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Localizing type errors is challenging in languages with global type inference, as the type checker must make
assumptions about what the programmer intended to do. We introduce N���, a data-driven approach to
error localization based on supervised learning. N��� analyzes a large corpus of training data — pairs of
ill-typed programs and their “�xed” versions — to automatically learn a model of where the error is most likely
to be found. Given a new ill-typed program, N��� executes the model to generate a list of potential blame
assignments ranked by likelihood. We evaluate N��� by comparing its precision to the state of the art on
a set of over 5,000 ill-typed OC��� programs drawn from two instances of an introductory programming
course. We show that when the top-ranked blame assignment is considered, N���’s data-driven model is
able to correctly predict the exact sub-expression that should be changed 72% of the time, 28 points higher
than OC��� and 16 points higher than the state-of-the-art SHE��L�� tool. Furthermore, N���’s accuracy
surpasses 85% when we consider the top two locations and reaches 91% if we consider the top three.
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1 INTRODUCTION
Types are awesome. Languages like OC��� and H������ make the value-proposition for types
even more appealing by using constraints to automatically synthesize the types for all program
terms without troubling the programmer for any annotations. Unfortunately, this automation has
come at a price. Type annotations signify the programmer’s intent and help to correctly blame the
erroneous sub-term when the code is ill-typed. In the absence of such signi�ers, automatic type
inference algorithms are prone to report type errors far from their source [Wand 1986]. While this
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can seem like a minor annoyance to veteran programmers, Joosten et al. [1993] have found that
novices often focus their attention on the location reported and disregard the message.

Localizing Errors. Several recent papers have proposed ways to improve feedback via error
localization. At a high-level these techniques analyze the set of typing constraints to �nd the
minimum (weighted) subset that, if removed, would make the constraints satis�able and hence,
assertion-safe [Jose and Majumdar 2011] or well-typed [Chen and Erwig 2014a; Loncaric et al. 2016;
Pavlinovic et al. 2014; Zhang and Myers 2014]. The �nger of blame is then pointed at the sub-terms
that yielded those constraints. This minimum-weight approach su�ers from two drawbacks. First,
they are not extensible: the constraint languages and algorithms for computing the minimum
weighted subset must be designed afresh for di�erent kinds of type systems and constraints
[Loncaric et al. 2016]. Second, and perhaps most importantly, they are not adaptable: the weights
are �xed in an ad-hoc fashion, based on the analysis designer’s notion of what kinds of errors are
more likely, rather than adapting to the kinds of mistakes programmers actually make in practice.

A Data-Driven Approach. In this paper, we introduce N���1 a data-driven approach to error
localization based on supervised learning (see Kotsiantis 2007 for a survey). N��� analyzes a large
corpus of training data — pairs of ill-typed programs and their subsequent �xes — to automatically
learn a model of where errors are most likely to be found. Given a new ill-typed program, N���
simply executes the model to generate a list of potential blame assignments ranked by likelihood.
We evaluate N��� by comparing its precision against the state-of-the-art on a set of over 5,000
ill-typed OC��� programs drawn from two instances of an introductory programming course. We
show that, when restricted to a single prediction, N���’s data-driven model is able to correctly
predict the exact sub-expression that should be changed 72% of the time, 28 points higher than
OC��� and 16 points higher than the state-of-the-art SHE��L�� tool. Furthermore,N���’s accuracy
surpasses 85% when we consider the top two locations and reaches 91% if we consider the top three.
We achieve these advances by identifying and then solving three key challenges.

Challenge 1: Acquiring Labeled Programs. The �rst challenge for supervised learning is to
acquire a corpus of training data, in our setting a set of ill-typed programs labeled with the exact
sub-terms that are the actual cause of the type error. Prior work has often enlisted expert users to
manually judge ill-typed programs and determine the “correct” �x [e.g. Lerner et al. 2007; Loncaric
et al. 2016], but this approach does not scale well to a dataset large enough to support machine
learning. Worse, while expert users have intimate knowledge of the type system, they may have a
blind spot with regards to the kinds of mistakes novices make, and cannot know in general what
novice users intended.
Our �rst contribution (§ 2) is a set of more than 5,000 labeled programs [Seidel and Jhala 2017],

giving us an accurate ground truth of the kinds of errors and the (locations of the) �xes that
novices make in practice. We obtain this set by observing that software development is an iterative
process; programmers eventually �x their own ill-typed programs, perhaps after multiple incorrect
exploratory attempts. To exploit this observation we instrumented the OC��� compiler to collect
�ne-grained traces of student interactions over two instances of an undergraduate Programming
Languages course at UC San Diego (IRB #140608). We then post-process the resulting time-series
of programs submitted to the OC��� compiler into a set of pairs of ill-typed programs and their
subsequent �xes, the �rst (type-) correct program in the trace su�x. Finally, we compute the blame
labels using a tree-di� between the two terms to �nd the exact sub-terms that changed in the �x.

1“Numeric Analysis of Type Errors”; any resemblance to persons living or dead is purely coincidental.
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Challenge 2: Modeling Programs as Vectors. Modern supervised learning algorithms work on
feature vectors: real-valued points in ann-dimensional space.While there are standard techniques for
computing such vectors for documents, images, and sound (respectively word-counts, pixel-values,
and frequencies), there are no similarly standard representations for programs.
Our second contribution (§ 3) solves this problem with a simple, yet expressive, representation

called a Bag-of-Abstracted-Terms (BOAT) wherein each program is represented by the bag or multiset
of (sub-) terms that appears inside it; and further, each (sub-) term is abstracted as a feature vector
comprising the numeric values returned by feature abstraction functions applied to the term. We can
even recover contextual information from the parent and child terms by concatenating the feature
vectors of each term with those of its parent and children (within a �xed window). We have found
this representation to be particularly convenient as it gives us �exibility in modeling the syntactic
and semantic structure of programs while retaining compatibility with o�-the-shelf classi�ers, in
contrast to, e.g., Raychev et al. [2015], who had to develop their own variants of classi�ers to obtain
their results.

Challenge 3: Training Precise Classi�ers. Finally, the last and most important challenge is
to use our BOAT representation to train classi�ers that are capable of precisely pinpointing the
errors in real programs. The key here is to �nd the right set of feature abstractions to model type
errors, and classi�cation algorithms that lead to precise blame assignments. Fortunately, our BOAT
model allows us a great deal of latitude in our choice of features. We can use abstraction functions
to capture di�erent aspects of a term ranging from syntactic features (e.g. is-a-data-constructor,
is-a-literal, is-an-arithmetic-operation, is-a-function-application, etc.), to semantic features captured
by the type system (e.g. is-a-list, is-an-integer, is-a-function, etc.). We can similarly model the blame
labels with a simple feature abstraction (e.g. is-changed-in-�x).

Our third contribution (§ 4) is a systematic evaluation of our data-driven approach using di�erent
classes of features like the above, andwith four di�erent classi�cation algorithms: logistic regression,
decision trees, random forests, and neural networks. We �nd that N���’s models generalize well
between instances of the same undergraduate course, outperforming the state of the art by at
least 16 percentage points at predicting the source of a type error. We also investigate which
features and classi�ers are most e�ective at localizing type errors, and empirically characterize
the importance of di�erent feature sets. In particular, we �nd that while machine learning over
syntactic features of each term in isolation performs worse than existing purely constraint-based
approaches (e.g. OC���, SHE��L��), augmenting the data with a single feature corresponding to
the type error slice [Tip and Dinesh 2001] brings our classi�ers up to par with the state-of-the-art,
and further augmenting the data with contextual features allows our classi�ers to outperform the
state-of-the-art by 16 percentage points.

Thus, by combining modern statistical methods with domain-speci�c feature engineering, N���
opens the door to a new data-driven path to precise error localization. In the future, we could
extend N��� to new languages or forms of correctness checks by swapping in a di�erent set of
feature abstraction functions. Furthermore, our data-driven approach allows N��� to adapt to
the kinds of errors that programmers (in particular novices, who are in greatest need of precise
feedback) actually make rather than hardwiring the biases of compiler authors who, by dint of their
training and experience, may su�er from blind spots with regards to such problems. In contrast,
our results show that N���’s data-driven diagnosis can be an e�ective technique for localizing
errors by collectively learning from past mistakes.
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1 let rec sumList xs =

2 match xs with

3 | [] -> []

4 | h::t -> h + sumList t

File �sumList.ml�, line 4, characters 16-25:
This expression has type �a list
but an expression was expected of type int

Fig. 1. (le�) An ill-typed OC��� program that should sum the elements of a list, with highlights indicating
three possible blame assignments based on: (1) the OC��� compiler; (2) the fix made by the programmer;

and (3) minimizing the number of edits required. (right) The error reported by OC���.

2 OVERVIEW
Let us start with an overview of N���’s approach to localizing type errors by collectively learning
from the mistakes programmers actually make.

The Problem. Consider the sumList program in Figure 1, written by a student in an undergrad-
uate Programming Languages course. The program is meant to add up the integers in a list, but the
student has accidentally given the empty list as the base case, rather than 0. The OC��� compiler
collects typing constraints as it traverses the program, and reports an error the moment it �nds
an inconsistent constraint. In this case it blames the recursive call to sumList, complaining that
sumList returns a list while an int was expected by the + operator. This blame assignment is
inconsistent with the programmer’s intention and may not help the novice understand the error.

It may appear obvious to the reader that [] is the correct expression to blame, but how is a type
checker to know that? Indeed, recent techniques like SHE��L�� andM������ [Loncaric et al. 2016;
Pavlinovic et al. 2014; Zhang and Myers 2014] fail to distinguish between the [] and + expressions
in Figure 1; it would be equally valid to blame either of them alone. The [] on line 3 could be
changed to 0, or the + on line 4 could be changed to either @ (list append) or ::, all of which would
give type-correct programs. Thus, these state-of-the-art techniques are forced to either blame both
locations, or choose one arbitrarily.

Solution: Localization via Supervised Classi�cation. Our approach is to view error local-
ization as a supervised classi�cation problem [Kotsiantis 2007]. A classi�cation problem entails
learning a function that maps inputs to a discrete set of output labels (in contrast to regression,
where the output is typically a real number). A supervised learning problem is one where we are
given a training set where the inputs and labels are known, and the task is to learn a function that
accurately maps the inputs to output labels and generalizes to new, yet-unseen inputs. To realize
the above approach for error localization as a practical tool, we have to solve four sub-problems.
(1) How can we acquire a training set of blame-labeled ill-typed programs?
(2) How can we represent blame-labeled programs in a format amenable to machine learning?
(3) How can we �nd features that yield predictive models?
(4) How can we use the models to give localized feedback to the programmer?

2.1 Step 1: Acquiring a Blame-Labeled Training Set
The �rst step is to gather a training set of ill-typed programs, where each erroneous sub-term is
explicitly labeled. Prior work has often enlisted expert users to curate a set of ill-typed programs and
then manually determine the correct �x [e.g. Lerner et al. 2007; Loncaric et al. 2016]. This method
is suitable for evaluating the quality of a localization (or repair) algorithm on a small number (e.g.
10s–100s) of programs. However, in general it requires a great deal of e�ort for the expert to divine
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the original programmer’s intentions. Consequently, is di�cult to scale the expert-labeling to yield
a dataset large enough (e.g. 1000s of programs) to facilitate machine learning. More importantly,
this approach fails to capture the frequency with which errors occur in practice.

Solution: Interaction Traces. We solve both the scale and frequency problems by instead
extracting blame-labeled data sets from interaction traces. Software development is an iterative
process. Programmers, perhaps after a lengthy (and sometimes frustrating) back-and-forth with
the type checker, eventually end up �xing their own programs. Thus, we instrumented the OC���
compiler to record this conversation, i.e. record the sequence of programs submitted by each
programmer and whether or not it was deemed type-correct. For each ill-typed program in a
particular programmer’s trace, we �nd the �rst subsequent program in the trace that type checks
and declare it to be the �xed version. From this pair of an ill-typed program and its �x, we can
extract a di� of the abstract syntax trees, and then assign the blame labels to the smallest sub-tree
in the di�.

Example. Suppose our student �xed the sumList program in Figure 1 by replacing [] with 0,
the di� would include only the [] expression. Thus we would determine that the [] expression
(and not the + or the recursive call sumList t) is to blame.

2.2 Step 2: Representing Programs as Vectors
Next, we must �nd a way to translate highly structured and variable sized programs into �xed size
n-dimensional numeric vectors that are needed for supervised classi�cation.While the Programming
Languages literature is full of di�erent program representations, from raw token streams to richly-
structured abstract syntax trees (AST) or control-�ow graphs, it is unclear how to embed the above
into a vector space. Furthermore, it is unclear whether recent program representations that are
amenable to one learning task, e.g. code completion [Hindle et al. 2012a; Raychev et al. 2014] or
decompilation [Bielik et al. 2016; Raychev et al. 2015] are suitable for our problem of assigning
blame for type errors.

Solution: Bags-of-Abstracted-Terms. We present a new representation of programs that draws
inspiration from the theory of abstract interpretation [Cousot and Cousot 1977]. Our representation
is parameterized by a set of feature abstraction functions, (abbreviated to feature abstractions)
f1, . . . , fn , that map terms to a numeric value (or just {0, 1} to encode a boolean property). Given a set
of feature abstractions, we can represent a single program’s AST as a bag-of-abstracted-terms (BOAT)
by: (1) decomposing the AST (term) t into a bag of its constituent sub-trees (terms) {t1, . . . , tm}; and
then (2) representing each sub-term ti with the n-dimensional vector [f1(ti ), . . . , fn(ti )]. Working
with ASTs is a natural choice as type-checkers operate on the same representation.

Modeling Contexts. Each expression occurs in some surrounding context, and we would like
the classi�er to be able make decisions based on the context as well. The context is particularly
important for our task as each expression imposes typing constraints on its neighbors. For example,
a + operator tells the type checker that both children must have type int and that the parent must
accept an int. Similarly, if the student wrote h sumList t i.e. forgot the +, we might wish to blame
the application rather than h because h does not have a function type. The BOAT representation
makes it easy to incorporate contexts: we simply concatenate each term’s feature vector with the
contextual features of its parent and children.
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2.3 Step 3: Feature Discovery
Next, we must �nd a good set of features, that is, a set of features that yields predictive models. Our
BOAT representation enables an iterative solution by starting with a simple set of features, and
then repeatedly adding more and more to capture important aspects needed to improve precision.
Our set of feature abstractions captures the syntax, types, and context of each expression.

Syntax and Type Features. We start by observing that at the very least, the classi�er should be
able to distinguish between the [] and + expressions in Figure 1 because they represent di�erent
syntactic expression forms. We model this by introducing feature abstractions of the form is-[], is-+,
etc., for each of a �xed number of expression forms. Modeling the syntactic class of an expression
gives the classi�er a basic notion of the relative frequency of blame assignment for the various
program elements, i.e. perhaps [] is empirically more likely to be blamed than +. Similarly, we
can model the type of each sub-expression with features of the form is-int, is-bool, etc.. We will
discuss handling arbitrary, user-de�ned types in § 5.

Contextual Features: Error Slices. Our contextual features include the syntactic class of the
neighboring expressions and their inferred types (when available). However, we have found that
the most important contextual signal is whether or not the expression occurs in a minimal type
error slice [Haack and Wells 2003; Tip and Dinesh 2001] which includes a minimal subset of all
expressions that are necessary for the error to manifest. (That is, replacing any subterm with
undefined or assert false would yield a well-typed program.) We propose to use type error
slices to communicate to the classi�er which expressions could potentially be blamed — a change
to an expression outside of the minimal slice cannot possibly �x the type error. We empirically
demonstrate that the type error slice is so important (§ 4.3) that it is actually bene�cial to auto-
matically discard expressions that are not part of the slice, rather than letting the classi�er learn
to do so. Indeed, this domain-speci�c insight is crucial for learning classi�ers that signi�cantly
outperform the state-of-the-art.

Example. When N��� is tasked with localizing the error in the example program of Figure 1,
the [] and + sub-terms will each be given their own feature vector, and we will ask the classi�er to
predict for each independently whether it should be blamed. Table 1 lists some of the sub-expressions
of the example from Figure 1, and their corresponding feature vectors.

Table 1. Example Feature Vectors

Expression I��[] I��M�����L����P E����S��� T����I���C1 T����L��� I��S����

[] 1 1 1 0 1 1
hd + sumList tl 0 1 5 1 0 1
sumList tl 0 0 3 0 1 1
tl 0 0 1 0 1 0

A selection of the features we would extract from the sumList program in Figure 1. A feature is considered
enabled if it has a non-zero value, and disabled otherwise. A “-P” su�ix indicates that the feature describes
the parent of the current expression, a “-Cn” su�ix indicates that the feature describes the n-th (le�-to-right)
child of the current expression. Note that, since we rely on a partial typing derivation, we are subject to the
well-known traversal bias and label the expression sumList tl as having type [·]. The model will have to
learn to correct for this bias.
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2.4 Step 4: Generating Feedback
Finally, having trained a classi�er using the labeled data set, we need to use it to help users localize
type errors in their programs. The classi�er tells us whether or not a sub-term should be blamed
(i.e. has the blame label) but this is not yet particularly suitable as user feedback. A recent survey
of developers by Kochhar et al. [2016] found that developers are unlikely to examine more than
around �ve potentially erroneous locations before falling back to manual debugging. Thus, we
should limit our predictions to a select few to be presented to the user.

Solution: Rank Locations by Con�dence. Fortunately, many machine learning classi�ers pro-
duce not only a predicted label, but also a metric that can be interpreted as the classi�er’s con�dence
in its prediction. Thus, we rank each expression by the classi�er’s con�dence that it should be
blamed, and present only the top-k predictions to the user (in practice k = 3). The use of ranking to
report the results of an analysis is popular in other problem domains [see, e.g. Kremenek and Engler
2003]; we focus explicitly on the use of data-driven machine learning con�dence as a ranking
source. In § 4 we show that N���’s ranking approach yields a high-precision localizer: when the
top three locations are considered, at least one matches an actual student �x 91% of the time.

3 LEARNING TO BLAME
In this section, we describe our approach to localizing type errors, in the context of �ML (Figure 2),
a simple lambda calculus with integers, booleans, pairs, and lists. Our goal is to instantiate the
blame function of Figure 3, which takes as input aModel of type errors and an ill-typed program e ,
and returns an ordered list of subexpressions from e paired with the con�dence score C that they
should be blamed.
AModel is produced by train, which performs supervised learning on a training set of feature

vectorsV and (boolean) labels B. Once trained, we can evaluate aModel on a new input, producing
the con�dence C that the blame label should be applied. We describe multiple Models and their
instantiations of train and eval (§ 3.3).
Of course, the Model expects feature vectors V and blame labels B, but we are given program

pairs. So our �rst step must be to de�ne a suitable translation from program pairs to feature vectors
and labels, i.e. we must de�ne the extract function in Figure 3. We model features as real-valued
functions of terms, and extract a feature vector for each subterm of the ill-typed program (§ 3.1).
Then we de�ne the blame labels for the training set to be the subexpressions that changed between
the ill-typed program and its subsequent �x, and model blame as a function from a program pair to
the set of expressions that changed (§ 3.2). The extract function, then, extracts features from each
subexpression and computes the blamed expressions according to label.

3.1 Features
The �rst issue we must tackle is formulating our learning task in machine learning terms. We are
given programs over �ML , but learning algorithms expect to work with feature vectors V — vectors
of real numbers, where each column describes a particular aspect of the input. Thus, our �rst task
is to convert programs to feature vectors.
We choose to model a program as a set of feature vectors, where each element corresponds an

expression in the program. Thus, given the sumList program in Figure 1 we would �rst split it
into its constituent sub-expressions and then transform each sub-expression into a single feature
vector. We group the features into �ve categories, using Table 1 as a running example of the feature
extraction process.
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e ::= x | �x .e | e e | let x = e in e
| n | e + e
| b | if e then e else e
| he, ei | match e with hx ,xi ! e

| [] | e :: e | match e with

(
[] ! e

x :: x ! e

n ::= 0, 1,�1, . . .
b ::= true | false

t ::= � | bool | int | t ! t | t ⇥ t | [t]

Fig. 2. Syntax of �ML

V ⌘ [R]
C ⌘ {r 2 R | 0  r  1}
features : [e ! R]
label : e ⇥ e ! [e]
extract : [e ! R] ! e ⇥ e ! [V ⇥ B]
train : [V ⇥ B] ! Model
eval : Model ! V ! C
blame : Model ! e ! [e ⇥ C]

Fig. 3. A high-level API for converting program
pairs to feature vectors and labels.

Local syntactic features. These features describe the syntactic category of each expression e .
In other words, for each production of e in Figure 2 we introduce a feature that is enabled (set to 1)
if the expression was built with that production, and disabled (set to 0) otherwise. For example, the
I��[] feature in Table 1 describes whether an expression is the empty list [].

We distinguish between matching on a list vs. on a pair, as this a�ects the typing derivation. We
also assume that all pattern matches are well-formed — i.e. all patterns must match on the same
type. Ill-formed match expressions would lead to a type error; however, they are already e�ectively
localized to the match expression itself. We note that this is not a fundamental limitation, and one
could easily add features that specify whether a match contains a particular pattern, and thus have
a match expression that enables multiple features.

Contextual syntactic features. These are similar to local syntactic features, but lifted to de-
scribe the parent and children of an expression. For example, the I��M�����L����P feature in Table 1
describes whether an expression’s parent matches on a list. If a particular e does not have children
(e.g. a variable x ) or a parent (i.e. the root expression), we leave the corresponding features disabled.
This gives us a notion of the context in which an expression occurs, similar to the n-grams used in
linguistic models [Gabel and Su 2010; Hindle et al. 2012b].

Expression size. We also propose a feature representing the size of each expression, i.e. how
many sub-expressions does it contain? For example, the E����S��� feature in Table 1 is set to
three for the expression sumList tl as it contains three expressions: the two variables and the
application itself. This allows the model to learn that, e.g., expressions closer to the leaves are more
likely to be blamed than expressions closer to the root.

Typing features. A natural way of summarizing the context in which an expression occurs is
with types. Of course, the programs we are given are untypeable, but we can still extract a partial
typing derivation from the type checker and use it to provide more information to the model.
A di�culty that arises here is that, due to the parametric type constructors · ! ·, · ⇥ ·, and [·],

there is an in�nite set of possible types — but we must have a �nite set of features. Thus, we abstract
the type of an expression to the set of type constructors it mentions, and add features for each type
constructor that describe whether a given type mentions the type constructor. For example, the
type int would only enable the int feature, while the type int ! bool would enable the · ! ·,
int, and bool features.
We add these features for parent and child expressions to summarize the context, but also for

the current expression, as the type of an expression is not always clear syntactically. For example,
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the expressions tl and sumList tl in Table 1 both enable T����L���, as they are both inferred to
have a type that mentions [·].

Note that our use of typing features in an ill-typed program subjects us to traversal bias [McAdam
1998]. For example, the sumList tl expression might alternatively be assigned the type int. Our
models will have to learn good localizations in spite of this bias (see § 4).

Type error slice. Finally, we wish to distinguish between changes that could �x the error, and
changes that cannot possibly �x the error. Thus, we compute a minimal type error slice for the
program (i.e. the set of expressions that contribute to the error), and add a feature that is enabled
for expressions that are part of the slice. The I��S���� feature in Table 1 indicates whether an
expression is part of such a minimal slice, and is enabled for all of the sampled expressions except for
tl, which does not a�ect the type error. If the program contains multiple type errors, we compute
a minimal slice for each error.
In practice, we have found that I��S���� is a particularly important feature, and thus include a

post-processing step that discards all expressions where it is disabled. As a result, the tl expression
would never actually be shown to the classi�er. We will demonstrate the importance of I��S����
empirically in § 4.3.

3.2 Labels
Recall that we make predictions in two stages. First, we use eval to predict for each subexpression
whether it should be blamed, and extract a con�dence score C from theModel. Thus, we de�ne the
output of theModel to be a boolean label, where “false” means the expression should not change
and “true” means the expression should change. This allows us to predict whether any individual
expression should change, but we would actually like to predict the most likely expressions to
change. Second, we rank each subexpression by the con�dence C that it should be blamed, and
return to the user the top k most likely blame assignments (in practice k = 3).
We identify the �xes for each ill-typed program with an expression-level di� [Lempsink 2009].

We consider two sources of changes. First, if an expression has been removed wholesale, e.g. if f x

is rewritten to � x , we will mark the expression f as changed, as it has been replaced by �. Second,
if a new expression has been inserted around an existing expression, e.g. if f x is rewritten to
f x + 1, we will mark the application expression f x (but not f or x ) as changed, as the + operator
now occupies the original location of the application.

3.3 Learning Algorithms
Recall that we formulate type error detection at a single expression as a supervised classi�cation
problem. This means that we are given a training data set S : [V ⇥ B] of labeled examples, and
our goal is to use it to build a classi�er, i.e. a rule that can predict a label b for an input � . Since we
apply the classi�er on each expression in the program to determine those that are the most likely
to be type errors, we also require the classi�er to output a con�dence score that measures how sure
the classi�er is about its prediction.
There are many learning algorithms to choose from, existing on a spectrum that balances

expressiveness with ease of training (and of interpreting the learned model). In this section we
consider four standard learning algorithms: (1) logistic regression, (2) decision trees, (3) random
forests, and (4) neural networks. A thorough introduction to these techniques can be found in
introductory machine learning textbooks [e.g. Hastie et al. 2009].
Below we brie�y introduce each technique by describing the rules it learns, and summarize its

advantages and disadvantages. For our application, we are particularly interested in three properties
– expressiveness, interpretability and ease of generalization. Expressiveness measures how complex
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prediction rules are allowed to be, and interpretability measures how easy it is to explain the cause
of prediction to a human. Finally ease of generalization measures how easily the rule generalizes
to examples that are not in the training set; a rule that is not easily generalizable might perform
poorly on an unseen test set even when its training performance is high.

Logistic Regression. The simplest classi�er we investigate is logistic regression: a linear model
where the goal is to learn a set of weightsW that describe the following model for predicting a
label b from a feature vector � :

Pr(b = 1|�) = 1
1 + e�W >�

The weightsW are learnt from training data, and the value of Pr(b |�) naturally leads to a con�dence
score C. Logistic regression is a widely used classi�cation algorithm, preferred for its simplicity, ease
of generalization, and interpretability. Its main limitation is that the prediction rule is constrained
to be a linear combination of the features, and hence relatively simple. While this can be somewhat
mitigated by adding higher order (quadratic or cubic) features, this often requires substantial
domain knowledge.

Decision Trees. Decision tree algorithms learn a tree of binary predicates over the features,
recursively partitioning the input space until a �nal classi�cation can be made. Each node in the
tree contains a single predicate of the form �j  t for some feature �j and threshold t , which
determines whether a given input should proceed down the left or right subtree. Each leaf is labeled
with a prediction and the fraction of correctly-labeled training samples that would reach it; the
latter quantity can be interpreted as the decision tree’s con�dence in its prediction. This leads to a
prediction rule that can be quite expressive depending on the data used to build it.
Training a decision tree entails �nding both a set of good partitioning predicates and a good

ordering of the predicates based on data. This is usually done in a top-down greedy manner, and
there are several standard training algorithms such as C4.5 [Quinlan 1993] and CART [Breiman
et al. 1984].

Another advantage of decision trees is their ease of interpretation — the decision rule is a white-
box model that can be readily described to a human, especially when the tree is small. However,
the main limitation is that these trees often do not generalize well, though this can be somewhat
mitigated by pruning the tree.

Random Forests. Random forests improve generalization by training an ensemble of distinct
decision trees and using a majority vote to make a prediction. The agreement among the trees
forms a natural con�dence score. Since each classi�er in the ensemble is a decision tree, this still
allows for complex and expressive classi�ers.
The training process involves taking N random subsets of the training data and training a

separate decision tree on each subset — the training process for the decision trees is often modi�ed
slightly to reduce correlation between trees, by forcing each tree to pick features from a random
subset of all features at each node.
The diversity of the underlying models tends to make random forests less susceptible to the

over�tting, but it also makes the learned model more di�cult to interpret.

Neural Networks. The last (and most complex) model we use is a type of neural network called
a multi-layer perceptron (see Nielsen [2015] for an introduction to neural networks). A multi-layer
perceptron can be represented as a directed acyclic graph whose nodes are arranged in layers that
are fully connected by weighted edges. The �rst layer corresponds to the input features, and the
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�nal to the output. The output of an internal node � is

h� = �(
’

j 2N (�)
Wj�hj )

where N (�) is the set of nodes in the previous layer that are adjacent to � ,Wj� is the weight of the
(j,�) edge and hj is the output of node j in the previous layer. Finally � is a non-linear function,
called the activation function, which in recent work is commonly chosen to be the recti�ed linear
unit (ReLU), de�ned as �(x) = max(0,x) [Nair and Hinton 2010]. The number of layers, the number
of neurons per layer, and the connections between layers constitute the architecture of a neural
network. In this work, we use relatively simple neural networks which have an input layer, a single
hidden layer and an output layer.
A major advantage of neural networks is their ability to discover interesting combinations of

features through non-linearity, which signi�cantly reduces the need for manual feature engineering,
and allows high expressivity. On the other hand, this makes the networks particularly di�cult to
interpret and also di�cult to generalize unless vast amounts of training data are available.

4 EVALUATION
We have implemented our technique for localizing type errors for a purely functional subset of
OC��� with polymorphic types and functions. We seek to answer four questions in our evaluation:

• Blame Accuracy How often does N��� blame a correct location for the type error? (§ 4.2)
• Feature UtilityWhich program features are required to localize errors? (§ 4.3)
• Interpretability Are the models interpretable using our intuition about type errors? (§ 4.5)
• Blame Utility Do N���’s blame assignments help users diagnose type errors? (§ 4.6)

In the sequel we present our experimental methodology § 4.1 and then drill into how we evaluated
each of the questions above. However, for the impatient reader, we begin with a quick summary of
our main results:

1. Data Beats Algorithms. Our main result is that for (novice) type error localization, data
is indeed unreasonably e�ective [Halevy et al. 2009]. When trained on student errors from one
instance of an undergraduate course and tested on another instance, N���’s most sophisticated
neural network-based classi�er’s top-ranked prediction blames the correct sub-term 72% of the time
— a good 16 points higher than the state-of-the-art SHE��L��’s 56%. However, even N���’s simple
logistic regression-based classi�er is correct 61% of the time, i.e. 5 points better than SHE��L��.
When the top three predictions are considered, N��� is correct 91% of the time.

2. Slicing Is Critical. However, data is e�ective only when irrelevant sub-terms have been
sliced out of consideration. In fact, perhaps our most surprising result is that type error slicing and
local syntax alone yields a classi�er that is 10 points better than OC��� and on par with SHE��L��.
That is, once we focus our classi�ers on slices, purely local syntactic features perform as well as
the state-of-the-art.

3. Size Doesn’t Ma�er, Types Do. We �nd that (after slices) typing features provide the biggest
improvement in accuracy. Furthermore, we �nd contextual syntactic features to be mostly (but not
entirely) redundant with typing features, which supports the hypothesis that the context’s type
nicely summarizes the properties of the surrounding expressions. Finally, we found that the size of
the sub-expression was not very useful. This was unexpected, as we thought smaller expressions
would be simpler, and hence, more likely causes.
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4. Models Learn Typing Rules. Finally, by investigating a few of the predictions made by the
decision tree-based models, we found that the models appear to capture some simple and intuitive
rules for predicting well-typedness. For example, if the left child of an application is a function,
then the application is likely correct.

4.1 Methodology
We answer our questions on two sets of data gathered from the undergraduate Programming
Languages course at UC San Diego (IRB #140608). We recorded each interaction with the OC���
top-level system while the students worked on 23 programs from the �rst three homework as-
signments, capturing ill-typed programs and, crucially, their subsequent �xes. The �rst dataset
comes from the Spring 2014 class (SP14), with a cohort of 46 students. The second comes from the
Fall 2015 class (FA15), with a cohort of 56 students. The extracted programs are relatively small,
but they demonstrate a range of functional programming idioms, e.g. higher-order functions and
(polymorphic) algebraic data types.

Feature Selection. We extract 282 features from each sub-expression in a program, including:
(1) 45 local syntactic features. In addition to the syntax of �ML , we support the full range of

arithmetic operators (integer and �oating point), equality and comparison operators, character
and string literals, and a user-de�ned arithmetic expressions. We discuss the challenge of
supporting other types in § 5.

(2) 180 contextual syntactic features. For each sub-expression we additionally extract the local
syntactic features of its parent and �rst, second, and third (left-to-right) children. If an
expression does not have a parent or children, these features will simply be disabled. If an
expression has more than three children, the classi�ers will receive no information about the
additional children.

(3) 55 typing features. In addition to the types of �ML , we support ints, floats, chars, strings,
and the user-de�ned expr mentioned above. These features are extracted for each sub-
expression and its context.

(4) One feature denoting the size of each sub-expression.
(5) One feature denoting whether each sub-expression is part of the minimal type error slice.

We use this feature as a “hard” constraint, sub-expressions that are not part of the minimal
slice will be preemptively discarded. We justify this decision in § 4.3.

Blame Oracle. Recall from § 3.2 that we automatically extract a blame oracle for each ill-typed
program from the (AST) di� between it and the student’s eventual �x. A disadvantage of using
di�s in this manner is that students may have made many, potentially unrelated, changes between
compilations; at some point the “�x” becomes a “rewrite”. We do not wish to consider the “rewrites”
in our evaluation, so we discard outliers where the fraction of expressions that have changed
is more than one standard deviation above the mean, establishing a di� threshold of 40%. This
accounts for roughly 14% of each dataset, leaving us with 2,712 program pairs for SP14 and 2,365
pairs for FA15.

Accuracy Metric. All of the tools we compare (with the exception of the standard OC���
compiler) can produce a list of potential error locations. However, in a study of fault localization
techniques, Kochhar et al. [2016] show that most developers will not consider more than around
�ve potential error locations before falling back to manual debugging. Type errors are relatively
simple in comparison to general fault localization, thus we limit our evaluation to the top three
predictions of each tool. We evaluate each tool on whether a changed expression occurred in its
top one, top two, or top three predictions.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 60. Publication date: October 2017.



Learning to Blame 60:13

Blame Utility. Finally, to test the explanatory power of our blame assigments, we ran a user
study at the University of Virginia (UVA IRB #2014009900). We included three problems in an exam
in the Spring 2017 session of UVA’s undergraduate Programming Languages course (CS 4501).
We presented the 31 students in the course with ill-typed OC��� programs and asked them to
(1) explain the type error, and (2) �x the type error. For each problem the student was given the
ill-typed program and either SHE��L�� or N���’s blame assignment, with no error message.

4.2 Blame Accuracy
First, we compare the accuracy of our predictions to the state of the art in type error localization.

Baseline. We provide two baselines for the comparison: a random choice of location from the
minimized type error slice, and the standard OC��� compiler.

State of the Art. M������ [Loncaric et al. 2016] localizes type errors by searching for a minimal
subset of typing constraints that can be removed, such that the resulting system is satis�able. When
multiple such subsets exist it can enumerate them, though it has no notion of which subsets aremore
likely to be correct, and thus the order is arbitrary. SHE��L�� [Zhang and Myers 2014] localizes
errors by searching the typing constraint graph for constraints that participate in many unsatis�able
paths and comparatively few satis�able paths. It can also enumerate multiple predictions, in
descending order of likelihood.
Comparing source locations from multiple tools with their own parsers is not trivial. Our

experimental design gives the state of the art tools the “bene�t of the doubt” in two ways. First,
when evaluatingM������ and SHE��L��, we did not consider programs where they predicted
locations that our oracle could not match with a program expression: around 6% of programs
forM������ and 4% for SHE��L��. Second, we similarly ignored programs whereM������ or
SHE��L�� timed out (after one minute) or where they encountered an unsupported language
feature: another 5% for M������ and 12% for SHE��L��.

Our Classi�ers. We evaluate �ve classi�ers, each trained on the full feature set. These include:
L������� A logistic regression trained with a learning rate � = 0.001, an L2 regularization

rate � = 0.001, and a mini-batch size of 200.
T��� A decision tree trained with the CART algorithm [Breiman et al. 1984] and an impurity

threshold of 10�7 (used to avoid over�tting via early stopping).
F����� A random forest [Breiman 2001] of 30 estimators, with an impurity threshold of 10�7.
MLP�10 andMLP�500 Two multi-layer perceptron neural networks, both trained with � =

0.001, � = 0.001, and a mini-batch size of 200. The �rst MLP contains a single hidden layer of
10 neurons, and the second contains a hidden layer of 500 neurons. This gives us a measure
of the complexity of the MLP’s model, i.e. if the model requires many compound features,
one would expect MLP�500 to outperform MLP�10. The neurons use recti�ed linear units
(ReLU) as their activation function, a common practice in modern neural networks.

All classi�ers were trained for 20 epochs on one dataset — i.e. they were shown each program 20
times — before being evaluated on the other. The logistic regression and MLPs were trained with
the A��� optimizer [Kingma and Ba 2014], a variant of stochastic gradient descent that has been
found to converge faster.

Results. Figure 4 shows the results of our experiment. Localizing the type errors in our bench-
marks amounted, on average, to selecting one of 3 correct locations out of a slice of 10. Our classi�ers
consistently outperform the competition, ranging from 61% Top-1 accuracy (86% Top-3) for the
L������� classi�er to 72% Top-1 accuracy (91% Top-3) for theMLP�500. Our baseline of selecting
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Fig. 4. Results of our comparison of type error localization techniques. We evaluate all techniques separately
on two cohorts of students from di�erent instances of an undergraduate Programming Languages course.
Our classifiers were trained on one cohort and evaluated on the other. All of our classifiers outperform the
state-of-the-art techniquesM������ and SHE��L��.

at random achieves 30% Top-1 accuracy (58% Top-3), while OC��� achieves a Top-1 accuracy of
44%. Interestingly, one only needs two random guesses to outperform OC���, with 47% accuracy.
SHE��L�� outperforms both baselines, and comes close to our L������� classi�er, with 56% Top-1
accuracy (84% Top 3), while M������ underperforms OC��� at 40% Top-1 accuracy.
Surprisingly, there is little variation in accuracy between our classi�ers. With the exception of

the L������� model, they all achieve around 70% Top-1 accuracy and around 90% Top-3 accuracy.
This suggests that the model they learn is relatively simple. In particular, notice that although the
MLP�10 has 50⇥ fewer hidden neurons than the MLP�500, it only loses around 4% accuracy. We
also note that our classi�ers consistently perform better when trained on the FA15 programs and
tested on the SP14 programs than vice versa.

4.3 Feature Utility
We have shown that we can train a classi�er to e�ectively localize type errors, but which of the
feature classes from § 3.1 are contributing the most to our accuracy? We focus speci�cally on
feature classes rather than individual features as our 282 features are conceptually grouped into
a much smaller number of categorical features. For example, the syntactic class of an expression
is conceptually a feature but there are 45 possible values it could take; to encode this feature for
learning we split it into 45 distinct binary features. Analyses that focus on individual features, e.g.
ANOVA, are di�cult to interpret in our setting, as they will tell us the importance of the binary
features but not the higher-level categorical features. Thus, to answer our question we investigate
the performance of classi�ers trained on various subsets of the feature classes.

4.3.1 Type Error Slice. First we must justify our decision to automatically exclude expressions
outside the minimal type error slice from consideration. Thus, we compare three sets of features:
(1) A baseline with only local syntactic features and no preemptive �ltering by I��S����.
(2) The features of (1) extended with I��S����.
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(3) The same features as (1), but we preemptively discard samples where I��S���� is disabled.
The key di�erence between (2) and (3) is that a classi�er for (2) must learn that I��S���� is a strong
predictor. In contrast, a classi�er for (3) must only learn about the syntactic features, the decision
to discard samples where I��S���� is disabled has already been made by a human. This has a few
additional advantages: it reduces the set of candidate locations by a factor of 7 on average, and it
guarantees that any prediction made by the classi�er can �x the type error. We expect that (2) will
perform better than (1) as it contains more information, and that (3) will perform better than (2) as
the classi�er does not have to learn the importance of I��S����.
We tested our hypothesis with the L������� andMLP�5002 classi�ers, cross-validated (k = 10)

over the combined SP14/FA15 dataset. We trained for a single epoch on feature sets (1) and (2),
and for 8 epochs on (3), so that the total number of training samples would be roughly equal for
each feature set. In addition to accuracy, we report each classi�er’s recall — i.e. “How many true
changes can we remember?” — de�ned as

|predicted \ oracle|
|oracle|

where predicted is limited to the top 3 predictions, and oracle is the student’s �x, limited to changes
that are in the type error slice. We make the latter distinction as: (1) changes that are not part of
the type error slice are noise in the data set; and (2) it makes the comparison easier to interpret
since oracle never changes.

Results. Figure 5a shows the results of our experiment. As expected, the baseline performs the
worst, with a mere 25% L������� Top-1 accuracy. Adding I��S���� improves the results substantially
with a 45% L������� Top-1 accuracy, demonstrating the importance of a minimal error slice.
However, �ltering out expressions that are not part of the slice further improves the results to 54%
L������� Top-1 accuracy. Interestingly, while theMLP�500 performs similarly poor with no error
slice features, it recovers nearly all of its accuracy after being given the error slice features. Top-1
accuracy jumps from 29% to 53% when we add I��S����, and only improves by 1% when we �lter
out expressions that are not part of the error slice. Still, the accuracy gain comes at zero cost, and
given the other bene�ts of �ltering by I��S����— shrinking the search space and guaranteeing our
predictions are actionable — we choose to �lter all programs by I��S����.

4.3.2 Contextual Features. We investigate the relative impact of the other three classes of
features discussed in § 3.1, assuming we have discarded expressions not in the type error slice.
For this experiment we consider again a baseline of only local syntactic features, extended by
each combination of (1) expression size; (2) contextual syntactic features; and (3) typing features.
As before, we perform a 10-fold cross-validation, but we train for a full 20 epochs to make the
di�erences more apparent.

Results. Figure 5b summarizes the results of this experiment. The L������� classi�er and the
MLP�500 start o� competitive when given only local syntactic features, but theMLP�500 quickly
outperforms as we add features.

E����S��� is the weakest feature, improving L������� Top-1 accuracy by less than 1% and MLP�
500 by only 4%. In contrast, the contextual syntactic features improve L������� Top-1 accuracy by
5% (resp. 16%), and the typing features improve Top-1 accuracy by 6% (resp. 18%). Furthermore, while
E����S��� does provide some bene�t when it is the only additional feature, it does not appear to
provide any real increase in accuracy when added alongside the contextual or typing features. This
2A layer of 500 neurons is excessive when we have so few input features — we use MLP�500 for continuity with the
surrounding sections.
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(b) Impact of contextual features on blame accuracy. The total number of features is given in parentheses.

Fig. 5. Results of our experiments on feature utility.

is likely explained by feature overlap, i.e. the contextual features of “child” expressions additionally
provide some information about the size of the subtree.
As one might expect, the typing features are more bene�cial than the contextual syntactic

features. They improve Top-1 accuracy by an additional 1% (resp. 3%), and are much more compact
— requiring only 55 typing features compared to 180 contextual syntactic features. This aligns with
our intuition that types should be a good summary of the context of an expression. However, typing
features do not appear to subsume contextual syntactic features, theMLP�500 gains an additional
4% Top-1 accuracy when both are added.

4.4 Threats to Validity
Although our experiments demonstrate that our technique can pinpoint type errors more accurately
than the state of the art and that our features are relevant to blame assignment, our results may
not generalize to other problem domains or program sets.

One threat to validity associated with supervised machine learning is over�tting (i.e. learning a
model that is too complex with respect to the data). A similar issue that arises in machine learning
is model stability (i.e. can small changes to the training set produce large changes in the model?).
We mitigate these threats by: (1) using separate training and testing datasets drawn from distinct
student populations (§ 4.2), demonstrating the generality of our models; and (2) via cross-validation
on the joint dataset (§ 4.3), which demonstrates the stability of our models by averaging the accuracy
of 10 models trained on distinct subsets of the data.
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Our benchmarks were drawn from students in an undergraduate course and may not be repre-
sentative of other student populations. We mitigate this threat by including the largest empirical
evaluation of type error localization that we are aware of: over 5,000 pairs of ill-typed programs and
�xes from two instances of the course, with programs from 102 di�erent students. We acknowledge,
of course, that students are not industrial programmers and our results may not translate to large-
scale software development; however, we are particularly interested in aiding novice programmers
as they learn to work inside the type system.

A related threat to construct validity is our de�nition of the immedate next well-typed program
as the intended ground truth answer (see § 2, Challenge 2). Students may, in theory, submit
intermediate well-typed program “rewrites” between the original ill-typed program and the �nal
intended answer. Our approach to discarding outliers (see § 4) is designed to mitigate this threat.
Our removal of program pairs that changed too much, where our oracle could not identify the

blame of the other tools, or where the other tools timed out or encountered unsupported language
features is another threat. It is possible that including the programs that changed excessively would
hurt our models, or that the other tools would perform better on the programs with unsupported
language features. We note however that (1) outlier removal is a standard technique in machine
learning; and (2) our Top-1 accuracy margin is large enough that even if we assumed that SHE��L��
were perfect on all excluded programs, we would still lead by 9 points.

Examining programs written in OC��� as opposed to H������ or any other typed functional
language poses yet another threat, common type errors may di�er in di�erent languages. OC���
is, however, a standard target for research in type error localization and thus our choice admits a
direct comparison with prior work. Furthermore, the functional core of OC��� that we support
does not di�er signi�cantly from the functional core of H������ or SML, all of which are e�ectively
lambda calculi with a Hindley-Milner-style type system.

Finally, our use of student �xes as oracles assumes that students are able to correctly identify the
source of an error. As the students are in the process of learning the language and type system, this
assumption may be faulty. It may be that expert users would disagree with many of the student
�xes, and that it is harder to learn a model of expert �xes, or that the state of the art would be
better at predicting expert �xes. As we have noted before, we believe it is reasonable to use student
�xes as oracles because the student is the best judge of what she intended.

4.5 Interpreting Specific Predictions
Next, we present a qualitative evaluation that compares the predictions made by our classi�ers
with those of SHE��L��. In particular, we demonstrate, with a series of example programs from
our student dataset, how our classi�ers are able to use past student mistakes to make more accurate
predictions of future �xes. We also take this opportunity to examine some of the speci�c features
our classi�ers use to assign blame. For each example, we provide (1) the code; (2) SHE��L��’s
prediction; (3) our T���’s prediction; and (4) an explanation of why our classi�er made its
prediction, in terms of the features used and their values. We choose the T��� classi�er for this
section as its model is more easily interpreted than the MLP. We also exclude the E����S��� feature
from the model used in this section, as it makes the predictions harder to motivate, and as we saw
in § 4.3 it does not appear to contribute signi�cantly to the model’s accuracy.

We explain the predictions by analyzing the paths induced in the decision tree by the features of
the input expressions. Recall that each node in a decision tree contains a simple predicate of the
features, e.g. “is feature �j enabled?”, which determines whether a sample will continue down the
left or right subtree. Thus, we can examine the predicates used and the values of the corresponding
features to explain why our T��� made its prediction. We will focus particularly on the enabled
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features, as they generally provide more information than the disabled features. Furthermore, each
node is additionally labeled with the ratio of “blamed” vs “not-blamed” training expressions that
passed through it. We can use this information to identify particularly important decisions, i.e. we
consider a decision that changes the ratio to be more interesting than a decision that does not.

4.5.1 Failed Predictions. We begin with a few programs where our classi�er fails to make the
correct prediction. For these programs we will additionally highlight the correct blame location.

Constructing a List of Duplicates. Our �rst program is a simple recursive function clone that
takes an item x and a count n, and produces a list containing n copies of x.
1 let rec clone x n =

2 let loop acc n =

3 if n <= 0 then

4 acc

5 else

6 clone ([x] @ acc) (n - 1) in

7 loop [] n

The student has de�ned a helper function loop with an accumulator acc, likely meant to call itself
tail-recursively. Unfortunately, she has called the top-level function clone rather than loop in the
else branch, this induces a cyclic constraint �a = �a list for the x argument to clone.
Our top prediction coincides with SHE��L�� (and OC���), blaming the the �rst argument to

clone rather than the occurrence of clone itself. We confess that this prediction is di�cult to
explain by examining the induced paths. In particular, it only references the expression’s context,
which is surprising. More clear is why we fail to blame the occurrence of clone, two of the enabled
features on the path are: (1) the parent is an application; and (2) clone has a function type. The
model appears to have learned that programmers typically call the correct function.

Currying Considered Harmful? Our next example is another ill-fated attempt at clone.
1 let rec clone x n =

2 let rec loop x n acc =

3 if n < 0 then

4 acc

5 else

6 loop (x, (n - 1), (x :: acc)) in

7 loop (x, n, [])

The issue here is that OC��� functions are curried by default — i.e. they take their arguments
one at a time — but our student has called the inner loop with all three arguments in a tuple.
Many experienced functional programmers would choose to keep loop curried and rewrite the
calls, however our student decides instead to uncurry loop, making it take a tuple of arguments.
SHE��L�� blames the recursive call to loop while our classi�er blames the tuple of arguments — a
reasonable suggestion, but not the answer the student expected.
We fail to blame the de�nition of loop because it is de�ning a function. First, note that we

represent let f x y = e as let f = fun x -> fun y -> e, thus a change to the pattern x
would be treated as a change to the outer fun expression. With this in mind, we can explain our
failure to blame the de�nition of loop (the outer fun) as follows: (1) it has a function type; (2) its
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child is a fun; and (3) its parent is a let. Thus it appears to the model that the outer fun is simply
part of a function de�nition, a common and innocuous phenomenon.

4.5.2 Correct Predictions. Next, we present a few indicative programs where our �rst predic-
tion is correct, and all of the other tools’ top three predictions are incorrect.

Extracting the Digits of an Integer. Consider �rst a simple recursive function digitsOfInt
that extracts the digits of an int.

1 let rec digitsOfInt n =

2 if n <= 0 then

3 []

4 else

5 [n mod 10] @ [ digitsOfInt (n / 10) ]

Unfortunately, the student has decided to wrap the recursive call to digitsOfInt with a list literal,
even though digitsOfInt already returns an int list. Thus, the list literal is inferred to have type
int list list, which is incompatible with the int list on the left of the @ (list append) operator.
Both SHE��L�� and the OC��� compiler blame the recursive call for returning a int list rather
than int, but the recursive call is correct!
As our T��� correctly points out (with high con�dence), the fault lies with the list literal

surrounding the recursive call, remove it and the type error disappears. An examination of the
path induced by the list literal reveals that our T��� is basing its decision on the fact that (1) the
expression is a list literal; (2) the child expression is an application, whose return type mentions
int; and (3) the parent expression is also an application. Interestingly, T��� incorrectly predicts
that the child application should change as well, but it is less con�dent of this prediction and ranks
it below the correct blame assignment.

Padding a list. Our next program, padZero, is given two int lists as input, and must left-pad
the shorter one with enough zeros that the two output lists have equal length. The student �rst
de�nes a helper clone.

1 let rec clone x n =

2 if n <= 0 then

3 []

4 else

5 x :: clone x (n - 1)

Then she de�nes padZero with a branch to determine which list is shorter, followed by a clone to
zero-pad it.

1 let padZero l1 l2 =

2 let n = List.length l1 - List.length l2 in

3 if n < 0 then

4 (clone 0 ((-1) * n) @ l2, l2)

5 else

6 (l1, clone 0 n :: l2 )

Alas, our student has accidentally used the :: operator rather than the @ operator in the else
branch. SHE��L�� and OC��� correctly determine that she cannot cons the int list returned
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by clone onto l2, which is another int list, but they decide to blame the call to clone, while
our T��� correctly blames the :: constructor.
Examining the path induced by the ::, we can see that our T��� is in�uenced by the fact that:

(1) :: is a constructor; (2) the parent is a tuple; and (3) the leftmost child is an application. We
note that �rst fact appears to be particularly signi�cant; an examination of the training samples
that reach that decision reveals that, before observing the I��C���������� feature the classi�er is
slightly in favor of predicting “blame”, but afterwards it is heavily in favor of predicting “blame”.
Many of the following decisions change the balance back towards “no blame” if the “true” path
is taken, but the :: constructor always takes the “false” path. It would appear that our T��� has
learned that constructors are particularly suspicious, and is looking for exceptions to this rule.

Our T��� correctly predicts that the recursive call blamed by SHE��L�� should not be blamed; a
similar examination suggests that the crucial observation is that the recursive call’s parent is a data
constructor application.

4.6 Blame Utility
We have demonstrated in the preceding sections that we can produce more accurate blame assign-
ments by learning from the collective mistakes of prior students; however, users are the �nal judge
of the utility of an error message. Thus, in this �nal experiment we ask whether N���’s correct
blame assignments aid users in understanding type errors more than incorrect assignments.
We assigned three problems to the students in our user study: the padZero and mulByDigit

programs from § 4.5, as well as the following sepConcat program

1 let rec sepConcat sep sl =

2 match sl with

3 | [] -> ��

4 | h::t ->

5 let f a x = a ^ (sep ^ x) in

6 let base = [] in

7 List.fold_left f base sl

where the student has erroneously returned the empty list, rather than the empty string, in the
base case of the fold. For each problem the students were additionally given either N���’s correct
blame assignment or SHE��L��’s incorrect blame assignment, with no error message. The full user
study is available in Appendix A.

Due to the nature of an in-class exam, not every student answered every question, but we always
received at least 12 (out of a possible 15 or 16) responses for each problem-tool pair. This session of
the course was taught in R�����,3 a dialect of OC��� with a more C-like syntax, and thus for the
study we transcribed the programs to R����� syntax.

We then instructed three annotators (one of whom is an author, the others are graduate students
at UCSD) to classify the answers as correct or incorrect. We performed an inter-rater reliability
(IRR) analysis to determine the degree to which the annotators consistently graded the exams. As
we had more than two annotators assigning nominal (“correct” or “incorrect”) ratings we used
Fleiss’ kappa [Fleiss 1971] to measure IRR. Fleiss’ kappa is measured on a scale from 1, indicating
total agreement, to �1, indicating total disagreement, with 0 indicating random agreement.

Finally, we used a one-sided Mann-Whitney U test [Mann and Whitney 1947] to determine the
signi�cance of our results. The null hypothesis was that the responses from students given N���’s

3https://reasonml.github.io
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Fig. 6. A classification of students’ explanations and fixes for type errors, given either SHE��L�� or N���’s
blame assignment. The students given N���’s location generally scored be�er than those given SHE��L��’s.
We report the result of a one-sided Mann-WhitneyU test for statistical significance in parentheses.

blame were drawn from the same distribution as those given SHE��L��’s, i.e. N��� had no e�ect.
Since we used a one-sided test, the alternative to the null hypothesis is that N��� had a positive
e�ect on the responses. We reject the null hypothesis in favor of the alternative if the test produces
a signi�cance level p < 0.05, a standard threshold for determining statistical signi�cance.

Results. The measured kappa values were � = 0.68 for the explanations and � = 0.77 for the
�xes; while there is no formal notion for what consititutes strong agreement [Krippendor� 2012],
kappa values above 0.60 are often called “substantial” agreement [Landis and Koch 1977]. Figure 6
summarizes a single annotator’s results, which show that students given N���’s blame assignment
were generally more likely to correctly explain and �x the type error than those given SHE��L��’s.
There was no discernible di�erence between N��� and SHE��L�� for sepConcat; however, N���
responses for padZero and mulByDigitwere marked correct 5–25% more often than the SHE��L��
responses. While the results appear to show a trend in favor of N���, they do not rise to the level
of statistical signi�cance in this experiment; further investigation is merited.

Threats to Validity. Measuring understanding is di�cult, and comes with its own set of threats.

Construct. We used the correctness of the student’s explanation of, and �x for, the type error as
a proxy for her understanding, but it is possible that other metrics would produce di�erent results.
A further threat arises from our decision to use R����� syntax rather than OC���. R����� and
OC��� di�er only in syntax, the type system is the same; however, the di�erence in syntax may
a�ect students’ understanding of the programs. For example, R����� uses the notation [h, ...t]
for the list “cons” constructor, in contrast to OC���’s h::t. It is quite possible that R�����’s syntax
could help students remember that h is a single element while t is a list.

Internal. We assigned students randomly to two groups. The �rst was given SHE��L��’s blame
assignment for sepConcat and mulByDigit, and N���’s blame for padZero; the second was given
the opposite assignment. This ensured that each student was given SHE��L�� and N��� problems.
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Students without su�cient knowledge of R����� could a�ect the results, as could the time-
constrained nature of an exam. Thus, we excluded any answers left blank from our analysis.

External. Our experiment used students in the process of learning R�����, and thus may not
generalize to all developers. The three programs were chosen manually, via a random selection
and �ltering of the programs from the SP14 dataset, where N���’s top prediction was correct but
SHE��L��’s was incorrect. A di�erent selection of programs may lead to di�erent results.

Subjects. We collected exams from 31 students, though due to the nature of the study not every
student completed every problem. The number of complete submissions was always at least 12 out
of a maximum of 15 or 16 per program-tool pair.

5 LIMITATIONS
We have shown that we can outperform the state of the art in type error localization by learning
a model of the errors that programmers make, using a set of features that closely resemble the
information the type checker sees. In this section we highlight some limitations of our approach
and potential avenues for future work.

User-De�ned Types. Probably the single biggest limitation of our technique is that we have (a
�nite set of) features for speci�c data and type constructors. Anything our models learn about errors
made with the :: constructor or the list type cannot easily be translated to new, user-de�ned
datatypes the model has never encountered. We can mitigate this, to some extent, by adding generic
syntactic features for data constructors and match expressions, but it remains to be seen how
much these help. Furthermore, there is no obvious analog for transferring knowledge to new type
constructors, which we have seen are both more compact and helpful.
As an alternative to encoding information about speci�c constructors, we might use a more

abstract representation. For example, instead of modeling x :: 2 as a :: constructor with a
right child of type int, we might model it as some (unknown) constructor whose right child has
an incompatible type. We might symmetrically model the 2 as an integer literal whose type is
incompatible with its parent. Anything we learn about :: and 2 can now be transferred to yet
unseen types, but we run the risk generalizing too much — i.e. perhaps programmers make di�erent
errors with lists than they do with other types, and are thus likely to choose di�erent �xes.
Balancing the trade-o� between speci�city and generalizability appears to be a challenging task.

Additional Features. There are a number of other features that could improve the model’s
ability to localize errors, that would be easier to add than user-de�ned types. For example, each
occurrence of a variable knows only its type and its immediate neighbors, but it may be helpful
to know about other occurrences of the same variable. If a variable is generally used as a float
but has a single use as an int, it seems likely that the latter occurrence (or context) is to blame.
Similarly, arguments to a function application are not aware of the constraints imposed on them
by the function (and vice versa), they only know that they are occurring in the context of an
application. Finally, n-grams on the token stream have proven e�ective for probabilistic modeling
of programming languages [Gabel and Su 2010; Hindle et al. 2012b], we may �nd that they aid in
our task as well. For example, if the observed tokens in an expression diverge from the n-gram
model’s predictions, that indicates that there is something unusual about the program at that point,
and it may signal an error.

Independent vs Joint Predictions. We treat each sub-expression as if it exists in a vacuum, but
in reality the program has a rich graphical structure, particularly if one adds edges connecting
di�erent occurrences of the same variable. Raychev et al. [2015] have used these richer models
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to great e�ect to make interdependent predictions about programs, e.g. de-obfuscating variable
names or even inferring types. One could even view our task of locating the source of an error
as simply another property to be predicted over a graphical model of the program. One of the
key advantages of a graphical model is that the predictions made for one node can in�uence the
predictions made for another node, this is known as structured learning. For example, if, given the
expression 1 + true, we predict true to be erroneous, we may be much less likely to predict +
as erroneous. We compensate somewhat for our lack of structure by adding contextual features
and by ranking our predictions by “con�dence”, but it would be interesting to see how structured
learning over graphical models would perform.

6 RELATEDWORK
In this section we describe two relevant aspects of related work: programming languages approaches
to diagnosing type errors, and software engineering approaches to fault localization.

Localizing Type Errors. It is well-known that the original Damas-Milner algorithmW produces
errors far from their source, that novices percieve as di�cult to interpret [Wand 1986]. The type
checker reports an error the moment it �nds a constraint that contradicts one of the assumptions,
blaming the new inconsistent constraint, and thus it is extremely sensitive to the order in which it
traverses the source program (the infamous “left-to-right” bias [McAdam 1998]). Several alternative
traversal have been proposed, e.g. top-down rather than bottom-up [Lee and Yi 1998], or a sym-
metric traversal that checks sub-expressions independently and only reports an error when two
inconsistent sets of constraints are merged [McAdam 1998; Yang 1999]. Type error slicing [Haack
and Wells 2003; Rahli et al. 2010; Tip and Dinesh 2001] overcomes the constraint-order bias by
extracting a complete and minimal subset of terms that contribute to the error, i.e. all of the terms
that are required for it to manifest and no more. Slicing typically requires rewriting the type checker
with a specialized constraint language and solver, though Schilling [2011] shows how to turn any
type checker into a slicer by treating it as a black-box. While slicing techniques guarantee enough
information to diagnose the error, they can fall into the trap of providing too much information,
producing a slice that is not much smaller than the input.

Finding Likely Errors. Thus, recent work has focused on �nding the most likely source of a
type error. Zhang and Myers [2014] use Bayesian reasoning to search the constraint graph for
constraints that participate in many unsatis�able paths and relatively few satis�able paths, based
on the intuition that the program should be mostly correct. Pavlinovic et al. [2014] translate the
localization problem into a MaxSMT problem, asking an o�-the-shelf solver to �nd the smallest
set of constraints that can be removed such that the resulting system is satis�able. Loncaric et al.
[2016] improve the scalability of Pavlinovic et al. by reusing the existing type checker as a theory
solver in the Nelson-Oppen [1979] style, and thus require only a MaxSAT solver. All three of these
techniques support weighted constraints to incorporate knowledge about the frequency of di�erent
errors, but only Pavlinovic et al. use the weights, setting them to the size of the term that induced
the constraint. In contrast, our classi�ers learn a set of heuristics for predicting the source of type
errors by observing a set of ill-typed programs and their subsequent �xes, in a sense using only the
weights and no constraint solver. It may be pro�table to combine both approaches, i.e. learn a set
of good weights for one of the above techniques from our training data.

Explaining Type Errors. In this paper we have focused solely on the task of localizing a type
error, but a good error report should also explain the error. Wand [1986], Beaven and Stansifer
[1993], and Duggan and Bent [1996] attempt to explain type errors by collecting the chain of
inferences made by the type checker and presenting them to the user. Gast [2004] produces a
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slice enhanced by arrows showing the data�ow from sources with di�erent types to a shared
sink, borrowing the insight of data�ows-as-explanations from M�S����� [Flanagan et al. 1996].
Hage and Heeren [2006] catalog a set of heuristics for improving the quality of error messages by
examining errors made by novices. Heeren et al. [2003], Christiansen [2014], and Serrano and Hage
[2016] extend the ability to customize error messages to library authors, enabling domain-speci�c
errors. Such static explanations of type errors run the risk of overwhelming the user with too much
information, it may be preferable to treat type error diagnosis as an interactive debugging session.
Bernstein and Stark [1995] extend the type inference procedure to handle open expressions (i.e.
with unbound variables), allowing users to interactively query the type checker for the types of
sub-expressions. Chitil [2001] proposes algorithmic debugging of type errors, presenting the user
with a sequence of yes-or-no questions about the inferred types of sub-expressions that guide the
user to a speci�c explanation. Seidel et al. [2016] explain type errors by searching for inputs that
expose the run-time error that the type system prevented, and present users with an interactive
visualization of the erroneous computation.

Fixing Type Errors. Some techniques go beyond explaining or locating a type error, and actually
attempt to �x the error automatically. Lerner et al. [2007] searches for �xes by enumerating a
set of local mutations to the program and querying the type checker to see if the error remains.
Chen and Erwig [2014a] use a notion of variation-based typing to track choices made by the type
checker and enumerate potential type (and expression) changes that would �x the error. They also
extend the algorithmic debugging technique of Chitil by allowing the user to enter the expected
type of speci�c sub-expressions and suggesting �xes based on these desired types [2014b]. Our
classi�ers do not attempt to suggest �xes to type errors, but it may be possible to do so by training
a classi�er to predict the syntactic class of each expression in the �xed program — we believe this
is an exciting direction for future work.

Fault Localization. Given a defect, fault localization is the task of identifying “suspicious”
program elements (e.g. lines, statements) that are likely implicated in the defect — thus, type error
localization can be viewed as an instance of fault localization. The best-known fault localization
technique is likely Tarantula, which uses a simple mathematical formula based on measured
information from dynamic normal and buggy runs [Jones et al. 2002]. Other similar approaches,
including those of Chen et al. [2002] and Abreu et al. [2006, 2007] consider alternate features of
information or re�ned formulae and generally obtain more precise results; see Wong and Debroy
[2009] for a survey. While some researchers have approached such fault localization with an eye
toward optimality (e.g. Yoo et al. [2013] determine optimal coe�cients), in general such fault
localization approaches are limited by their reliance on either running tests or including relevant
features. For example, Tarantula-based techniques require a normal and a buggy run of the program.
By contrast, we consider incomplete programs with type errors that may not be executed in any
standard sense. Similarly, the features available in�uence the classes of defects that can be localized.
For example, a fault localization scheme based purely on control �ow features will have di�culty
with cross-site scripting or SQL code injection attacks, which follow the same control �ow path
on normal and buggy runs (di�ering only in the user-supplied data). Our feature set is comprised
entirely of syntactic and typing features, a natural choice for type errors, but it would likely not
generalize to other defects.

7 CONCLUSION
We have presented N���, which combines modern statistical methods with domain-speci�c fea-
ture engineering to open the door to a new data-driven path towards precise error localization,
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signi�cantly outperforming the state of the art on a new benchmark suite comprising 5,000 student
programs. We found that while machine learning over syntactic features of each term in isolation
performs worse than existing purely constraint-based approaches, augmenting the data with a
single feature corresponding to the type error slice brings our classi�ers up to par with the state
of the art, and further augmenting the data with features of an expression’s parent and children
allows our classi�ers to outperform the state of the art by 16 percentage points.

As with other forms of machine learning, a key concern is that of data-set bias: are N���’s models
speci�c to our data set, would they fail on other programs? We address this concern in two ways.
First, we partition the data by year, and show that models learned from one year generalize to, i.e.
perform nearly as well on, the programs from the other year. Second, we argue that in our setting
this bias is a feature (and not a bug): it allows N��� to adapt to the kinds of errors that programmers
(speci�cally novices, who are in greatest need of precise feedback) actually make, rather than
hardwiring the biases of experts who may su�er from blind spots. In this regard, we are particularly
pleased that our classi�ers can be trained on a modest amount of data, i.e. a single course’s worth,
and envision a future where each course comes equipped with a model of its students’ errors.
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A USER STUDY
A.1 Version A

CS4610 Exam 3 UVa ID:

6. Debugging, Opsems, Types (18 points)

Consider these shown Reason programs that do not type-check ; the code implicated by the type checker will
be highlighted and underlined . Each has English comments explaining what the program should do, as well as

assertions that should type check and succeed.

(a) /* "sepConcat sep [s1;s2;s3]" should insert "sep" between "s1", "s2", and "s3", and
concatentate the result. */

/* Recall that List.fold_left takes a function , an accumulator , and a list as input */
let rec sepConcat = fun sep sl =>

switch sl {
| [] => ""
| [h, ...t] =>

let f = fun a x => a ^ (sep ^ x);
let base = [];

List.fold left f base sl

};

assert (sepConcat "," ["foo", "bar", "baz"] == "foo ,bar ,baz");

i. (3 points) Why is sepConcat not well-typed?

ii. (3 points) Describe how you would fix the code so that sepConcat works correctly.

(b) /* "padZero xs ys" returns a pair "(xs ’, ys ’)" where the shorter of "xs" and "ys" has
been left -padded by zeros until both lists have equal length. */

let rec clone = fun x n =>
if (n <= 0) {

[]
} else {

[x, ... clone x (n - 1)]
};

let padZero = fun l1 l2 => {
let n = List.length l1 - List.length l2;
if (n < 0) {

(clone 0 ((-1) * n) @ l1, l2)
} else {

(l1 , [clone 0 n, ...l2] )

}
};

assert (padZero [1, 2] [1] == ([1, 2], [0, 1]));

i. (3 points) Why is padZero not well-typed?

ii. (3 points) Describe how you would fix the code so that padZero works correctly.

9
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CS4610 Exam 3 UVa ID:

(c) /* "mulByDigit d [n1;n2;n3]" should multiply the "big integer" "[n1;n2;n3]"
by the single digit "d". */

let rec mulByDigit = fun d n =>
switch (List.rev n) {
| [] => []

| [h, ...t] => [ mulByDigit d t , (h * d) mod 10]

};

assert (mulByDigit 4 [2, 5] == [1, 0, 0]);

i. (3 points) Why is mulByDigit not well-typed?

ii. (3 points) Describe how you would fix the code so that mulByDigit works correctly.

10
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A.2 Version B

CS4610 Exam 3 UVa ID:

6. Debugging, Opsems, Types (18 points)

Consider these shown Reason programs that do not type-check ; the code implicated by the type checker will
be highlighted and underlined . Each has English comments explaining what the program should do, as well as

assertions that should type check and succeed.

(a) /* "sepConcat sep [s1;s2;s3]" should insert "sep" between "s1", "s2", and "s3", and
concatentate the result. */

/* Recall that List.fold_left takes a function , an accumulator , and a list as input */
let rec sepConcat = fun sep sl =>

switch sl {
| [] => ""
| [h, ...t] =>

let f = fun a x => a ^ (sep ^ x);

let base = [] ;

List.fold_left f base sl
};

assert (sepConcat "," ["foo", "bar", "baz"] == "foo ,bar ,baz");

i. (3 points) Why is sepConcat not well-typed?

ii. (3 points) Describe how you would fix the code so that sepConcat works correctly.

(b) /* "padZero xs ys" returns a pair "(xs ’, ys ’)" where the shorter of "xs" and "ys" has
been left -padded by zeros until both lists have equal length. */

let rec clone = fun x n =>
if (n <= 0) {

[]
} else {

[x, ... clone x (n - 1)]
};

let padZero = fun l1 l2 => {
let n = List.length l1 - List.length l2;
if (n < 0) {

(clone 0 ((-1) * n) @ l1, l2)
} else {

(l1 , [ clone 0 n , ...l2])

}
};

assert (padZero [1, 2] [1] == ([1, 2], [0, 1]));

i. (3 points) Why is padZero not well-typed?

ii. (3 points) Describe how you would fix the code so that padZero works correctly.
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(c) /* "mulByDigit d [n1;n2;n3]" should multiply the "big integer" "[n1;n2;n3]"
by the single digit "d". */

let rec mulByDigit = fun d n =>
switch (List.rev n) {
| [] => []

| [h, ...t] => [mulByDigit d t, (h * d) mod 10]

};

assert (mulByDigit 4 [2, 5] == [1, 0, 0]);

i. (3 points) Why is mulByDigit not well-typed?

ii. (3 points) Describe how you would fix the code so that mulByDigit works correctly.
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