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Abstract
Refinement types decorate types with assertions that enable automatic verification. Like assertions,
refinements are limited to binders that are in scope, and hence, cannot express higher-order
specifications. Ghost variables circumvent this limitation but are prohibitively tedious to use as
the programmer must divine and explicate their values at all call-sites. We introduce Implicit
Refinement Types which turn ghost variables into implicit pair and function types, in a way that
lets the refinement typechecker automatically synthesize their values at compile time. Implicit
Refinement Types further take advantage of refinement type information, allowing them to be used
as a lightweight verification tool, rather than merely as a technique to automate programming tasks.
We evaluate the utility of Implicit Refinement Types by showing how they enable the modular
specification and automatic verification of various higher-order examples including stateful protocols,
access control, and resource usage.
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1 Introduction

Refinement types allow programmers to decorate types with statically checked assertions
(“refinements”) that can be used for automatic verification over decidable theories, with
applications including checking array bounds [48, 34], totality [44], data structure invariants
[22], cryptographic protocols [4, 17], and properties of web applications [18].

Problem: Higher-Order Reasoning. Unfortunately, refinements cannot express the higher-
order specifications needed for higher-order imperative programs [42]. Consider the access-
control API:

grant :: File → IO () read :: File → IO String

Here, grant and read represent a file access API that enforces access control policies: to read
a given file, we must have been grant’d permission to that file. Concretely, this means that
calls to grant f update the state of the world to one in which f has been added to the set of
files we have permission to read.
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18:2 Refinements of Futures Past

Next, consider the API for operating over a stream of tokens in a linear fashion:

init :: ST Token next :: Token → ST Token

Here, init simply gives us the first token to start a stream. To use next to recieve a token
we must pass it the previous token, which it will then invalidate. Both of these APIs include
functions where correct usage fundamentally depends on the state of the world at their
eventual call site, as they are composed using higher-order combinators such as (»= ) and ( » ).

One can formalize these informal specifications by augmenting the source program with
ghost variables [31, 41, 42] that represent “departed quantities” that characterize the state of
the world. In our file access example, read f would have to additionally take in the set of
files we have been granted access to, and f must be a member, thus allowing us to compose
the computations grant f » read f. In our stream example, next t must both take in an
additional mapping of tokens to their validity, in which t must be valid, and then give us
back an updated mapping, reflecting that next t is the next valid token, thus allowing us
to sequence the computations as next t »= next, but not next t » next t. The key idea in
both of these examples is that ( » ) (“sequence”) and (»= ) (“bind”) must relate the output
of a higher-order argument (grant f and next t) to the requirements of their other argument
(read f and next). For these stateful combinators, ghost variables allow us to lift the state
of the world to relate the output of one computation to the input of another.

Note that while we start with these stateful examples for familiarity, we are interested in
the more general problem of reasoning with higher-order programs. For instance, Handley
et al. [19] introduce a Tick datatype that tracks resource usage of a computation. In this
setting, one may want a higher-order constant-resource combinator such as

mapA :: (a → Tick n b) → xs:List a → Tick (n * len xs) (List b)

Informally, mapA maps a computation that uses a fixed amount of resources n (say, time)
over a list and guarantees that it will take a fixed amount of resources equal to n times the
length of the list. We can use ghost variables to lift the parameter n such that both the input
function and the output computation can refer to it.

Ghosts of Past and Future. Notice that there is a key distinction between the ghost
variables in our informal specifications. The ghost variable for read summarizes the history
of accesses granted and therefore corresponds to a history variable [31] used to refine the past.
It is determined externally by what accesses have been granted by the time read is called.
Similarly, mapA uses the ghost variable n to track costs that will have been incurred once
the computation finishes. In contrast, next t yields the next valid token, and so the ghost
variable for next captures the future value when the computation is run. This corresponds
to a prophecy variable [2] we can use to refine the future. That is, next makes an internal
choice about what the next token will be. While external choice can be encoded as an
additional parameter to read, internal choice can be encoded as adding an additional return
value to next. However, in both cases, these ghost variables require polluting code with
specification-level details and break APIs that don’t accept or produce ghost variables.

Implicit Refinement Types. In this paper, we introduce Implicit Refinement Types (IRT),
a feature that allows us to capture the above specifications with implicit ghost variables,
while preserving the automatic verification properties of prior refinement type systems. Our
approach takes inspiration from implicit parameters [25, 11, 12], a popular language feature
that is the foundation of the theory of typeclasses [46]; models objects [11]; lends flexibility to
module systems [47]; and features in C# [16], C++ [20], and Scala. To capture the distinction
between internal and external choice of ghost parameters, we introduce two different notions
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of implicits: implicit dependent functions (i.e. implicit-Π) and implicit dependent pairs
(i.e. implicit-Σ). Implicit functions capture the notion of external choice, where the ghost
parameter is determined by the caller of a function. Dually, implicit pairs correspond to
internal choice, where the ghost parameter is determined by the implementation of the
function. To sum up, we make the following contributions:

A declarative semantics for implicit refinement types (§3), and an inference algorithm
that is sound with respect to the declarative semantics (§5). Crucially, our semantics
preserve subtyping information, allowing us to take advantage of refinement information
in inferring implicit parameters.
A notion of implicit pair types that, when added to implicit function types, allows us
to express higher-order specifications without requiring any changes to code (§2).
We implement our system, in a tool dubbed Mist, and evaluate our prototype on a range
of case studies to demonstrate where automatic verification with Implicit Refinement
Types bears fruit (§7).

2 Overview

We start with an example-driven overview that walks through specification and verification
with implicit functions and pairs on minimal examples of higher-order functions, and then
scales these examples to verify the access control, token stream, and resource accounting
examples from §1.

2.1 Implicit Function Types
While plain refinement type systems can employ extra parameters to capture ghost variables,
they must do so explicitly, requiring programmers to divine their values and implement
bookkeeping. To illustrate this, consider the following example of a higher-order function
foo that accepts a function parameter:

foo :: (Bool → Int) → ()
foo f = assert (f True == f False)

The static assertion requires that the function passed to foo be constant. We could formalize
this informal specification by adding an extra ghost parameter to foo to represent the
singleton return value of its argument:

foo :: n:Int → (Bool → SInt n) → ()

But now we must not only rewrite foo to take this “unused” ghost parameter (foo n f =
assert (f True == f False)) but must also manually modify the call site to foo 1 (\z →
1). The implicit function type lets us handle this automatically. Instead of changing the
definition of foo and its uses, the programmer changes foo to make n an implicit parameter
by surrounding it with square brackets:

foo :: [n:Int] → (Bool → SInt n) → ()

Verifying programs with implicits. To verify foo and its call sites we must check: (1) that
the assertion in the body of foo is valid (2) that at the call-site foo (\z → 1), the argument
meets the precondition. We do so via a bidirectional traversal that checks terms against types
to generate and solve Existential Horn Constraints (ehc). When checking inside the body
of foo, the implicit parameter [n:Int] behaves just like a standard explicit, or “corporeal”,
parameter one might see in a Π-binder. That is, calls to foo will implicitly “pass” an argument
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18:4 Refinements of Futures Past

for n, so the sequel must hold for all values of n. This constrains the explicit argument f
to always return n, from which the assertion then follows directly. Checking the call-site is
more interesting: the implicit parameter [n:Int] says the application is valid iff there exists
a witness n such that the remainder of the specification holds. For foo (\z → 1), we require
that n equals the return value of (\z → 1), i.e. n = 1. Let’s see how to automatically find
such witnesses.

Step 1: Templates. First, we generate templates to represent the types of terms whose
refinements must be inferred. These templates are the base unrefined types for those
terms, refined with predicate variables κ that represent the unknown refinements [34]. For
example, we represent the as-yet unknown type of \z → 1 with the template z : Bool →
{ν : Int | κ(ν)}.

Step 2: Existential Horn Constraints. Next, we traverse the term foo (\z → 1) in a
bidirectional, syntax directed fashion (§5) to generate the ehc in Figure 1a.

Constraint (1) comes from the body of the λ-term \z → 1 and says the type of the returned
value 1, i.e. {ν : Int | ν = 1}, must be a subtype of the output type {ν : Int | κ(ν)}.
Constraint (2) comes from applying foo to the λ-term: the type of which must be a
subtype of foo’s input. Since function outputs are covariant, this means the output type
{ν : Int | κ(ν)} must be a subtype of {ν : Int | ν = n}.

Step 3: NNF Constraints. We say that the ehc in Figure 1a is satisfiable iff there exists a
predicate for κ that, when substituted into the constraint, yields a valid first-order formula.
To determine satisfiability, we transform the ehc into a new constraint shown in Figure 1b
comprising

An nnf Constraint [6], where we replace each existentially quantified n with a universally
quantified version bounded by a predicate variable π, as shown in Constraint (Π), and
An Inhabitation Constraint that each π is non-empty, as shown in Constraint (Σ).

We write π instead of κ here solely to differentiate between predicate variables from the
original ehc and those produced in this translation. Intuitively, if every n satisfying π(n)
satisfies the nnf constraint and π is non-empty, i.e. there exists n such that π(n), then we
can conclude there exists some n that satisfies the original ehc.

Step 4: Solution. We require an assignment to the variables π, κ that makes the constraint
in Figure 1b valid. We first compute the strongest valid solution [10] for κ, which yields
κ(v) .= v = 1. As we require π to be inhabited (Constraint (Σ)), we assign to π the
weakest predicate (as detailed in §6) that makes valid the nnf Constraint (Π), i.e., we assign:
π(n) .= n = 1. The above assignments for κ and π make the nnf constraint in Figure 1b
valid, thus verifying foo (\z → 1).

2.2 Implicit Pair Types
Implicit function parameters ([n:Int] → — ) represent external choice where the implicit’s
value is resolved at the call site. But external choice alone is insufficient to capture every use
of ghost variables. Consider the following example of a function that returns a function:

bar :: () → (Bool → Int)
bar _ = (\z → 1)
let f = bar () in assert (f True == f False)
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∧ ∀z. true ⇒ ∀ν. ν = 1 ⇒ κ(ν) (1)
∧ ∃n. ∀ν. κ(ν) ⇒ ν = n (2)

(a) Existential Horn Clause.

∧ ∀z. true ⇒ ∀ν. ν = 1 ⇒ κ(ν)
∧ ∀n. π(n) ⇒ ∀ν. κ(ν) ⇒ ν = n (Π)
∧ ∃n. π(n) (Σ)

(b) Horn Clause and Side Condition.

Figure 1 Verifying the application foo (\z →1).

Unlike foo, bar instead returns a function f: we want to verify that the two calls to f return
the same value. This simple example models our token stream API: while in fact bar always
returns 1 we do not in general know the exact return value of a computation – for instance
the token returned by next may be retrieved over the network. Suppose, as for foo, we use
an implicit function argument to type bar:

bar :: [n:Int] → () → (Bool → SInt n)

Unfortunately, with this type we cannot verify the body of bar: for any external instantiation
of n, it requires that bar will return a function that returns n, which is not true! Instead, bar
is making an internal choice (specifically, that n = 1). This motivates our notion of implicit
pair types, (written [n:Int]. — ), which add a ghost parameter in the return position of a
function. This lets us specify

bar :: () → [n:Int].( Bool → SInt n)

To verify that the code is safe using this specification, we are once again left with two
tasks: (1) check that the assertion at the use site of bar is valid (2) check at the definition
site that the body of bar meets the specified postcondition. The first task is the easier
one, though it requires an additional step that was not needed in verifying the body of foo.
Externally, the type ([n:Int]. — ) acts as an extra return value that behaves exactly like a
standard (“corporeal”) dependent pair and is assumed to exist in the body of the let. In
order to account for this, we use a type-directed elaboration to automatically insert the
appropriate “unpacking”, giving a name to n at the use site:

unpack (n, f) = bar () in assert (f True == f False)

Verifying the assertion then follows the exact same logic as verifying the body of foo, as f is
constrained to always return a value equal to n.

Now, we turn to the second task: internally, the type ([n:Int]. — ) states that there
exists some “ghost” value n that makes the remaining specification valid. Here, n names the
return value of the function returned by bar (). When checking the body of bar, we will need
to find an instantiation of n and implicitly “pair” or “pack” this value with the type of the
returned function (\z → 1). Here, clearly the instantiation is n = 1. Note how the process
of checking the definition site of bar mirrors that of checking the use site foo (\z → 1). In
fact, checking the body of bar will generate the exact same constraints shown in Figure 1,
which will be solved by the same process, producing the same solution, which suffices to
verify that bar implements its specification.

2.3 State
Next, we show how Implicit Refinement Types allow us to develop a new way of typing
stateful computations, represented as higher-order state transformers. The key challenge
here is to devise specification mechanisms that can relate the state after the transformation
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18:6 Refinements of Futures Past

-- | A Hoare -style State Transformer --------------------------------
data HST p q s a = State (s → (s, a))
type SST w_in w_out s a = HST {w|w = w_in} {w|w = w_out} s a

-- | Read and write the state ---------------------------------------
get :: [w:s] → SST w w s {v:s|v = w}
get = State (\s → (s, s))

set :: w:s → HST s {v:s|v = w} s ()
set w = State (\_ → (w, ()))

-- | Monadic Interface for HST --------------------------------------
pure :: [w:s] → x:a → SST w w s a
»= :: [w1 w2 w3] →

SST w1 w2 s a → (a → SST w2 w3 s b) → SST w1 w3 s b

-- | Client : Computing a "fresh" Int -------------------------------
fresh :: [n:Int] → SST n (n + 1) Int n
fresh = do { n ← get; set (n + 1); pure n }

Figure 2 Typing Stateful Computations using Implicits.

with the state before. For example, to say that some function increments a counter, we need
a way to say that the value of the counter after the transformation is one greater than the
value before. Previous methods do this either by typing the computation with two-state
predicates (as in YNot [29]) or with a predicate transformer that computes the value of the
input state in terms of the output [38].

Implicit Refinement Types enable a new way to relate the input and output states while
still ensuring that each atomic component of the specification simply refers to a single value.
We will see that implicits are the crucial ingredient, allowing us to name – and hence, reason
about – the output state, much as they did in the simplified foo and bar functions.

A Hoare-Style State Transformer Monad. First, as shown in Figure 2, we define a state
transformer monad indexed by the type of the state s and the computation’s result a. We
call this a Hoare State Monad as it is also indexed with two phantom parameters p and q
which will be refinement types describing the input and output states of the transformer. For
convenience, we also define the singleton version SST i o s a where the pre-condition and
post-conditions are singleton types that say that the input (resp. output) state is exactly i
(resp. o). We can write a combinator to get the “current state”, represented by the implicit
parameter w that is both the input and output state, and also used in the singleton type of
the result of the computation. Finally, we can write a combinator to set the state to some
new (explicitly passed) value w, in which case, the input state can be any s.

A Monadic Interface using Implicit States. Next, we develop a monadic interface for
programming with HST, by implementing the pure and »= combinators whose types use
implicit parameters to relate their input and output states. The pure combinator takes an
implicit w and returns a “pure” computation SST w w s a whose result is the input x and
where the state is unchanged, i.e. where the input and output states are both w. The bind
combinator ( »=) combines transforms from w1 to w2, and from w2 to w3 into a single transform
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-- | Access control policy State Transformer ------------------------
type AC p1 p2 a = SST p1 p2 (Set String) a

-- | Grant or revoke access to a file path --------------------------
grant :: [p:Set String] → f:String → AC p (p ∪ single f) ()
grant f = State (\p → (insert f p, ()))

revoke :: [p:Set String] → f:String → AC p {v|v = p - single f} ()
revoke f = State (\p → (delete f p, ()))

read :: [p:Set String] → {f:String|f ∈ p} → AC p p String
read f = State (\p → (p, "file␣contents"))

-- | How one might safely read a file -------------------------------
main = runST {} (do grant "f.txt"; read "f.txt")

-- | Enabling dynamic access control policies -----------------------
canRead :: [p:Set String] → f:String → AC p p {v:Bool|v = f ∈ p}
canRead f = State (\p → (p, member f p))

safeRead :: [p:Set String] → f:String → AC p p (Maybe String)
safeRead f = do { r ← canRead;

if r then Just <$> read f
else pure Nothing }

Figure 3 Verifying Access Control Policies.

from w1 to w3. Here, one can think of w1 as a history variable summarizing the state of the
world before the transformed computation and w2 and w3 as prophecy variables predicting
what the respective sub-transformers will compute. The implicit refinement specification
then ensures that these ghost variables all align appropriately.

Verifying Clients. We can use our interface to write a specification and implementation
of the function fresh that “increments” a counter captured by the state parameter. This
program gets an integer state n, and sets it to n + 1, and then returns n. The do-notation
desugars into the monadic interface shown above in Figure 2. The specification captures
the fact that the “counter” is incremented by relating the input and output states via the
implicit parameter n. Notice that the implicit parameters are doubly crucial: first, they let
us relate the input- and output-states, and second, they make programming pleasant by not
requiring the programmer tediously spell out the intermediate states.

2.4 Access Control

The refined Hoare State Transformer lets us specify and verify the access control and token
stream examples from §1. In Figure 3 we show how we can instantiate it with refinements over
the theory of sets to derive a stateful API representing the verified access control primitives
of grant and read. We first define AC as a specialization of the SST monad where we track file
access permissions as a set of filenames both at the runtime level and – using implicits to
relate the input and output states – at the type level.

ECOOP 2021



18:8 Refinements of Futures Past

-- | Token State Transformer ----------------------------------------
type TokM m1 m2 a = SST m1 m2 Tk a

-- | Start a stream , Get the next token unless the stream is done --
done :: Tk
init :: [t:Tk]. TokM {} (store {} t ⊤) {v|v = t}
next :: [m:Map Tk Bool] → t:{Tk | (select m t) /\ (not (t = done))}

→ ([t’:Tk]. TokM m (store (store m t ⊥) t’ ⊤) t’)

-- | Looping through all tokens ------------------------------------
client :: [m:Map Tk Bool] →

t:{ select m t} → TokM m {m’| select m’ done} ()
client t = if t == done then pure ()

else do {t’ ← next t; client t’}

-- | Starting the stream and running client ------------------------
main :: TokM {} {m|select m done} ()
main = do {t ← init; client t}

Figure 4 Verifying a Token Stream API.

An API for safe file access. We use the AC monad to develop an API that statically enforces
compliance with an access control list (acl). The grant primitive adds a file name to the
access list, and read statically checks that the file is in the acl and – for simplicity – just
returns the string "file␣contents". In conjunction with the implementations of pure and »=
from Figure 2, the combinators can be used to verify main which, running with an initial
empty access control list, grants permission to read a file then reads the file. If we accidentally
tried to read from, say, "secret-password.txt", the type checker would reject the program
as unsafe.

Dynamic policies. Systems enforcing access control policies in practice [28] are not neces-
sarily limited to a static policy – instead, they define a checked read, which checks at runtime
whether a file is in the access control list, and then reads that file, returning a failure result
if the permission check fails. We enable this via canRead, which determines if a file is in the
dynamic acl. This is reflected at the type level by passing in an implicit access control list
p and specifying that canRead returns true iff its argument is in the acl p. We then use
canRead to define safeRead, which can be called with no conditions on the acl. Instead, it
uses canRead to dynamically check permissions, returning Nothing on failure. Crucially, to
verify main and safeRead we do not need to tediously instantiate ghost variables, as Implicit
Refinement Types automatically infer the suitable instantiations.

2.5 Token Stream
The Hoare State Transformer can be used to verify the token stream example of §1. In
Figure 4 we show how to instantiate it with refinements over maps that track the validity
of tokens. First, we define a specialization of the SST monad named TokM whose concrete
state is a token (of type Tk) that tracks the last token we sent. TokM’s ghost state is a map of
the status of every token. That is, select m t represents the proposition that the token t is
valid (the next value to pass to the API): if select m t = ⊤ (shorthand for true), then t is
valid. Otherwise, select m t = ⊥ (shorthand for false) means that the token t has been
used and is now invalid.
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-- | Singletons as resource counts ----------------------------------
data Tick t a = Tick a
type T t a = Tick {v:Int | v = t} a

-- | The Applicative Functor API ------------------------------------
<*> :: [n:Int m:Int] → T n (a → b) → T m a → T (n + m) b
</> :: [n:Int m:Int] → T n (a → b) → T m a → T (n + m + 1) b
pure :: x → T 0 a

-- | Appending two lists in a linear number of steps ----------------
++ :: xs:(List a) → ys:(List a)

→ T (len xs) {v|len v = len xs + len ys}
[] ++ ys = pure ys
(x:xs ’) ++ ys = pure (x:) </> (xs’ ++ ys)

-- | Mapping a costly function over a list --------------------------
mapA :: [n] → (a → T n b) → xs:List a → T (n * len xs) (List b)
mapA f [] = pure []
mapA f (x:xs) = pure (:) <*> f x <*> mapA f xs

Figure 5 Intrinsic Verification of Resource Usage.

An API for streaming tokens. The TokM monad lets us specify and verify the token
streaming API from Section 1. First, we specify a special token done that represents the
last token of the stream. On the other hand, init represents a computation that begins the
stream using an implicit pair to capture that there is some valid token t resulting from the
computation of init. Moreover, init starts with the empty map (with no stale tokens) to
ensure that we may only begin the stream once.

The workhorse of this API is next. It first takes an implicit history parameter m repre-
senting all of the past tokens. We then check that the token t passed in is not the done token,
and use m to constrain t to be valid (select m t). Finally, another implicit pair is used to
produce the prophecy variable t’ which is both the next value returned by the computation,
and the next valid token as noted by the ghost state, which also marks the old token t
invalid.

We can now develop the client, which recursively consumes the remaining stream of
tokens. Were we to attempt to reuse the token t in the recursive call the program will be
correctly rejected as unsafe. main kicks off the stream with init and consumes it using client.
Thus, implicit refinements eliminate the tedium of manually instantiating ghosts.

2.6 Intrinsic Verification of Resource Usage
Next, we demonstrate how implicit refinement types can be used for specifying higher-order
programs beyond the state monad: in particular, tracking resource usage. Figure 5 defines an
applicative functor for counting resource usage in the same style as Handley et al. [19]. This
API has both the standard application operator <*> and a resource-consuming application
operator </>. The API counts the number of times we use the </> operator, which allows
us to apply a function f with cost n to an argument x of cost m, incurring a total cost of
n + m + 1.

Handley et al. [19] show these combinators can be used to verify properties about resource
usage. We adapt their example of counting the recursive steps in xs ++ ys. At each recursive
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18:10 Refinements of Futures Past

step, we append another element x to the beginning of the list using pure (x:)</>. Ultimately
(++ ) will use len xs applications of this operator to build this list, verifying that ( ++) is
linear in the first argument.

Using this API we can further define the higher-order constant-resource combinator mapA,
which allows us to map a function f of constant cost n over a list xs, and automatically verify
that doing so costs n * len xs. This is easy to specify with implicit refinement types: the
implicit argument lifts the output cost of the function argument so that we may relate it
with the overall cost of calling mapA.

Two-State Specifications. It is worth pausing here to recall the standard technique for
specifying effectful programs like the ones we have shown: the two-state specifications that
allow expressing the input and output requirements of a particular computation. For instance,
fresh (Figure 2) would be given a specification such as requires (\s → ⊤) ensures (\s
o s’ → s’ = s + 1 ∧ o = s) where s and s’ represent the input and output state and o
represents the output of the computation. Notably, even if our language included such two-
state specifications, specifying mapA would still require an extra parameter, as the relationship
between the start and end “states” of mapA depends on the relationship between the start
and end “states” of the (a → T n b) argument.

On the other hand, implicit refinements scale from capturing relations between the inputs
and outputs of a single computation to relating a higher-order computation to its function
argument(s) without having to “hardwire” some notion of two-states or pre/post conditions.
Instead, they allow us to name the input and output worlds and lift them to the top level,
which allows assertions (refinements) that span those states/worlds, including in examples
such as mapA. The key contribution of Implicit Refinement Types then is that they work both
for classic two-state specifications and other use-cases where two-state specifications prove
cumbersome and allow the necessary extra parameter of functions like mapA to be instantiated
automatically.

3 Programs

We start with a declarative static semantics for our elaborated core language λR. Our
discussion here omits polymorphism as it is orthogonal to adding implicit types. (The full
system can be found in the extended edition [40]).

3.1 Syntax

Figure 6 presents the syntax of our source language – a lambda calculus with refinement
types, extended with implicit function and dependent pair types.

Types. of λR begin with base types Int and Bool, which are refined with a (boolean-valued)
expression r to form refined base types {x : b | r}. Next, λR has dependent function types
x : t1 → t2. Dependent function types are complemented by implicit dependent function types
[x : t1] → t2, which are similar, except that the parameter x is passed implicitly, and does
not occur at runtime. Dually, we have implicit dependent pairs [x : t1].t2, which represent a
pair of values: The first, named x, of type t1, is implicit (automatically determined) and
does not occur at runtime. Meanwhile, the second is of type t2 which may refer to x. We
use τ to denote unrefined types.



A. Tondwalkar, M. Kolosick, and R. Jhala 18:11

Types
b ::= Int | Bool | · · ·
t ::= {x : b | r} | x : t→ t | [x : t]→ t | [x : t].t
Terms
c ::= false, true | 0, 1, . . . | ∧,∨, +,−, =,≤, . . .

e ::= c | x | λx : t.e | e e | let x : t = e in e | λix : t.e | unpack (x, y) = e in e

Contexts
Γ ::= • | Γ, x : t | Γ, [x : t]

Type Checking Γ ⊢ e : t

T-AbsI
Γ, [x : tx] ⊢ e : t

Γ ⊢ λix : tx.e : ([x : tx]→ t)

T-App
Γ ⊢ e1 : t Γ | t ⊢ e2 : t′

Γ ⊢ e1 e2 : t′

T-Var
x : t ∈ Γ
Γ ⊢ x : t

T-Let-τ
Γ ⊢ ex : tx Γ, x : tx ⊢ e : t

Γ ⊢ t Γ ⊢ tx ⌊tx⌋ = τ

Γ ⊢ let x : τ = ex in e : t

T-Unpack
Γ ⊢ e1 : [x′ : t1].t2

Γ, [x : t1], y : t2[x/x′] ⊢ e2 : t Γ ⊢ t

Γ ⊢ unpack (x, y) = e1 in e2 : t

Application Checking Γ | t1 ⊢ e : t2

AppI
Γ | t[e′/x] ⊢ e : t′ ⟨Γ⟩ ⊢ e′ : tx

Γ | [x : tx]→ t ⊢ e : t′

App e

Γ ⊢ e : te Γ ⊢ te ⪯ tx

Γ, y : te ⊢ t[y/x] ⪯ t′ Γ ⊢ t′ y fresh
Γ | x : tx → t ⊢ e : t′

Subtyping Γ ⊢ t1 ⪯ t2

⪯-Base
JΓK(∀v1 : b.r1⇒r2[v1/v2]) is valid

Γ ⊢ {v1 : b | r1} ⪯ {v2 : b | r2}

⪯R
ipair

Γ ⊢ t1 ⪯ t′
2[e/x] ⟨Γ⟩ ⊢ e : t2

Γ ⊢ t1 ⪯ [x : t2].t′
2

Figure 6 Syntax and static semantics of λR.

Terms. of λR comprise constants (booleans, integers and primitive operations) and expres-
sions. Let binders are half-annotated with either a refinement type to be checked, or a base
type on which refinements are to be inferred.

In addition to explicit function abstraction, λR has the implicit λ-former λix : t.e, where
the parameter x represents a ghost value that can only appear in refinement types. Implicit
functions are instantiated automatically, so there is no syntax for eliminating them. Similarly,
implicit dependent pairs are introduced automatically, and thus have no introduction form
in λR. Instead, implicit dependent pairs have an elimination form unpack (x, y) = e1 in e2.
Here, if e1 is of type [x : tx].t, then x is bound at type tx and y is bound at type t in e2. Just
like with implicit functions the x represents a ghost value that may only appear in refinement
types.

Though both implicit lambda and unpack terms are present in our model, in practice we
handle their insertion by elaboration: we discuss this aspect of our implementation in §7.
In light of this, we develop the theory of Implicit Refinement Types in terms of the fully
elaborated expressions of the λR syntax.

ECOOP 2021



18:12 Refinements of Futures Past

Contexts. of λR, written Γ, comprise the usual ordered sequences of “corporeal” binders
x : t, where x is visible in both terms and refinements, as well as ghost binders [x : t], where
x is only visible in refinements.

3.2 Static Semantics

Figure 6 provides an excerpt of the declarative typing rules for λR (the complete rules are in
the extended edition [40]). Most of the rules are standard for refinement types [34] so we
focus our attention on the novel rules regarding implicit types.

Type Checking. judgments of the form Γ ⊢ e : t mean “in context Γ, the term e has type t.”
The ghost binders in Γ, written [x : t], reflect the ghostly, refinement-only nature of implicits.
This distinction is witnessed by the rule [T-Var] which types term-level variables using only
the corporeal binders x : t in Γ. This ensures that implicit variables are erasable: they can
only appear in types (specifications) and thus cannot affect computation.

With the separation of ghostly (erasable) implicit binders from corporeal (computation-
ally relevant) binders, both the introduction rule for implicit functions [T-AbsI] and the
elimination rule for implicit pairs [T-Unpack] are standard up to the ghostliness of binders.
Implicit pairs are eliminated through “unpacking” as is typical for dependent pairs and
existential types. The rule [T-Let-τ ] demonstrates how we handle annotations at unrefined
base types τ : we pick some well-formed refinement type tx that erases to the base type
⌊tx⌋ = τ , and then use tx as the bound type of x.

Lastly, we split off type checking of applications into an application checking judgment,
in order to handle instantiations of implicit functions. In the rule [T-App] we use this
additional judgment to check that the argument e2 is compatible with the input type of e1.

Application Checking. judgments of the form Γ | t ⊢ e : t′ mean “when e is the argument
to a function of type t the result has type t′”. The (corporeal) application rule [App e], finds
the type te of e, checks that this is consistent with the input type tx of the function, and
then creates a new name y to refer to e so that we may substitute it into the return type.
However, y is not bound in Γ so we guess a type t′, well-formed under Γ, for the entire term,
and check that the return type t[y/x] is a subtype of t′. The rule [AppI] checks implicit
applications by guessing an expression e′ at which to instantiate the implicit parameter. This
e is only used at the refinement-level and is thus allowed to range over both corporeal and
ghost binders in Γ, as described by the antecedent ⟨Γ⟩ ⊢ e : t. (⟨Γ⟩ replaces each ghost binder
[x : t] in Γ with a corresponding corporeal binder ⟨[x : t]⟩ = x : t.) The rule then continues
along the spine of the application, further instantiating implicit parameters as necessary
until we can apply the rule [App e].

Subtyping Judgments. of the form Γ ⊢ t1 ⪯ t2 mean “in context Γ, the values of t1 are
a subset of the values of t2.” Most of the rules are standard, with the base case [⪯-Base]
reducing to a verification condition (VC) that checks if one refinement implies another.
[⪯R

ipair] serves as the “introduction form” for implicit pairs, and states that a term of type t1
can be used as an implicit pair type if there is some expression e of type t2 such that t1 is a
subtype of t′

2 instantiated with that e. Note that this is similar to explicitly constructing the
dependent pair with e as the first element.
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Predicates r ::= . . . varies . . .
Types τ ::= . . . varies . . .

Propositions p ::= κ(x) | r

Existential Horn Clauses c ::= ∃x : τ.c | c ∧ c | ∀x : τ.p⇒ c | p

First Order Assignments Ψ ::= • | Ψ, r/x

Second Order Assignments ∆ ::= • | ∆, λx.r/κ

Figure 7 Syntax of LS .

4 Logic

We define the syntax and semantics of verification conditions (VCs) generated by rule
[⪯-Base]. Figure 7 summarizes the syntax of VCs, Existential Horn Clauses (ehc), which
extends the nnf Horn Clauses used in Cosman and Jhala [10] with existential binders.
Predicates r range over a decidable background theory. Propositions p include predicates
and second order predicate variables κ(x). Clauses c comprise quantifiers, conjunction, and
propositions. In the syntax tree of clauses, there are two places a κ variable may appear:
as a leaf (head position), or in an antecedent under a universal quantifier ∀x : τ.κ(y) ⇒ c,
(guard position).

Dependencies of an ehc constraint c are the set E of pairs (κ, κ′) such that κ appears in
guard position in c and κ′ appears in head position under that guard. When (κ, κ′) ∈ E, we
say that κ depends on κ′, or, dually, κ′ appears under κ. The cycles in a constraint c are
nonempty sets S of predicate variables such that: for all κ ∈ S, there exists κ′ ∈ S such that
(κ, κ′) ∈ E. A set of predicate variables S is said to be acyclic in c, if all cycles in c contain
at least one predicate variable not in S. A predicate variable κ is said to be acyclic in c, if
no cycles in c contain κ. A constraint c is said to be acyclic if there are no cycles in c.

Semantics. [⪯-Base] checks the validity of the formula obtained by interpreting contexts
and terms in our constraint logic, (formalized by J·K in the extended edition [40]). Contexts
Γ yield a sequence of universal quantifiers for all variables bound at (interpretable) basic
types. Recall that VCs do not contain predicate variables κ(x). The restricted grammar of
the VCs is designed to be amenable to SMT solvers, represented by an oracle Valid(c) that
checks validity, defined at the end of this section.

We eliminate predicate variables κ via substitution, c[∆] (defined in the extended edi-
tion [40]) that map them onto meta-level lambdas λx.p. We represent solutions to existential
binders with a substitution (Ψ) binding existential variables to predicates. We define an
existential substitution c{r/x} recursively over c which removes the corresponding existential
binder, using standard substitution to replace x with its solution r: (∃x : τ.c){r/x} .= c[r/x].

Ehc Validity is then defined by the judgment ∆; Ψ ⊨ c. Intuitively, c is valid under the
substitutions ∆, Ψ if the result of applying the substitutions yields a VC that is valid. We
say that an ehc is satisfiable, written ⊨ c if there exist ∆ and Γ such that ∆; Γ ⊨ c. We say
that c and c′ are equisatisfiable when ⊨ c iff ⊨ c′.

5 Type Inference

The declarative semantics described in Figure 6 are decidedly non-deterministic. This is
most evident in the rules for implicits, such as [AppI] and [⪯R

ipair], where, out of thin air, we
generate an expression to instantiate the implicit parameter. Additional non-determinism
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Subtyping Γ ⊢ t1 <: t2 ⊣ c

c = ∀x : τ.JrK⇒ Jr′[x/y]K
Γ ⊢ {x : τ | r} <: {y : τ | r′} ⊣ c

Γ, z : t2 ⊢ t1 <: t′
2[z/x] ⊣ c z fresh

Γ ⊢ t1 <: [x : t2].t′
2 ⊣ ∃z :: t2.c

Checking Γ ⊢ e⇐ t ⊣ c

C-Sub
Γ ⊢ e⇒ t′ ⊣ c

Γ ⊢ t′ <: t ⊣ c′

Γ ⊢ e⇐ t ⊣ c ∧ c′

C-Let-τ
Γ ⊢ e1 ⇐ t̂ ⊣ c1

Γ, x : t̂ ⊢ e2 ⇐ t ⊣ c2 t̂ = fresh(Γ, τ)
Γ ⊢ let x : τ = e1 in e2 ⇐ t ⊣ c1 ∧ (x :: t̂⇒ c2)

Γ ⊢ e1 ⇒ [x′ : t1].t2 ⊣ c1 Γ, [x : t1], y : t′
2 ⊢ e2 ⇐ t ⊣ c2

t′
2 = t2[x/x′] c = c1 ∧ (x :: t1 ⇒ (y :: t′

2 ⇒ c2))
Γ ⊢ unpack (x, y) = e1 in e2 ⇐ t ⊣ c

Γ ⊢ e1 ⇒ t′ ⊣ c1

Γ | t′ ⊢ e2 ≪ t ⊣ c2

Γ ⊢ e1 e2 ⇐ t ⊣ c1 ∧ c2

Synthesis Γ ⊢ e⇒ t ⊣ c

x : t ∈ Γ
Γ ⊢ x⇒ t ⊣ ⊤

Γ ⊢ e1 ⇒ t1 ⊣ c1 Γ | t1 ⊢ e2 ≫ t2 ⊣ c2

Γ ⊢ e1 e2 ⇒ t2 ⊣ c1 ∧ c2

Application Checking Γ | t ⊢ e≪ t′ ⊣ c

C-App-→
Γ ⊢ y ⇐ tx ⊣ c1 Γ ⊢ t[y/x] <: t′ ⊣ c2

Γ | x : tx → t ⊢ y ≪ t′ ⊣ c1 ∧ c2

C-App-IFun
Γ, [z : tx] | t[z/x] ⊢ y ≪ t′ ⊣ c z fresh

Γ | [x : tx]→ t ⊢ e≪ t′ ⊣ ∃z :: tx.c

Figure 8 Constraint Generation.

appears in rules like [T-Unpack], where a refinement type must be picked such that it is
well-formed under the outer context Γ. This is required as the body of the unpack expression
is checked under Γ extended with the binders x and y, but the type must be well-formed
under Γ itself to ensure that these variables do not escape (since they may appear in the
type t).

We account for all of the non-determinism of the declarative semantics with an algorithmic,
bidirectional type inference system [32, 15], excerpts of which are shown in Figure 8 (the full
rules are in the extended edition [40]). We split the declarative type checking judgments into
two forms: synthesis (Γ ⊢ e ⇒ t ⊣ c) and checking (Γ ⊢ e ⇐ t ⊣ c) along with corresponding
application synthesis (Γ | t ⊢ y ≫ t′ ⊣ c) and application checking (Γ | t ⊢ y ≪ t′ ⊣ c) forms.
Synthesis forms produce the type as an output while checking forms take the type as an
input. We also introduce an algorithmic subtyping judgment (Γ ⊢ t1 <: t2 ⊣ c). In addition
to their other outputs, these judgments produce an ehc c as an output. The core of our
inference algorithm is precisely in extending the restricted grammar of verification conditions
to an ehc that captures the constraints on the non-deterministic choices. Inference then
reduces to the satisfiability of the constraint c (as checked in §6).

5.1 Constraining Unknown Refinements
Consider the following λR program from §2.1:

example = let y : (Bool → Int) = λz :Bool.1 in foo y.

recalling that foo has the type [n : Int] → (Bool → {v : Int | v = n}) → Unit. We wish to
check that this program is safe by checking that it types with type Unit.
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To type example in our declarative semantics, we first need to apply the rule [T-Let-τ ]
which non-deterministically chooses a tx, well-formed under Γ (Γ ⊢ tx), such that tx is
consistent with the base type (⌊tx⌋ = Bool → Int). To capture picking this refinement type
we employ predicate variables that represent unknown refinements, as is standard in the
refinement type inference literature [23, 34]. As we know the type we wish to give example,
we will focus on the checking rule [C-Let-τ ]. We generate a fresh refinement type using
fresh, which takes as input a type t and the current context Γ and then produces a refinement
type, where each base type is refined by a fresh predicate variable κ(x), where x are all of
the variables bound in the context, all of which can appear in refinements at this location.
In our example, this would give the type t̂ = z : {v : Bool | κ1(v)} → {v : Int | κ2(z, v)}.

We then check λz : Bool.1 at the refinement type t̂. Now, we use the rule [C-Sub] to
synthesize a type for this term and then use subtyping to check that the synthesized type is
subsumed by t̂. The synthesized type will be z : {v : Bool | κ3(v)} → {v : Int | v = 1} and the
subtyping check will generate the following constraint which is equivalent to (1) in Figure 1a
modulo the administrative predicate variable κ3 and a simplification of the unconstrained κ1:

∧ ∀v. κ1(v) ⇒ κ3(v)
∧ ∀z. κ1(z) ⇒ ∀v. v = 1 ⇒ κ2(z, v)

There is a subtlety in how [C-Let-τ ] generates the quantified subformula ∀z. κ1(z) ⇒ · · · :
this formula is generated by the clause x :: t̂ ⇒ c2 where the double colon represents a
generalized implication that drops any variables quantified at non-base types (as only base
types are interpreted into the refinement logic).

x :: {x : b | r} ⇒ c
.= ∀x : b.r ⇒ c x :: t ⇒ c

.= c

5.2 Constraining Implicit Application
The predicate variables let us capture guessed refinement types as second order con-
straints. Next we turn to checking the implicit application foo y. foo has the type
[n : Int] → (Bool → {v : Int | v = n}) → Unit, so the declarative semantics arbitrarily picks
an expression e of type Int to instantiate n. In the algorithmic type system, we capture
the constraints on this choice with the existential quantifiers of our ehc. This is shown in
the application checking rule [C-App-IFun] (the corresponding application synthesis rule
[S-App-IFun] appears in the extended edition [40]).

Recall that the judgment Γ | t ⊢ e ≪ t′ ⊣ c says that we are checking an application of a
term of type t to an argument e and require that the application has the type t′. Here, we
are checking foo y against the type Unit. Our bidirectional rule [C-App-IFun] “guesses” the
instantiation by generating a fresh variable n and binding it at the type Int. This variable is
added to the context as predicate variables may depend on it. We then generate a constraint
∃n :: Int.c which says that our guessed n must be consistent with c, the constraint generated
by continuing to check down the abstract syntax tree (along the spine of the application
of the revealed function type t[y/x] = (Int → {v : Int | v = n}) → Unit). ∃n :: Int.c is the
existential counterpart to the generalized implication n :: Int ⇒ c:

∃x :: {x : b | r}.c
.= ∃x : b.(r ∧ c) ∃x :: t.c

.= c

This is now a concrete function type and the rule [C-App-→] will check that the argument y

has the type Int → {v : Int | v = n} and that the type Unit is a subtype of Unit. Checking
the implicit and then concrete application thus generates the constraints ∃n.(∀v. ⊤ ⇒
κ1(v) ∧ ∀v. κ2(_, v) ⇒ v = n).
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Combining these constraints with those generated from checking λz : Bool.1, we get
constraints equivalent to those in Figure 1a. A satisfying assignment is:

∆ = [λz, v.v = 1/κ1, λv.⊤/κ2, λv.⊤/κ3] Ψ = [1/v]

Satisfying solutions to the predicate variables and existential constraints give instantiations
to the angelic choices of refinement types and implicit arguments respectively. This gives
us the following soundness theorem for our type inference algorithm (where the function
kvars(c) returns the set of predicate variables in c):

▶ Theorem 1 (Soundness of Type Inference). If • ⊢ e ⇒ t ⊣ c, ∆; Ψ ⊨ c, and kvars(t) ⊆
domain(∆), then • ⊢ e : ∆(t).

6 Solving

The constraints generated by algorithmic type checking have both predicate variables and
alternating universal and existential quantifiers. We must provide solutions to both predicate
variables and existential variables before we can use SMT solvers to check the validity of a
VC (§4). We compute solutions in four steps:
1. We transform the ehc by skolemization to replace existential variables with universally

quantified predicate variables and inhabitation side conditions.
2. We eliminate the original predicate variables.
3. We solve the skolem predicate variables.
4. Finally, we check the inhabitation side conditions.

Weakening and Strengthening. A function f on constraints is a strengthening when
∀c. f(c) ⇒ c. A function f on constraints is a weakening when ∀c. c ⇒ f(c). We prove that,
if the transformations in steps 1 and 2 above are both weakening and strengthening, our
algorithm produces a verification condition that is equisatisfiable with the original constraint,
i.e. our algorithm is sound and complete.

Separable Constraints. An ehc c is separable if it can be written as a conjunction c1 ∧ c2,
where c1 is an nnf Horn clause and c2 is an acyclic ehc. The following theorem exactly
characterizes separable ehcs:

▶ Theorem 2. c is separable iff there are no cyclic κs under existential binders.

There are standard partial techniques for solving cyclic nnf Horn clauses [6, 10] so the task
of solving a separable ehc can be split into applying one of these existing techniques and
then solving the acyclic ehc. Consequently, all a programmer must do to make constraints
separable is provide either a local solution to an implicit variable via an explicit value or
a solution to a cyclic predicate variable (e.g. by providing a type signature for a recursive
function.)

Thus, in the sequel, we focus on the remaining problem: solving an acyclic ehc. We use
the acyclic ehc from Figure 1a (reproduced below) as a running example. Recall that this
is a simplified version of the constraints generated during type inference on the program
example in §5.1 and §5.2.

∧ ∀z. ⊤ ⇒ ∀ν. ν = 1 ⇒ κ(ν) (3)
∧ ∃n.∀ν. κ(ν) ⇒ ν = n (4)
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Step 1: Skolemization. We use the function skolem to transform the ehc c to a conjunction
of an nnf Horn Clause noside(skolem(∅, c)) and side conditions side(skolem(∅, c)). This differs
from textbook skolemization in two important ways: We replace each existential quantifier
∃n.c with Skolem predicates ∀n.πn(n, x) ⇒ c rather than Skolem functions, so that we can
synthesize a (declarative) relation rather than a function. As a result, we must still check
to make sure that this relation is inhabited. We do so by producing the side condition
∃n.πn(n, x). Our transformation Skolemizes the existential binding (4) of our example as
follows:

∧ ∀z. ⊤ ⇒ ∀ν. ν = 1 ⇒ κ(ν) (5)
∧ ∀n.π(n) ⇒ ∀ν. κ(ν) ⇒ ν = n (6)
∧ ∃n.π(n) (7)

This transformation will be crucial later: giving a name to π allows us to separate the
inhabitation and sufficiency constraints on n.

skolem yields an nnf that has two classes of predicate variables: Skolem predicates
corresponding to existential binders (written πn) that have an inhabitation side condition,
and predicate variables corresponding to unknown refinements (written κ). The πn only
appear negatively, so the standard technique of finding the least fixed point solution [34, 10]
would simply return ⊥, which will fail the inhabitation side conditions. Instead, we would
like to compute the greatest fixed point solution for each πn, but, for efficiency reasons, do
not wish to compute the greatest fixed point solution of every predicate variable. Fortunately
Cosman and Jhala [10] show that acyclic predicate variables can be eliminated one by one.
We explain first how to eliminate κ variables and then how to eliminate π variables.

Step 2: Eliminating κ-Variables from c. Procedure elim1 of [10] eliminates each individual
acyclic predicate variable, κ, in an nnf Horn Clause. Briefly, given a predicate variable κ in
an nnf Horn Clause c, the procedure computes the strongest solution for κ: solκ(κ, c), and
then substitutes the solution into c. For the single κ in our example this solution solκ(κ, c)
is λx.(∃z′.⊤ ∧ (∃v′.v′ = 1 ∧ v′ = x)). After substitution and simplification we get

∧ ∀n.π(n) ⇒ ∀v.⊤ ⇒ ∀z′.⊤ ⇒ ∀v′.v′ = 1 ⇒ v = v′ ∧ v = n

∧ ∃n.π(n)

Step 3: Eliminating Skolem Variables. elim1 removes all the κ predicate variables leaving
only the πn variables inserted by skolem. The inhabitation side conditions require we find
the greatest fixed point (gfp) solution to these variables to ensure we do not spuriously
eliminate witnesses. As πn only appears negatively (in guards), the gfp is the conjunction
of every c appearing as ∀n.πn(n, x) ⇒ c. For a given πn appearing in the constraint c′, we
write this gfp as defπ(πn, c′), the defining constraint of πn.

A first challenge arises in that we wish to use these solutions to eliminate the Skolem
predicate variables, but defπ(πn, c′) is a conjunction of clauses featuring quantifiers. As
the Skolem variables appear in guards, we must transform these c into an equisatisfiable
predicate p before we may substitute, so we parameterize our elimination algorithms with a
quantifier elimination algorithm qe that handles this task. qe can vary with the particular
domain and, for domains that do not admit quantifier elimination or where it is infeasible,
we instead use an approximation described in §6.1.
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elimπ∗
qe : P C → Π × CΠ × C → C

elimπ∗
qe([], σ, c) .= c

elimπ∗
qe(πn : π, σ, c) .= elimπ∗

qe(π, σ, c[λx.p/πn])
where p = qe(solπqe({πn}, σ, σ(πn)))

solπqe : P C → Π × CΠ × C → C

solπqe(π, σ, ∀n.πn(n, x) ⇒ c)
| πn ∈ π

.= solπqe(π, σ, c)
| πn /∈ π

.= ∀n.p ⇒ solπqe(π, σ, c)
where p = qe(solπqe(π ∪ {πn}, σ, σ(πn)))

solπqe(π, σ, ∀x.p ⇒ c) .= ∀x.p ⇒ solπqe(π, σ, c)
solπqe(π, σ, c1 ∧ c2) .= solπqe(π, σ, c1) ∧ solπqe(π, σ, c2)
solπqe(π, σ, p) .= p

Figure 9 Eliminating π Variables and their Side Conditions.

A second technical challenge arises en route to our solving algorithm: defπ(πn, c′) may
contain other π variables and may contain cycles involving π variables. Fortunately, recursive
Skolem variables are redundant:

▶ Lemma 3. If πn is a predicate variable inserted by skolem, then ⊨ ∀n.πn(n, x) ⇒ c iff
⊨ ∀n.π(n, x) ⇒ c[λ_.⊤/π].

This lets us to break cycles by ignoring recursive occurrences of Skolem variables.
With this result in hand, we develop the procedure solπqe, as shown in Figure 9. solπqe

recursively eliminates Skolem variables from the defining constraint of πn, using qe to
transform a nested Skolem variable’s defining constraint (tracked in the map σ) into a
substitutable predicate. The first argument π tracks the seen Skolem variables, treating
them as if they were solved to ⊤ when they next occur.

solπqe is used in the procedure elimπ∗
qe which eliminates all Skolem variables from the

constraint one πn at a time. elimπ∗
qe simply calls solπqe on the defining constraint of πn and

then qe’s the result (now free of Skolem variables) before substituting the returned predicate
as the solution for πn.

Regardless of the properties of qe we have the following soundness theorem:

▶ Theorem 4. If c′ = skolem(∅, c), π is the set of all Skolem variables in c′, c′ has no other
predicate variables, σ(πn) = defπ(πn, c′) for all πn ∈ π, and ⊨ elimπ∗

qe(π, σ, c′) then ⊨ c.

If qe is a strengthening and a weakening, the converse also holds and our algorithm is
complete.

Step 4: Putting It All Together. The procedure safe (defined in the extended edition [40])
puts together all the pieces to automatically check the validity of acyclic ehc constraints c.
Like solπ and elimπ∗, safe is parameterized by the quantifier elimination procedure qe. safe
first Skolemizes the constraint c and then solves the original predicate variables by repeated
applications of elim1. Next, safe collects the defining constraints of the Skolem predicate
variables and uses elimπ∗

qe to solve and eliminate the Skolem variables. This leaves us with
a predicate-variable-free constraint, but still featuring nested existential quantifiers from
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Table 1 Comparison of systems: ✓on “Spec” and “Check” respectively indicate that the specifi-
cation can be written and that the code can be verified by automatically instantiating the implicit
parameters.

Case Study
Tool Mist MoCHi [41] F* Implicits [26]

LOC Time (s) Spec Check Spec Check Spec Check
incr 8 0.01 ✓ ✓ ✓ ✗ ✓ ✗

sum 5 0.01 ✓ ✓ ✓ ✓ ✓ ✗

repeat 86 0.28 ✓ ✓ ✓ ✗ ✗ ✗

d2 [41] 8 0.07 ✓ ✗ ✓ ✓ ✓ ✗

Resources
incrState 28 0.65 ✓ ✓ ✓ ✓ ✓ ✓

accessControl 49 0.36 ✓ ✓ ✓ ✗ ✓ ✓1

tick [19] 85 0.03 ✓ ✓ ✗ ✗ ✓ ✓

linearDSL 20 0.03 ✓ ✓ ✗ ✗ ✓ ✓1

State Machines
pagination 79 0.3 ✓ ✓ ✗ ✗ ✗ ✗

login [7] 121 0.09 ✓ ✓ ✗ ✗ ✗ ✗

twoPhase 135 0.86 ✓ ✓ ✗ ✗ ✗ ✗

tickTock 112 0.14 ✓ ✓ ✗ ✗ ✗ ✗

tcp 332 115.73 ✓ ✓ ✗ ✗ ✗ ✗

the inhabitation side conditions. Here, we use qe once again to eliminate the existential
quantifiers, leaving us with a VC ripe to be passed to an automated theorem prover to verify
validity. If this VC is valid, we deem c safe. If qe is a strengthening then safe is sound and if
qe is additionally a weakening then safe is complete, proved in the extended edition [40].

▶ Theorem 5. Let c be an acyclic constraint. If qe is a strengthening then safe(c) implies
⊨ c. If qe is also a weakening then safe(c) iff ⊨ c.

6.1 A Theory-Agnostic Approximation to qe

We cannot, in general, provide a quantifier elimination that is a strengthening and a weakening
(since we are agnostic to the set of theories) especially as some theories do not admit a decidable
quantifier instantiation! However, since SMT theories work by equality propagation, we can
make use of equalities between theory terms without making any additional assumptions
about the theories themselves. Therefore, we include a theory-agnostic quantifier elimination
strategy over equalities.

Given the defining constraint c of some πn(n, x), our strategy computes the (well-scoped)
congruence closure of the variables n and x using the body of c. This set of equalities is then
used as the solution to πn. To eliminate the existential side condition ∃n.πn(n, x) we note
that a sound approximation is to find a solution for n. We search for this solution within
the set of equalities. If there is not one, we return ⊥ and verification fails. In Section 7 we
evaluate this incomplete quantifier elimination on a number of benchmarks and demonstrate
its real-world effectiveness.

7 Evaluation

We implement our system of Implicit Refinement Types in a tool dubbed Mist, evaluate
Mist using a set of illustrative examples and case studies (links to full examples elided
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for DBR), and compare Mist against the existing state of the art, in order to answer the
following questions:
Q1: Lightweight Verification Are implicits in conjunction with the theory-agnostic instan-

tiation procedure sufficient to verify programs with IRTs, even without using heavyweight
instantiation techniques such as domain-specific solvers and synthesis engines?

Q2: Expressivity Can we use implicits to encode specifications that would’ve otherwise
required the use of additional language features?

Q3: Flexibility Do they allow automated verification in places where unification-based im-
plicits and CEGAR-based extra parameters do not?

Implementation. Mist extends our language (§3) with polymorphism and type constructors,
and omits concrete syntax for implicit lambdas and unpacks. Instead, implicit parameters
appear solely in specifications – that is, refinement types – and do not require implementation
changes to the code.

Inserting implicit lambdas is straightforward: when checking that a term has an implicit
function type, insert a corresponding implicit lambda. Inserting implicit unpacks is more
interesting: we need to unpack any term of implicit pair type before we use it. For instance,
if e has the type [x : t1].t2, then we must unpack e to extract the corporeal (t2) component of
the pair before we can apply a function to it: ef e becomes unpack (x, y) = e in ef y. This
transformation ensures that the ghost parameter (x in the above term) is in context at the
use site of the implicit pair. To automate this procedure, we use an Anf-like transformation
that restricts A-normalization to terms of implicit pair type.

As is common in similar research tools, Mist handles datatypes by axiomatizing their
constructors. A production implementation would treat surface datatype declarations as
sugar over these axioms.

Polymorphism. Mist also includes support for limited refinement polymorphism. For
simplicity, we left refinement polymorphism out of our formalism in §3.2 – it is orthogonal to
the addition of implicit parameters and pairs – but we did include it in our implementation.

Refinement polymorphism alleviates some issues with phantom type parameters. First,
when using phantom type parameters, core constructors cannot be directly verified and must
be assumed to have the given type. Moreover, we can specify the semantics of our stateful
APIs in terms of e.g. the HST type, but the meaning of the arguments to the HST type
operator are determined only by its use. In contrast, refinement polymorphism brings the
intended semantics of HST from the world of phantom parameters into the semantics of the
language itself. The semantics of HST are reflected with the type:

type HST = rforall p q. forall a. p → (q, a)

where rforall ranges over refinement types and forall ranges over base types. The more
sophisticated refinement polymorphism [42] present in existing refinement systems would use
the type:

type HST p q s a = {w:s | p w} → ({w’:s | q w’}, a)

Here, p and q are predicates on the state type s.

1 Verification requires annotating a simple fact about sets as F* does not include a native theory of sets.
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Refinement polymorphism further makes core constructors and API primitives themselves
subject to verification: the rforall version of HST above allows the direct verification of
get as

get : forall s. [w:s] → HST {v:s | v = w} {v:s | v = w} s
get = \s → (s, s)

Comparsion. We compare Mist to higher-order model checker MoCHi [41], and F*’s
support for implicit parameters2 [36, 26]. Both systems, like Mist and unlike foundational
verifiers such as Idris [8] and Coq [39], are designed for lightweight, automatic verification.
MoCHi aims to provide complete verification of higher-order programs by automatically
inserting extra (implicit) parameters. Whereas Mist has users write refinement type specifi-
cations (with explicit reference to implicit types), MoCHi’s specifications are implemented
as assertions within the code. F*’s type system is a mix of a Martin-Löf style dependent type
system with SMT-backed automatic verification of refinement type specifications. There is
no formal specification of implicit parameters in F*. They are implemented by unification as
part of Martin-Löf typechecking. This is in contrast to IRTs’ integrated approach, that uses
information from refinement subtyping constraints for instantiation.

Our comparison, summarized in Table 1, illustrates, via a series of case studies, the
specifications that can be written in each system (the Spec column) and whether they can find
the necessary implicit parameter instantiations (the Check column). As each tool is designed
to be used for lightweight verification, we write the implementation and then separately
write the specifications. We do not rewrite the implementations to better accommodate
specifications, though for MoCHi we insert assertions within the code as necessary.

7.1 Q1: Lightweight Verification
We evaluate whether IRTs allow for modular specifications that would otherwise be inexpress-
ible with plain refinement types. We do this via a series of higher-order programs that use
implicits for lightweight verification. These programs are designed to capture core aspects
of various APIs and how IRTs permit specifications that can be automatically verified in a
representative client program using the API. Notably, for all of these examples Mist only
uses the theory-agnostic instantiation procedure from §6.1 and does not employ heavyweight
instantiation techniques such as domain-specific solvers or synthesis engines.

Higher-Order Loops. repeat, defines a loop combinator repeat that takes an increasing
stateful computation body and produces a stateful computation that loops body count times.
Its signature in Mist is:

repeat :: body :([x:Int] → ([y:{v:Int | v > x}]. SST x y Int Int))
→ count :{v:Int | v > 0}
→ ([q:Int] → ([r:{v:Int | v > q}]. SST q r Int Int))

which says that the input and output are stateful computations whose history and prophecy
variables together guarantee that the computation will leave the state larger than it started.
In the first line the implicit function argument x is externally determined and captures the
state of the world before the body computation, while the implicit pair component y captures
that body updates the state of the world to some (unknown) larger value.

2 Note that F*’s main verification mechanism is Dijkstra Monads [38], which we do not compare against
in our evaluation. We discuss trade offs between Dijkstra Monads and Implicit Refinement Types in §8.
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The implicit pairs are necessary to specify repeat, as the updated state is determined
by an internal choice in body. repeat also demonstrates how implicit pairs can specify
loop invariants (here, upward-closure) on higher-order stateful programs. Though repeat
is specified using implicit pairs, Mist does not require that arguments passed to repeat be
specified using implicit pairs. In repeat we define a function incr with the type [x:Int] →
SST x (x + 1) Int Int that increments the state. Mist will appropriately type check and

verify repeat incr as Implicit Refinement Types automatically account for the necessary
subtyping constraints to ensure that incr meets the conditions of repeat.

State Machines. The next set of examples demonstrate that IRTs enable specification
verification of state-machine based protocols. These are ubiquitous, spanning appications
from networking protocols to device driver and operating system invariants [7]. IRTs let
us encode state machines as transitions allowed from a ghost state, using the Hoare State
Monad (2.3). login [7], which models logging into a remote server, served as our initial
inspiration for studying this class of problems. We verify that a client respects the sequence
of connect, login, and only then accesses information.

tickTock verifies that two ticker and tocker processes obey the specification standard
to the concurrency literature [35]. Here we show the implementation of tocker.

tocker = \c → do
msg ← recv c
if msg = tick then send c tock else assert False

Ghost parameters on send and recv track the state machine and ensure messages follow the
tick-tock protocol. If send c tock is changed to send c tick the program is appropriately
rejected.

twoPhase is a verified implementation of one side of a two-phase commit process. This
example serves as a scale model for tcp, a verified implementation of a model of a TCP
client performing a 3-way handshake, using the TCP state machine[33].

pagination is an expanded version of our stream example from Section 2, and models
the AWS S3 pagination API [1]. This example shows that our protocol state machine need
not be finite, as it is specified with respect to an unbounded state machine.

Quantitative Resource Tracking. The next set of examples reflect various patterns of
specifying and verifying resources and demonstrate that Implicit Refinement Types enable
lightweight verification of these patterns. The examples show how Mist handles specification
and automatic verification when dealing with resources such as the state of the heap and
quantitative resource usage. In §2.4 we saw how Implicits enable specifying the access-control
API from Figure 3; the accessControl example verifies clients of this API. In contrast,
tick (as shown in §2.6) follows Handley et al. [19] in defining an applicative functor that
tracks quantitative resource usage. The key distinction from Handley et al. [19] is that the
resource count exists only at the type level. This example generalizes: we can port any of the
intrinsic verification examples from that work to use implicit parameters instead of explicitly
passing around resource bounds.

linearDSL embeds a simple linearly typed DSL in Mist. It allows us to embed linear
terms in Mist, with linear usage of variables statically checked by our refinement type
system. The syntactic constructs of this DSL are smart constructors that take the typing
environments as implicit parameters, enforcing the appropriate linear typing rules.
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incr :: [n:Int] → (Int → SInt n) → SInt (n + 1)
incr f = (f 0) + 1

test1 :: SInt 11 test2 :: m:Int → SInt (m + 1)
test1 = incr (\x → 10) test2 m = incr (\x → m)

Figure 10 A higher order increment function.

Mist enables specification and automatic verification of this diverse range of examples,
and in fact only requires the theory-agnostic instantiation procedure to find the correct
implicit instantiations. This demonstrates that IRTs enable lightweight verification of a
variety of higher-order programs, and that they are widely useful even without a domain
specific solver or heavyweight synthesis algorithm.

7.2 Q2: Expressivity
We compare the expressivity of Implicit Refinement Types as implemented in Mist to the
assertion-based verification of MoCHi and the implicit parameters of F*. First, merely the
fact that we allow users to explicity write specifications using implicit parameters allows us
to write specifications we otherwise could not. In particular, this is witnessed by the tick
and linearDSL examples that specify resource tracking, a non-functional property. MoCHi
cannot express the specifications for these because there is no combination of program
variables that computes the (non-functional) usage properties used in these specifications.

Second, Implicit Pair Types add expressivity by allowing us to write specifications against
choices made internal to functions that we wish to reason about. For example, repeat uses
implicit pairs to specify a loop invariant. This example can’t be done with F*’s implicits, as,
absent implicit pairs, we cannot bind to the return value of the loop body. As a result, in F*
we cannot verify this example with implicits alone: we would have to bring in additional
features such as the Dijkstra monad [38].

Similarly, none of the protocol state machine examples can be encoded with implicit
functions alone. Implicit pairs are required to write specifications against choices made by
other actors on the protocol channel. As a result, these examples also cannot be encoded in
F*’s implicits. These state machine specifications cannot even be expressed in MoCHi as
they crucially require access to ghost state, which MoCHi does not support.

7.3 Q3: Flexibility
We compare the flexibility that our refinement-integrated approach gives us to solve for
implicit parameters relative to that of other systems. We focus on the features of our
semantics and our abstract solving algorithm from Section 6.1 independently of the choice of
quantifier elimination procedure, which we examined above. We illustrate these differences
with several examples. incr is the program from Figure 10. In MoCHi the specification is
given by assertions that test1 and test2 are equal to 11 and m + 1 respectively. incrState
generalizes incr to track the integer in the singleton state monad instead of a closure. sum
is similar to incr except that it takes two implicit arguments and two function arguments,
returning the sum of the two returned values:

sum :: [n, m] → (Int → SInt n) → (Int → SInt m) → SInt (n + m)
sum f g = (f 0) + (g 0)

test :: SInt 11
test = sum (\x → 10) (\y → 1)
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All three tools can specify the program. Mist and MoCHi successfully instantiate the implicit
parameters needed for verification. D2 is an example from the MoCHi [41] benchmarks that
loops a nondeterministic number of times and adds some constant each time. Unlike Mist,
MoCHi is unable to solve accessControl, as CEGAR is notoriously brittle on properties
over the theory of set-operations.

Comparsion to MoCHi. MoCHi fails to automatically verify incr, but it succeeds if either
test1 or test2 appear individually. This is partly due to the unpredictability of MoCHi’s
CEGAR loop [21] (as it succeeds in verifying incrState), and partly due to the fact that
MoCHi attempts to infer specifications (and implicit arguments) globally, which can lead
to the anti-modular behavior seen here. In contrast, by introducing implicit arguments as
a user-level specification technique, Mist permits modular verification: test1 and test2
generate two separate quantifier instantiation problems that Mist solves locally.

In D2, Mist fails to solve the constraints generated by implicit instantiation as they
involve systems of inequalities, which our theory-agnostic quantifier elimination does not
attempt. However, Mist captures the full set of constraints and could, with a theory
specific solver like MoCHi’s, verify D2. Concretely, D2 yields a constraint of the form
∃x.true ⇒ x > 3. Mist could discharge this obligation by instantiating the abstract
algorithm of Section 6 with either the solver from MoCHi [41] or EHSF[5] instead of the
theory-agnostic one above.

Comparsion to Unification. The results of the comparison to F*’s unification-based implicits
are summarized in Table 1. Implicit Refinements are more flexibile as F* attempts to solve the
implicits purely through unification, i.e. without accounting for refinements. In contrast, Mist
generates subtyping (implication) constraints that are handled separately from unification.
When the unification occurs under a type constructor, then unification can succeed. For
example, F* verifies incrState because elevating the ghost state to a parameter of the
singleton state type constructor makes it “visible” to F*’s unification algorithm. However, if
there is no type constructor to guide the unification, F* must rely on higher-order unification,
which is undecidable in general and difficult in practice. For this reason, in the incr example
from Figure 10, F* fails to instantiate the implicit arguments needed to verify test1 and
test2, even if we aid it with precise type annotations on \x → 10 and \x → m, and F* fails
to verify the sum example for the same reason. By contrast, Mist can take advantage of
the refinement information to solve for the implicit parameters. Finally, F*’s unification
fundamentally cannot handle an example like MoCHi’s D2, as unification will not be able
to find an implicit instantiation when it is only constrained by inequalities.

8 Related Work

Verification of Higher-Order Programs. As discussed in Section 7, F* [37] is another SMT-
aided higher-order verification language. Its main support for verifying stateful programs is
baked in via Dijkstra Monads [38]. When it comes to verifying higher-order stateful programs,
Dijkstra Monads enable F* to scale automatic verification up to complex invariants. However,
like other two-state specification techniques, they are not on their own flexible enough to
handle higher-order computations such as mapA, when higher-order computations are composed
in richer ways than simple Kleisli composition. The key difference is that Implicit Refinement
Types work for both classic two-state specifications and other use-cases where two-state
specifications prove cumbersome – IRTs add value even to a system that already includes
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two-state specifications by allowing the necessary extra parameter of functions like mapA to
be instantiated automatically. Moreover, IRTs do so while maintaining the key properties
of refinement type systems: (1) SMT-driven automatic verification and (2) refinement type
specifications are added atop an existing program without requiring code changes. In this way
IRTs also differ from systems that use “full-strength” two-state specifications with dependent
types such as VST[3] or Bedrock[9].

We have started implementing implicit refinement types in LiquidHaskell, a very similar
system to Mist that includes both manual [45] and automated [42] facilites for higher order
verification.

F* has both implicit parameters and refinement types, but F*’s implicits have no formal
description, and instantiation is independent of refinement information. On the other hand,
we lack first-class invariants, but future work may be able to alleviate this by abstracting
over refinements a la Vazou et al. [43].

Dafny [24] supports specifications with ghost variables, but the user must explicitly craft
triggers to perform quantifier instantiation when the backing SMT solver’s heuristics cannot,
and must manually pass and update ghost variables.

Implicit Parameter Instantiation. Since finding an instantiation of implicit parameters
is, in general, undecidable, different systems make different tradeoffs: While Haskell and
Scala only perform type-directed lookup, Idris [8] resolves implicits via first-order unification,
with a default value or by a fixed-depth enumerative program synthesis. This form of
implicit resolution system can be very powerful, but can’t be used in conjunction with solver-
automated reasoning so, for example, Idris would not be able to handle our sum example
which requires automated reasoning about arithmetic. Agda [30] combines unification with a
second kind of implicit parameter, instance arguments [14], that uses a separate, specialized,
implicit resolution mechanism for implicit arguments that relate to typeclasses. Coq [39] uses
a mechanism called canonical structures [27], which uses a programmable hint system, but is
intimately tied to the specifics of Coq’s implementation, and its use for implicit parameter
instantiation lacks a formal description, as Devriese et al. [14] lament.

As Devriese et al. [14] note, the complexity of dependent type systems make even achieving
similar functionality as in Haskell and Scala a significant task. These implicit parameters are
designed to accomplish similar tasks as in the non-dependent Haskell and Scala: automating
the instantiation of repetitive arguments or automatically searching the context for relevant
arguments. Refinement types allow us to sidestep this issue as the base type system can
separately use implicit parameters to automate typeclasses or other programming tasks,
allowing our technique of Implicit Refinement Types to entirely focus on using dependent
type information. Here, this means focusing on allowing us to use an SMT to simplify ghost
specifications without worrying about interactions with the base type system.

While there is much work on implicit parameters for dependent types, we believe that
we provide the first formal description of a system combining implicit parameters with
refinement types. F* is the only other example of a language that has implicit parameters
and refinement types, but we discuss how F*’s implicits cannot take advantage of refinement
type information in §7.

Horn Constraints. Horn Clauses have emerged as a lingua franca of verification tools [6] as
they offer a straightforward encoding of assertions. Z3 [13] includes a fixpoint solver for Horn
Constraints including many quantifier elimination heuristics. Rybalchenko et al. [5] present a
semi-decision procedure for solving existential Horn clauses using a template-based CEGAR
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loop. Cosman and Jhala [10] use NNF Horn constraints to preserve scope. We extend this
framework to synthesize refinements for implicit program variables that are existentially
quantified, in addition to the usual universally quantified binders.

Unno et al. [41] show that it is sufficient to add one extra parameter for each higher order
argument to any given function to achieve complete higher-order verification with first-order
refinements. Their treatment utilizes more automation, e.g. interpolation and Farkas’ lemma,
but is limited to arithmetic specifications, precluding programs manipulating data structures
like sets and maps, as demonstrated in §7.
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