type-instantiation

T(B) ::= Type Skeletons:
| B base
| α type variable
| T(B)→ T(B) function

S(B) ::= Schema Skeletons:
| T(B) monotype
| ∀α.S(B) polytype

τ, σ ::= T(β), S(β) Types, Schemas
T, S ::= T(ρ), S(ρ) Templates, Schemas

Fig. 6. µML: Syntax of Types and Typed Terms

B.1 Step 1: From µML to Constraints

The first step of HMC is a syntax-directed procedure that takes as input a µML program,
and uses the type structure of the program to generate a set of constraints whose satis-
fiability implies the safety of the program. Our constraint generation process is similar
to that of refinement type constraints [9, 17, 29], except for the explicit “refinements-as-
relations” view which critically enables the translation in the second step, and facilitates
the proof of our main technical reduction (Theorem 2).

Refinement Types and Templates

Types. Figure 6 shows the syntax of types (and schemas) of µML, which includes base
types β, type variables α, function types (and quantification.) The constraint generation
procedure receives as input typed µML programs from the grammar for typed terms
shown in Figure 6. We restrict our attention to terms are well-typed according to the
standard type-checking rules [26]. Thus, we assume that a classical Hindley-Milner style
type inference procedure [7] has inserted appropriate type annotations (e :τ) for each
(sub-) term and type generalization ([Λα]e) and instantiation ([τ]e) operations.

Refinement Types and Subtyping. The constraint generation procedure of HMC is based
on the notion of refinement types [3, 9, 17, 29] which can be viewed as a type-based ana-
logue of the classical notions of program invariants. Just as invariants represent overap-
proximations of the states that reach a particular program counter, refinement types rep-
resent overapproximations of the set of values to which a particular program expression
can evaluate. With invariants, overapproximation is formally established by implication
(or subsumption, in the “consequence” rule of Hoare logic). With refinement types, over-
approximation is formalized via subtyping. A more thorough discussion of refinement
types is beyond the scope of this paper, we refer the reader to [3, 18, 29] for details.

21

Safety. With classical invariants, safety is established via the validity of a verification
condition that checks subsumption between the invariants at different program points.
Analogously, with refinement types, safety is established via the the validity of a type
derivation that checks subtyping between the types of different sub-expressions. Thus,
the main challenge towards automating verification is the inference of appropriate re-
finements for various program expressions (akin to the challenge of inferring loop in-
variants).

Templates. Our verification strategy is to create templates that represent the unknown
refinement types for various program expressions, and to then traverse the program in a
syntax-directed manner, to compute types for other expressions in terms of the templates,
and to generate constraints that enforce subtyping between relevant sub-expressions. Fig-
ure 6 shows the syntax of templates (T) and template schemas S. In essence, a template
(resp. schema) is a type (resp. schema) with a refinement binding occurring at each of
the “leaves”. A template environment is a map Γ from program variables to templates.

Constraint Generation

Fresh Templates. Procedure New(Γ, τ), shown in Figure 7, takes as input a template en-
vironment Γ and a µML type τ and generates a new template for the unknown refinement
type of a value of type τ that contains relations over variables in scope in Γ . For basic
types, New(Γ, τ) first calls Env(Γ) which maps a template environment to a refinement
environment by re-binding base variables, and filtering away the complex template bind-
ings. the generation procedure returns a fresh refinement variable κ parameterized with
the value variable x0 and the variables x1, . . . , xn bound in the filtered environment. For
complex types, the procedure recursively generates fresh templates for the components
of the type. For functions whose input has a base type, the binding for the input is added
to the environment for the output, which allows the output refinement to refer to, i.e., be
related to, the input.

Subtyping Constraints. Procedure Sub(Γ, T1, T2), shown in Figure 7, takes as input
a template environment Γ , and two templates T1 and T2 and returns as output the set
of inclusion constraints that must be satisfied so that T1 is a subtype of T2 in the envi-
ronment Γ . The procedure uses classical type-theoretic subsumption rules (contravariant
arguments, covariant return values, etc.) to reduce subtyping of complex templates to a
set of constraints over base types.

Syntax-directed Traversal. Procedure Gen(Γ, e), shown in Figure 7, takes as input a tem-
plate environment Γ and a (typed) term e, and traverses the term in the syntax-directed
manner of a type checker, to return as output a template T that describes the unknown
refinement type of e and a set of constraints C that capture the subtyping relationships
between the types of various sub-terms that must hold so that e has type T in the en-
vironment Γ . The terms of µML are of two classes, those whose (refinement) types are
synthesizable from the environment and the types of sub-terms, and those whose types
are not [27].

22

Env(∅) .
= ∅

Env(Γ ;x :{v :β | r}) .
= Env(Γ);{x :β | r[x/ν]}

Env(Γ ;x :)
.
= Env(Γ)

New(Γ, α)
.
= α

New(Γ, β)
.
= let κ = fresh ref. variable in

let G = Env(Γ) in
let x1, . . . , xn = Dom(G) in
{x0 :β | κ(x0, x1, . . . , xn)}

New(Γ, β → τ)
.
= let ρ = New(Γ, β) in
ρ → New(Γ ;ρ, τ)

New(Γ, τ1 → τ2)
.
= New(Γ, τ1) → New(Γ, τ2)

Sub(Γ, α, α)
.
= ∅

Sub(Γ, ρ1, ρ2)
.
= {Env(Γ) ` ρ1 ≺ ρ2}

Sub(Γ, ρ1 → T1, ρ2 → T2)
.
= Sub(Γ, ρ2, ρ1)∪

Sub(Γ ;ρ2, T1, T2)

Sub(Γ, T1 → T ′
1, T2 → T ′

2)
.
= Sub(Γ, T2, T1)∪

Sub(Γ, T ′
1, T

′
2)

Gen(Γ, x : β)
.
= ({ν :β | ν = x}, ∅)

Gen(Γ, x : τ)
.
= (Γ (x), ∅)

Gen(Γ, c :)
.
= (ty(c), ∅)

Gen(Γ, e1 (e2 :β) :)
.
= let {x :β | r} → T ′

1, C1 = Gen(Γ, e1) in
let T2, C2 = Gen(Γ, e2 :β) in
(T ′

1[e2/x], C1 ∪ C2 ∪ Sub(Γ, T2, {x :β | r}))

Gen(Γ, e1 (e2 :τ) :)
.
= let T1 → T ′

1, C1 = Gen(Γ, e1) in
let T2, C2 = Gen(Γ, e2 :τ) in
(T ′

1, C1 ∪ C2 ∪ Sub(Γ, T2, T1))

Gen(Γ, λx.e : τx →)
.
= let Tx = New(Γ, τx) in

let T,C = Gen(Γ ;x :Tx, e) in
(Tx → T,C)

Gen(Γ, let x = e1 in e2 : τ)
.
= let T = New(Γ, τ) in

let T1, C1 = Gen(Γ, e1) in
let T2, C2 = Gen(Γ ;x :T1, e2) in
(T,C1 ∪ C2 ∪ Sub(Γ ;x :T1, T2, T))

Gen(Γ, [Λα]e :)
.
= let (T,C) = Gen(Γ, e) in

(∀α.T, C)

Gen(Γ, [τ]e :)
.
= let T = New(Γ, τ) in

let (∀α.T ′, C) = Gen(Γ, e) in
(T ′[T/α], C)

Fig. 7. Constraint Generation

23

Terms with Synthesizable Types. The refinement types for variables, constants, applica-
tions and generalizations can be synthesized from those of the subexpressions, and the
environment. For example, consider the case for an integer constant Gen(Γ, i). No con-
straints are generated, and the template returned is the “singleton” concrete refinement
type {ν :int | ν = i}. As another example, consider the case for function application,
Gen(Γ, e1 (e2 : β)), where the argument has a basic type. First, Gen is recursively called
to obtain the templates and constraints for the sub-terms e1 and e2. As the input type of
e1 is a basic type, the output’s refinement can refer to the input. Thus the template for the
result of the application is the output template of the function, with the all occurrences
of the formal x substituted with the actual e2. When the argument is not a basic type,
the argument cannot appear in the refinement for the output 1, and hence, the result has
the output template for e1. In either case, the generated constraints are the union of the
constraints generated for e1 and e2, and a set of constraints that ensure that the argument
e2 is a subtype of the input type of e1.

Terms without Synthesizable Types. The refinement types for λ-abstractions, let-in ex-
pressions, and polymorphic instantiations (which includes recursive functions as ex-
plained below) cannot be synthesized from sub-terms, as we need to carry out an over-
approximation of their concrete semantics. For example, consider the case for a let-in
binding Gen(Γ, let x = e1 in e2 :τ). We may be tempted to ascribe to the term the tem-
plate found for e2 but this is unsound as that template can refer to the local x. Thus, for
such expressions, we call New(Γ, τ) to obtain a fresh template of the appropriate type,
over variables that are in scope in the environment Γ , and generate constraints which
ensure that subtyping holds between e2 and the entire expression. A similar situation
arises for polymorphic instantiation Gen(Γ, [τ]e) where a fresh template is generated for
the unknown refinement for the instantiated monotype. We handle recursive functions
via the fixpoint combinator fix of type ∀α.(α→ α)→ α. In the generated constraints,
the unknown refinement type of a recursive function is represented by the template used
to instantiate α at each invocation of fix.

Safety. Recall that µML programs are safe as long as at run-time, each primitive opera-
tion (e.g., division, assert) is called with values on which the operation is defined (e.g.,
non-zero integers, true). To enforce safety, we ensure that each primitive operation c,
has a refinement type ty(c) whose input refinement describes the domain of inputs for
which the primitive operation is safe. For example,

ty(assert) .= {p :bool | p} → bool
ty(/) .= int→ {x :int | x 6= 0} → int

where β is an abbreviation for {ν :β | true}. Thus, the safety requirements are captured
by the subtyping constraints generated for function applications. The correctness of the
constraint generation step is stated by Theorem 1, see Page 11.

The proof of Theorem 1 is shown in two steps. First, we use the correspondence
between refinements and relations to demonstrate that the generated constraints are sat-
isfiable iff only valid refinement type derivation exists [17, 29]. Next, we appeal to the

1 arbitrary functions are barred for the usual soundness reasons

24

soundness of refinement type checking (which shows that the existence of a type deriva-
tion implies safety) to complete the proof. For brevity, we omit the details and refer the
reader to [3, 18, 29].

B.2 Step 2: From Constraints to µC

Figure 8 formalizes the translation of a set of constraints C to a µC program.

Function Translation. The translation of a set C of constraints maps each refinement
variable κi to a function Fi. The result of the translation of the refinement variables
is a system of mutually recursive functions, as we describe below. Consider a refine-
ment variable κi(x0, . . . , xn). The translated function Fi has the function property that
Fi(v1, . . . , vn) returns v0 iff every relational model that satisfies C maps κi to a set that
includes the tuple v0, . . . , vn.

For the example in Section 2, we create two functions F1 and F2 for the refinement
variables κ1 and κ2.

Bound Translation. The translation gathers all the constraints whose RHS have concrete
refinements into a set

C ↓⊥ .= {c ∈ C | c ≡ ` ≺ p}

and translates these constraints into the entry function f0. Intuitively, in such constraints
the RHS defines a concrete “upper bound” on the set of tuples that satisfy LHS. In the
translated µC program, the entry function enforces the upper bound via assert instruc-
tions as described below.

In Section 2, the function F0 encodes the constraint (c3).

Block Translation. To ensure that Fi satisfies the function property, we first gather the
set C ↓κi of constraints where κi appears on the RHS of the constraint. Formally,

C ↓κi
.= {c ∈ C | c ≡ ` ≺ κi()}

Each constraint in the set C ↓κi is individually translated into a block of straight-line
assignments and assumes that has the block property that the state at the end of the block,
maps the formals z1, . . . , zn and the return value z0 to a tuple of values that must belong
in every relational model of κi that satisfies the constraint. Thus, the body instruction
of Fi, i.e., the choice composition of all the blocks is such that each tuple of inputs and
output of Fi belongs in every relational interpretation of κi.

To ensure that the translation of each constraint G ` {x1 :β | r1} ≺ {x2 :β | r2} in
C ↓κi has the block property, we translate the constraint into a straight-line block of
instructions with three parts: a sequence of instructions that establishes the environment
bindings ([[G]]), a sequence of instructions that “gets” the values corresponding to the
LHS ([[{x :β | r1}get]]) and a sequence of instructions that “sets” the return value of Fi
appropriately ([[{x :β | r2}]]set).

25

C ↓κ .
= {c ∈ C | c ≡ ` ≺ κi()}

C ↓⊥ .
= {c ∈ C | c ≡ ` ≺ p}

[[C]]
.
= let κ1, . . . , κm = Ref. vars. of C in

[[0, 0, C ↓⊥]],
[[1, arity κ1, C ↓κ1]]
, . . . ,
[[m, arity κm, C ↓κm]]

[[i, a, {c1, . . . , cn}]]
.
= fi(z1, . . . , za){[[c1]][] . . . [][[cn]]}

[[G ` {x1 :β | r1} ≺ {x2 :β | r2}]]
.
= [[G; {x1 :β | r1}]]get;

[[{x1 :β | r2[x1/x2]}]]set

[[{x :β | r};G]]get
.
= [[{x :β | r}]]get; [[G]]get

[[∅]]get
.
= skip

[[{x :β | p}]]get
.
= x← nondet();

assume p

[[{x0 :β | κi(x0, . . . , xn)}]]get
.
= x← fi(x1, . . . , xn)

[[{x :β | p}]]set
.
= assert p

[[{x0 :β | κ(x0, . . . , xn)}]]set
.
= assume (∧n

j=1xj = zj)
return x

Fig. 8. Translating Constraints To µC Programs

Get Instructions. Each environment binding gets translated as a “get” operation as fol-
lows. Bindings with unknown refinements κi(x0, . . . , xn) are translated into calls to Fi
with arguments x1, . . . , xn, with the return value assigned to x0. Bindings with concrete
refinements p are translated into non-deterministic assignments followed by an assume
that enforces that the refinement holds on the non-deterministically assigned value.

Set Instructions. Each RHS refinement is translated into a “set” operation as follows.
A concrete refinement p is translated into an assert which enforces that the RHS
refinement is indeed an upper bound on the values populating the corresponding type in
the inclusion constraints. A parameterized refinement κi(x0, . . . , xn) is translated into an
assume that establishes the equalities between each xi and the formal zi representing
the ith tuple element, followed by a return x0. Thus, the translation guarantees that any
execution that reaches the end of the block is such that the tuple of values of the return
variable and formals of Fi satisfies the constraint to which the RHS refinement (over κi)
belongs.

In Figure 2, the function F1 encodes the two constraints (c1), (c2) as a nondetermin-
istic choice between their block translations. For each constraint, its block consists of
the “get” and “set” operations as described above. Theorem 2 formalizes the correctness
of [[C]].

26

B.3 The HMC Algorithm

We combine the the constraint generation and translation procedures to obtain the HMC
algorithm. A safety verifier V is a procedure that takes an input program and returns Safe
or Unsafe. V is sound for a language if for each program x in the language, V(x) = Safe
implies that x is safe. HMC converts a verifier for the (first-order, imperative) language
µC to a verifier for the (higher-order, functional) language µML in the following way:

HMC(V) .= λe.V([[Generate(e)]])

The correctness of HMC follows by combining Theorems 1 and 2 and is stated in The-
orem 3, see Page 13.

B.4 Completeness

Since the safety verification problem for higher-order programs is undecidable, the sound
HMC cannot also be complete in general. Even in the finite-state case, in which each
base type has a finite domain (e.g., Booleans), completeness depends on the generation
of refinement constraints.

For example, in our current formulation, we employ a context insensitive form of
constraint generation where we use the same template for a (monomorphic) function at
different call points. It has been shown through practical benchmarks that since the types
themselves capture relations between the inputs and outputs, the context-insensitive con-
straint generation suffices to prove a variety of complex programs safe [3, 16, 29]. Nev-
ertheless, there can be a loss of information, as demonstrated below. Consider

let check f x y = assert (f x = y) in
check (fun a -> a) false false ;
check (fun a -> not a) false true

For check, our constraint generation produces the template

({x :bool | κ1} → {κ2})→ {κ3} → {κ4} → unit

which is too weak to show safety as the template “merges” the two call sites for check.
However, we can regain sensitivity via the following refined intersection type [8, 9, 19,
23], for check:∧ (x : bool→ {ν = x})→ {¬ν} → {¬ν} → unit

(x : bool→ {ν = ¬x})→ {¬ν} → {ν} → unit

It is important to note that our translation works holds for any set of implication con-
straints (Theorem 2). Thus, one can improve the precision of HMC, by using a more ex-
pressive refinement type system to generate the constraints, without having to modify the
back-end invariant generation. For example, to recover completeness in the finite-state
case, we can use intersection type system of [19] that uses a finite number of “contexts”
to generate the implication constraints, after which a finite-state checker e.g., BEBOP [2]
would suffice to give a complete verification procedure. (We omit this in our current im-
plementation as there can be a super-exponential number of implication constraints, and
the relational refinements were sufficient for our experiments.)

27

I ::= Instructions:
| x← e expr assign
| x← nondet() havoc assign
| x← F(y1, . . . , yn) call assign
| return e return
| assume p assume
| assert p assert
| I; I sequence
| I[]I choice

F ::= F(z1, . . . , zn){I} Functions

P ::= F0, . . . , Fm Programs

Fig. 9. µC Syntax

µC Transition Relation P, I ` σ ↪→ σ′

n ∈ U(β)

P, x← nondet() ` σ ↪→ σ[x 7→ n]
[HAV]

P, x← e ` σ ↪→ σ[x 7→ σ(e)]
[ASGN]

F(z1, . . . , zn){I} ∈ P P, I ` [z1 7→ σ(y1), . . . , zn 7→ σ(yn)] ↪→ σ′

P, x← F(y1, . . . , yn) ` σ ↪→ σ[x 7→ σ′(z0)]
[CALL]

P, return e ` σ ↪→ σ[z0 7→ σ(e)]
[RET]

σ(p) = true

P, assume p ` σ ↪→ σ
[ASM]

σ(p) = true

P, assert p ` σ ↪→ σ
[AST-T]

σ(p) = false

P, assert p ` σ ↪→ Err
[AST-F]

P, I ` Err ↪→ Err
[ERR]

P, I ` σ ↪→ σ′
P, I′ ` σ′ ↪→ σ′′

P, I; I′ ` σ ↪→ σ′′ [SEQ]

P, I ` σ ↪→ σ′

P, I[]I′ ` σ ↪→ σ′ [CH-L]
P, I′ ` σ ↪→ σ′

P, I[]I′ ` σ ↪→ σ′ [CH-R]

Fig. 10. µC Semantics

C Proof Sketch for Theorem 2

We give an outline of the proof of Theorem 2. First, we introduce some machinery con-
necting the semantics of the constraints (i.e., relational interpretations) with the seman-
tics of the translated µC programs (i.e., configurations).

28

Canonical Interpretations. Let C be a set of inclusion constraints. The Canonical inter-
pretation of C, written Σ[[C]] maps each κi of arity n+ 1 to the set

{(σ′(z0), . . . , σ′(zn)) | [[C]], I ` σ ↪→ σ′}

where Ii denotes the body instruction of Fi.
The correctness of the function translation is formalized by the following Lemma,

which states that for each κi, the Canonical interpretation satisfies the constraints with
κi on the RHS.

Lemma 1. [Function Translation] Let C be a set of refinement constraints. For each
κ ∈ C, we have Σ[[C]] |= C ↓κ.

The correctness of the bound translation is formalized by the following lemma, which
says the translated µC program is safe iff the Canonical interpretation satisfies the bound
constraints.

Lemma 2. [Bound Translation] LetC be a set of refinement constraints.Σ[[C]] |= C ↓⊥
iff [[C]] is safe.

The proofs of the above lemmas rely on the following lemma that states the correct-
ness of the block translation.

Lemma 3. [Block Translation] LetC be a set of refinement constraints, and σ andG be
a state and environment with the same domain. [[C]], [[G]]get ` [·] ↪→ σ iff Σ[[C]], σ |= G.

Strengthening. Furthermore, we can show that the Canonical interpretation is stronger
than any interpretation that satisfies the constraints in the following sense. Given two
relational interpretations Σ and Σ′ with the same domain, we say that Σ is stronger
than Σ′ (written Σ ⊆ Σ′) if for each κ we have Σ(κ) ⊆ Σ′(κ).

We prove, by induction on the structure of the big-step derivations that populate the
Canonical interpretation, that Σ[[C]] is the strongest interpretation that satisfies a set of
constraints.

Lemma 4. [Strongest Interpretation] Let C be a set of refinement constraints, and Σ
be a relational interpretation. If Σ |= C then Σ[[C]] ⊆ Σ.

Furthermore, using the Lemma 3 we prove that strengthening preserves satisfiability
of the upper bound constraints.

Lemma 5. [Strengthening] Let C be a set of refinement constraints and Σ and Σ′ be
relational interpretations. If Σ ⊆ Σ′ and Σ′ |= C ↓⊥ then Σ |= C ↓⊥.

Proof. (of Theorem 2) Lemmas 1 and 2 combine to prove that if [[C]] is safe thenΣ[[C]] |=
C and hence,C is satisfiable. To show the other direction, suppposeC is satisfiable. Then
there exists an interpretationΣ |= C. By Lemma 4, we deduce thatΣ[[C]] is stronger than
S. As S satisfies C, it satisfies the upper bound constraints of C and so, by Lemma 5 we
conclude Σ[[C]] |= C ↓⊥, which, via Lemma 2 implies that [[C]] is safe.

29

