
Path Slicing∗

Ranjit Jhala
CS Department, UC San Diego

jhala@cs.ucsd.edu

Rupak Majumdar
CS Department, UC Los Angeles

rupak@cs.ucla.edu

Abstract
We present a new technique,path slicing, that takes as input a possibly in-
feasible path to a target location, and eliminates all the operations that are
irrelevant towards the reachability of the target location. A path slice is a
subsequence of the original path whose infeasibility guarantees the infea-
sibility of the original path, and whose feasibility guarantees the existence
of some feasible variant of the given path that reaches the target location
even though the given path may itself be infeasible. Our method combines
the ability of program slicing to look at several program paths, with the pre-
cision that dynamic slicing enjoys by focusing on a single path. We have
implemented Path Slicing to analyze possible counterexamples returned by
the software model checker BLAST. We show its effectiveness in drasti-
cally reducing the size of the counterexamples to less than1% of their orig-
inal size. This enables the precise verification of application programs (upto
100KLOC), by allowing the analysis to focus on the part of the counterex-
ample that is relevant to the property being checked.

1. Introduction
We introducepath slicing, a technique to determine which subset
of the edges along a given control flow path to particular target
location are relevant towards demonstrating the (un)reachability of
the target location along the given path.

Static analyses used to verify safety properties return control
flow paths to anerror locationas possible counterexamples demon-
strating that the program is unsafe. As the static analysis is typically
conservative, this path may or may not represent an actual violation
of the property. Traditionally, such control flow paths, are examined
manually to determine whether they correspond to a feasible pro-
gram execution, and therefore, a bug [8, 7, 13, 22]. For large pro-
grams, the sheer length of the path makes such manual inspection
difficult. More recently, counterexample-guided program analyses
[3, 17, 6, 11] attempt to automatically find out if the path is feasi-
ble, and if not, they exploit the infeasibility of the path to refine the
abstraction used for analysis. Once again, long counterexamples
complicate this process.

Consider the programEx2 shown in Figure 1(A). For the mo-
ment, let us assume that the shaded grey code is missing,i.e., the
program begins from the label2:. This program is a simplified

∗ This research was supported in part by the grant NSF CCR-0427202.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’05, June 12–15, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-080-9/05/0006. . . $5.00.

Figure 1. (A) Ex2 (B) CFA for Ex2 (C)Path, Slice

version of the following verification instance: The variablex corre-
sponds to a file; it is non-zero if the file has been opened. The file
may be opened and read depending on some condition, captured by
the variablea, that is unconstrained in the example (suppose it is an
input). The file should only be read if open; the branch at6: mod-
els the check that the file is indeed open, which is an assert that we
put in just before an actual read from the file takes place. Thus, the
labelERR is reached if this assertion is violated. Let us suppose that
the functionf, whose code is not shown, always terminates, and
thatf does not modify the variablesa, x. In this case, as the pro-
gram eventually breaks out of the loop,a is unconstrained, andx is
not set anywhere (recall that we are assuming the shaded lines are
missing), the target is indeed reachable. However, anyfeasiblepath
to the target must contain a thousand unrollings of the “for-loop”,
not to mention feasible paths throughf. Any path to the target loca-
tion that does not meet these requirements is infeasible, and if our
static analysis returns such a path, we have no option but to dismiss
it as afalse positivearising from the imprecision of the analysis.
In this case, the analysis cannot be used to make any claim about
the reachability of the target location. Counterexample-guided re-
finement based techniques are doomed to either take a long time to
find an abstraction precise enough to force them around the loop a
thousand times, or worse, not terminate, because of the difficulty
of finding a feasible path throughf, which may be arbitrarily com-
plex.

The question then is, is it possible to use (overapproximate)
static analyses to precisely report that the target location is reach-
able,without actually finding a feasible path to it? Intuitively, the
code through the for-loop is irrelevant to the reachability of the er-
ror location. In other words, if we can reason thatthere exists some
path from the start to the end of the loop,i.e., from location3: to

Figure 2. (A)ProgramEx1 (B)Path Slice

5:, and along such a path, the variablesx, a are not modified, then
we are guaranteed that the locationERR: can be reached.

Consider a candidate path to the locationERR: shown in Fig-
ure 1(C). While this particular path is infeasible, as we unroll the
loop only once, if we delete the irrelevant operations correspond-
ing to the loop (shown via the dotted edges), then the remaining
sequence of operations is feasible. We formalize this notion of re-
moving irrelevant instructions along a path as path slicing.

A path sliceof a control flow pathπ in a program is a subse-
quence of the edges ofπ such that (1) if the sequence of slice op-
erations is infeasible, then the original path is infeasible, and (2) if
the sequence of slice operations is feasible, then the last location
of π is reachable (modulo program termination). Intuitively, a path
slice is obtained by dropping some edges along the path, but leav-
ing the edges corresponding to branches that must be taken to reach
the target, and assignments that feed the values to the expressions
in the branches.

Since a path slice concentrates attention on a particular control
flow path through the program, it can be much more precise than
a statically computed program slice [25, 18, 24]. Consider the
program fragment shown in Figure 2(A). The functioncomplex()
does some computation that is hard to reason about statically, say
it factors large numbers. Hence it is difficult to statically find a
feasible path through it. However, suppose thatcomplex() does
not modify a. A backward program slice ofEx1 with respect to
the target location markedERR, would not be able to remove the
procedurecomplex(). This happens as there is a path (namely that
corresponding to the “then” branch of the conditionala > 0) along
which the result of the function flows intox, which in turn guards
the branch before the target location.

If instead, we focus on the path shown in Figure 2(B), we find
that the value returned bycomplex along this path is irrelevant, and
so a path slice would (1) eliminate the path through the function
complex and (2) preserve the conditional corresponding to the
else branch. Thus the states that can execute the path slice, namely
those satisfyinga ≤ 0, all reach the target location (provided
complex terminates).

Hence, a path slice can be significantly more precise than static
program slice. In the case where counterexamples are manually
inspected, a path slice enables the human to focus on relevant
sections of the abstract counterexample path. In the case where
counterexamples are automatically analyzed to guide abstraction
refinement, this extra precision can make the difference between
termination and divergence: without this slice, we would iterate
forever trying to find a feasible path throughcomplex.

Path slicing is distinct from dynamic slicing [19, 27] in two
ways. First, the paths are not the result of a dynamic execution
and hence are not guaranteed to be feasible. Second, and more
importantly, we consider alternative program paths to find if some
variant of the given path is in fact feasible, as shown by the path
throughEx2.

We show how to efficiently compute a path slice, by performing
a backwards dataflow analysis over the given path. Our algorithm,
calledPathSlice, iterates backwards over the path, tracking, at each
point, the set of lvalues that determine if the suffix of the path from
that point is feasible, called thelive lvaluesand the source location
of the last edge added to the slice, called thestep location. We take
an edge corresponding to an assignment if the assignment is to a
live variable. We take an edge corresponding to a conditional if
either the conditional corresponds to the branch direction that must
be taken to reach the step location, or if in the branch not taken,
the program may have modified a live variable. If an edge is taken,
the live set and step location are appropriately updated. We show
how a must-reachability analysis can be used to detect the former
case, and a modified-variable analysis can be used to detect the
latter case. Both these analyses are intraprocedural and hence give
us an efficient path slicing algorithm. For function calls, we only
enter the body of the call if the function can modify a live variable,
otherwise the entire path through the call is sliced away.

One limitation of path slicing is that it avoids the difficult ques-
tion of statically reasoning about termination. As a result, the fea-
sibility of a path slice guarantees that either the target location is
reachable, or all states that can execute the path slice, cause the
program to enter an infinite loop.

We have implemented AlgorithmPathSlice in the counterex-
ample analysis phase of the software model checker BLAST [17].
We ran this enhanced algorithm to check for file handling errors in
a set of application programs. The largest programs checked had
about 100K lines of code. Without the path slicing algorithm, the
counterexample analysis phase of BLAST did not scale to any of
these examples, because first the counterexamples were too large
to analyze for feasibility, and second they contained many irrele-
vant reasons for infeasibility, causing a blowup in the size of the
abstractions as well as the number of iterations taken to find the
abstraction relevant to the property.

With the path slicing algorithm we were able to check file han-
dling errors in all the programs, and found violations of the prop-
erty in some of them. In general, we found that slicing reduced
counterexample traces to less than 1% of their original size in most
cases. In fact, as the size of counterexample traces got bigger, the
slicing was more effective (traces over 5000 basic blocks almost al-
ways produced slices between 0.1% and 1% of their original sizes.
The end-to-end verification times (including model checking) for
these examples were all below one hour. In the cases where tool
returns a feasible path slice it is much easier for the user to go over
the more succinct slice to ascertain the veracity of the counterex-
ample. Thus, our experiments suggest that path slicing can extend
the scope of static analysis by eliminating irrelevant details.

Related Work. Program slicing [25] has been developed as a useful
tool program debugging, comprehension and testing [24]. Slicing is
studied primarily in two forms: static and dynamic.

In static slicing[18], the input is the static text of the program
and a slicing criterion (for example, a set of variables at a par-
ticular program point), and a static analysis algorithm is used to
overapproximate the set of all variables that may affect the slicing
criterion [24]. Unfortunately, while thesliced programgenerated
by these algorithms contains a subset of the statements and control
predicates of the original algorithm, it is not guaranteed to be an ex-
ecutable program. Moreover, static analysis algorithms for slicing,
especially in the presence of memory aliasing, are usually overly

conservative, and manage to retain a large percentage of the origi-
nal program [21], as we found in experiments using a state-of-the-
art slicing tool [14].

The highly conservative nature of static slicing promoted the
study of dynamic slicing [19, 27], where the program is executed
on a particular test input, and the resulting execution trace (for that
single input) is sliced. While this may not produce a slice for the
entire program, it can be more precise on the particular execution,
and provide a smaller slice for applications in debugging.

As we have discussed in the prequel, path slicing is different
from both of the above— it combines the precision of dynamic slic-
ing with the static slicing’s ability to reason about multiple paths.
Parametric slicing [10] generalizes static and dynamic slicing by
constraining a subset of the inputs to a program. Path slicing is dif-
ferent because the control flow path may not be feasible, moreover,
the objective of the analysis is toconstructsuitable constraints on
the inputs that makes some variant of the path feasible.

There has been some work in the model checking community
to present to the user the “cause” of an error [2, 15, 23]. Typically
these algorithms assume that the path is feasible, and use differenc-
ing algorithms to identify commonalities between multiple paths
to error. The algorithm of [23] uses a dependence analysis similar
to path slicing for this purpose. In the past, automatic refinement
based techniques [3, 17] were used to analyze safety properties of
low level device drivers. In our experience, the counterexamples
for such checks are typically two orders of magnitude smaller than
counterexamples arising from application level programs, such as
the ones we consider here, and hence could be directly analyzed
[16]. It should be noted that path slicing is orthogonal to parsimo-
nious abstractions [16] (finding local predicates that show the infea-
sibility of a trace). Path slicing findswhichoperations along a trace
can possibly influence reachability of the error location, while the
refinement algorithm of [16] analyzes the output of the path slicer
to findwhya path is infeasible.

2. Motivating Examples
We begin by illustrating path slices and how our algorithm com-
putes them using some small examples. Recall the programEx2
shown in Figure 1(A). The labelERR: corresponds to atarget lo-
cation, and we are interested in whether the the program can ever
reach the target location, as this is equivalent to there being some
program execution where the assertion being checked is violated.

Control Flow Automata. We model programs ascontrol flow au-
tomata(CFA), which are essentially the CFG of each function, with
the operations labeling the edges instead of the vertices. A CFA
consists of: (1) integer variables, (2) control locations, including
the special locationsstartandexit, and (3) directed edges that con-
nect the locations. Control starts at the start location and ends at the
exit location. Each edge is labeled by either an assignment that is
executed when the program moves along the edge, or by anassume
predicatewhich must be true for control to move along the edge, or
a function call which corresponds to control jumping to the start lo-
cation of the called procedure. When the called procedure reaches
its exit location, control transfers back to the successor of the call-
edge in the caller. A program is a set of CFA, one for each function.

EXAMPLE 1: [CFA] The CFA for Ex2 is shown on the right in
Figure 1(B). We omit the CFA for the functionf for brevity. As
with the program, let us assume for the moment that the shaded
vertices are not present, and the CFA start node is2. 2

Paths.A (program) pathis a sequence of CFA edges, such that the
calls and exits from functions are balanced, and within each CFA,
the source of each edge in the sequence is the target of the previous
edge of the sequence. A path corresponds to a sequence of opera-

tions, namely those labeling the edges. A path is feasible if there
is some input on which the program executes the corresponding
sequence of operations.

EXAMPLE 2: [Path] Figure 1(C) shows a path from the start lo-
cation of the CFA to the target location, again ignoring the shaded
vertices. The path segment throughf is omitted in the figure for
clarity. This path is infeasible. We seti to 1 at the start of the loop
(on edge3 −→ 3’), then go through the loop once, incrementingi
once (on edge4 −→ 3’) and then break out of the loop assuming
thati exceeds1000 (edge3’ −→ 5) even thoughi is really2. 2

Path Slices.A sliceof a pathπ is a subsequence of the edges of the
π such that

(1) (complete) whenever the sequence of operations labeling
the subsequence is feasible, the target location is reach-
able1, and

(2) (sound) whenever the sequence of operations labeling
the subsequence is infeasible, the path is infeasible.

Intuitively, a path slice is obtained by dropping some edges along
the path, but leaving the edges corresponding to branches that must
be taken to reach the target, and assignments that feed the values to
the expressions in the branches.

EXAMPLE 3: [Completeness: Feasible Path Slice]In Figure 1(C),
the set of solid edges is a slice of the entire path shown. Notice
that the sequence of operations labeling the solid edges is feasible,
and hence, by completeness, demonstrates that the target location
is reachable. In particular, the inputs that can execute the sequence
of solid edges are those that satisfy the formulaa ≥ 0, and upon
starting atanystate satisfying this formula, the program can reach
the target location. 2

EXAMPLE 4: [Soundness: Infeasible Path Slice]Let us now sup-
pose that the programEx2 in Figure 1(A) contains the shaded in-
structions as well. In this case, the target location is not reachable,
as the programmer has ensured that ifa ≥ 0, then x is set to
1. The corresponding CFA is that shown in Figure 1(B) with the
shaded vertices included, and a possible path to the target is shown
in Figure 1(C), once again including the shaded vertices. The path
through the loop remains infeasible, but as it is irrelevant, the edges
corresponding to the loop are omitted from the path slice. Note that
the two (inconsistent) branches that pertain to the reachability of the
target remain in the slice. Thus any automatic refinement scheme
would be able to focus on the real reason for infeasibility, and hence
the real reason for the unreachability of the target, without gather-
ing irrelevant facts about the loop iterations. 2

Computing Path Slices.Our algorithm iteratesbackwardsover the
path, tracking at each point (1) thelive lvalues: the set of lvalues
that determine if the suffix of the path from that point is feasible,
and (2) thestep location: the source location of the last edge added
to the slice.

An assignmentl := e gets added to the slice ifl is an lvalue in
the live set; in this case the lvalue is removed from the live set, and
the lvalues ofe are added to the set. The more interesting case is for
branches. The trace represents only one of the possible choices that
the program may have made at a branch point, and an assume must
be added to the slice if alongany of these directions something
may happen that affects the slice suffix. In particular, an assume
branch is important if either along one of the other branch edges
the program control veers off and does not return to the slice suffix,
or if along one of the other branch edges the program writes an
lvalue that is live,i.e., read along the slice suffix. The first case

1 modulo termination, see Section 3 for details.

is important because only one direction leads to the error along
the slice suffix, and the second case because the branch controls
whether or not a live variable gets updated.

To determine if the first case occurs, we check if there exists a
path from the source of the branch that can “bypass” the step loca-
tion altogether, if so then only the assume operation corresponds to
the branch direction that leads to the step location and hence must
be added. To determine if the second case occurs, we check if there
exists a path between the source of the branch and the step location
along which a live variable is written.

This analysis is different from dynamic slicing algorithms
where we know that the trace under consideration is feasible. In
our algorithm, although the given path may be infeasible, a vari-
ant of it, obtained by dropping irrelevant edges, may be feasible. In
path slicing, we keep only those edges, in particular those branches,
that must be taken along this path to reach the target location.

EXAMPLE 5: [Computing a Path Slice] We now illustrate our
algorithm by showing how the path slice shown in Figure 1 is
computed. In Figure 1(C), the value of the step location and the
live set is shown at each point along the path. We start at the last
location, the target location. At this point, the step location and the
live set are (trivially)ERR and the empty set respectively. Next, we
process the location6. Notice that6 can bypass the current step
locationERR, if the operation corresponding to the “else” branch is
taken. Hence, this assume is relevant, and we add the edge6 −→
ERR to the slice. The step location and live set at6 are updated to
6 and the set{a}, asa appears in the branch condition. Next, we
process the location5. Notice that5 can also bypass the current step
location6, again by following the “else” branch. Thus, this assume
edge is also added to the slice, and the step location and live set at
5 are updated to5 and{x, a} asa appears in the branch condition.
Next, we process (the second instance) of location3’. This time,
we find that3’ cannot bypassthe step location5 —unless either
the loop orf does not terminate, it is inevitable that location5 will
be reached. Also, on no path from3’ to 5, are any of the currently
live variables{x, a} modified. Hence, the assume edge3’ −→ 5 is
irrelevant and not added to the slice (is dotted in the figure), and
the step location and live set remain unchanged. Next, we process
the edge4 −→ 3’. As none of the live variables are modified by
these assignments, we discard the edge from the slice. We then
process the assume edge3’−→ 4. Once again, as3’ cannot bypass
the current step location5, and no path from3’ to 5 modifies a
live variable, we omit the edge. The assignments along the edges3
−→ 3’ and2 −→ 3 are not to live variables and so these edges are
omitted from the slice. This is the slice of the program starting at
node2. If the shaded code is included, we come to the last assume
edge0−→ 2. Notice that0 cannot bypass the current step location5
(node5 postdominates node0). However, there exists a path from
0 to 5 along which the live variablex is modified, and this path
is along the branch not taken. Hence, in order that the given path
correspond to a path to the target, this particular branch must be
taken. As a result, this edge is added to the slice, rendering the path
slice infeasible. 2

EXAMPLE 6: [Path Slicing vs. Program Slicing]In both the pre-
vious examples, a program slice would have sufficed to eliminate
the for loop. However, consider exampleEx1 in Figure 2(A). In
Figure 2(B), the solid edges denote the path slice for the path cor-
responding to all the edges (the subpath throughcomplex is omit-
ted for clarity). The annotations on the right are the values of the
step location and live set as we iterate backwards over the path. The
reader can use them to verify that the slice shown is indeed the one
that the above algorithm would compute. Hence, by focusing the
slice on a particular path, we can eliminate the procedurecomplex
entirely. Thus, without actually finding a complete feasible path,

we can show that ifcomplex terminates, then upon starting from
anystate wherea ≤ 0, the program can reach the target location.
2

3. Programs, Paths, and Slices
We illustrate our algorithm on a small imperative language with
integer variables, references, and functions with call-by-value pa-
rameter passing. We begin by completely developing our technique
for programs without procedure calls or references. After this, we
add pointers. In the next section, we show how the techniques are
generalized to programs with procedure calls.

3.1 Syntax and Semantics

We first consider a language with integer valued variables, and no
procedure calls. Boolean expressions arise via boolean combina-
tions of arithmetic comparisons.

Operations.Our programs are built using two kinds of basic oper-
ations:

1. An assignmentoperation is of the forml := e; which corre-
sponds assigning the value of the expressione to the variable
l,

2. An assumeoperation is of the formassume(p); if the boolean
expressionp evaluates totrue, then the program continues, and
otherwise the program halts. Assumes are used to model branch
conditions.

The set of operations is denotedOps.

Control Flow Automata. Each functionf is represented as a
control flow automaton (CFA)Cf = (PC f , pc0, pcout, Ef , Vf).
The CFACf is a rooted, directed graph with:

(1) a set of control locations (or program counters)PC f

which include a special start locationpc0 ∈ PC f , and
a special exit locationpcout ∈ PC f ,

(2) a set of edgesEf ⊆ PC f × Ops × PC f . We write
(pc, op, pc′) to denote the edge frompc to pc′ labeled
op.

A CFA is the control flow graph of a program; its locations corre-
spond to program locations, and its edges correspond to the com-
mands that take the program from one location to the next. A pro-
gram comprises a single CFACf corresponding to a proceduref .

States, Transitions.For a set of variablesX, an X-state is a
valuation for the variablesX. The set of allX-states is written
as Val.X. Each operationop gives rise to a transition relation
op
; ⊆ Val.X × Val.X as follows. We say thats

op
;s′ if:

s′ =

{
s if op ≡ assume(p) ands |= p

s[l 7→ s.e] if op ≡ l := e

We say that a states can executethe operationop if there exists
somes′ such thats

op
;s′.

Weakest Preconditions.An alternative way to view the semantics
of programs is via logical formulas. A formulaϕ over the variables
X represents allX-states where the valuations of the variables
satisfy ϕ. The weakest preconditionof ϕ w.r.t. an operationop,
writtenWP.ϕ.op is the set of states that can reach a state inϕ after
executingop.Formally: WP.ϕ.op ≡ {s | ∃s′ ∈ ϕ.s

op
;s′}. The

weakest precondition operator for our language can be computed
syntactically as a predicate transformer [9], as shown in the second
column of Figure 3.

Traces.A traceτ is a sequence of operations. We say that a state
s can executethe traceτ if either τ is the empty sequenceε, or
τ ≡ op; τ ′ and there existss′ such thats

op
;s′ ands′ can execute the

sequenceτ ′. We say that a traceτ is feasibleif there exists a state
s that can executeτ , and we say the trace is infeasible otherwise.
The weakest precondition operator extends easily to traces as:

WP.ϕ.τ ≡

{
ϕ if τ ≡ ε

WP.(WP.ϕ.op).τ ′ if τ ≡ τ ′; op

It is easy to check that a traceτ is feasible iff WP.true.τ is
satisfiable [9].

Program Paths.A CFA edge(pc′, ·, ·) is a successor ofanother
CFA edge(·, ·, pc), if pc = pc′. A program path, or path in brief,
is a sequence of CFA edgesπ = π.1; . . . ; π.n, such that for each
2 ≤ i ≤ n, the edgeπ.i is a successor of the edgeπ.(i − 1). We
denote by|π| the number of edges on the pathπ. We say thatπ
is a path frompc to pc′ if π.1 ≡ (pc, ·, ·) andπ.|π| ≡ (·, ·, pc′).
The traceTr.π of a pathπ is the sequence of operations labeling
the edges along the path. A states can execute the pathπ if it can
execute the traceTr.π. A pathπ is feasibleif there is some state
that can executeπ, and infeasible otherwise.

Reachability.A states can reacha locationpc if there exists a path
π from pc0 to pc such thats can executeπ, otherwise it cannot
reach the location. A locationpc is reachable if there exists some
state that can reach it.

3.2 Path Slices

Slices.Let π be a path. Then anysubsequenceπ′ ≡ π.i1; . . . ; π.ik
for 1 ≤ i1 < . . . < ik ≤ |π|, is apath sliceof π, writtenπ′ � π.
In the sequel assume thatπ is a program path frompc0 to (a special
error location)pcE .

Soundness.We say that a path sliceπ′ of π is a sound sliceif
WP.true.(Tr.π) ⊆ WP.true.(Tr.π′). In other words, every state
that can execute the traceTr.π can also execute the traceTr.π′.

In particular, ifπ′ is a sound slice ofπ andWP.true.(Tr.π′)
is not satisfiable, thenWP.true.(Tr.π) is not satisfiable,i.e., π
is infeasible. We can think ofπ′ as overapproximatingπ. While
a sound slice may be very coarse —the empty slice is sound—
not all slices are sound. For example, the result of dropping the
second edge in the path(pc0, assume(l = 0), pc1); (pc1, l :=
1, pc2); (pc2, assume(l = 1), pc3) is an unsound slice.

Completeness.We say thatπ′ is acomplete sliceof π if for every
s ∈ WP.true.Tr.π′ either:

(1) there exists a program pathπ′′ frompc0 topcE such that
s can executeπ′′, or,

(2) s cannot reachpcout.

Hence, ifπ′ is a complete slice of a path to a particular (error)
location, andTr.π′ is feasible, then every state that can execute
Tr.π′ either can reach the error location, or causes the program to
loop forever.

EXAMPLE 7: We can check that the path slice shown in Fig-
ure 1(C) is sound and complete. Let us consider the programEx2,
without the shaded parts. In this case we find that the slice com-
puted is sound because theWP over the operations in the slice is
ϕ ≡ x = 0∧a > 0, while the weakest precondition over the entire
trace isϕ conjoined with constraints arising from the path through
f. The slice is complete because every starting state satisfyingϕ,
either gets stuck insidef during some iteration of the loop, and
hence never reaches the exit, or, after spinning around the loop a
thousand times, takes both the “if” branches and reaches the target
location. 2

3.3 Computing Path Slices

We now describe our algorithmPathSlice that takes a program
path and computes a sound and complete slice from it. Informally,

PathSlice performs a dataflow analysis on the program path. We
iteratebackwards, tracking at each point along the path:

Live set. A set of relevantlive lvalues whose valuations at that
point determine whether or not the error location is reachable
along the suffix of the trace, and,

Step location.The source location of thelast edge along the path
that was added to the slice.

We analyze each operation along the path in turn, and use the live
set and the step location to decide whether or not to add the current
operation to the slice (ProcedureTake). At each point, we call the
edges that have already been added to the slice theslice suffix. The
live set and step location encode the outstanding data and control
dependencies at each point along the trace.

We now give a formal description of the algorithm. We first de-
scribe a few sets and relations that are used to determine whether
a given operation should be in the slice, then describe how these
are combined inside ProcedureTake, and finally, how the latter
is used to obtain a sound and complete path slice in the Algo-
rithm PathSlice.

Reads, Writes.We denote byLvs.e the set of lvalues occurring
in an expressione. This is extended to predicates in the nat-
ural way. We sayRd.op.l to denote the fact that lvaluel is
read by the operationop. We write Rd.op to denote the set
{l | Rd.op.l}, i.e., the set of all lvalues read byop. We say
Wt.op.l to denote the fact thatl is written (assigned to) by the
operationop. We writeWt.op to denote the set{l | Wt.op.l}.
A formal description ofRd andWt is in the third and fourth
column of Figure 3.

Bypassing Locations.We say that a locationpc can bypassloca-
tion pc′, if there exists a path frompc to the exit locationpcout

for the function that does not visitpc′. The set of locations that
can bypasspc′ is written asBy.pc′. This is the set of all loca-
tions thatpc′ does not postdominate.

Written Between. We say that an lvaluel is written between
locations(pc, pc′), denoted byWrBt.(pc, pc′).l, if there exists
a pathπ from pc to pc′ such that some operation along the
path is an assignment tol, i.e., there exists somei such that
π.i = (·, op, ·) and Wt.op.l. We generalize this to sets of
lvaluesL asWrBt.(pc, pc′).L ≡ ∃l ∈ L : WrBt.(pc, pc′).l.

Procedure Take. Armed with the above relations, we define the
procedureTake which takes as input (1) the set of live lvaluesL,
(2) the step locationpcs, and (3) an edge(pc, op, pc′), and returns
a boolean indicating whether this edge should be added to the slice.
The formal definition ofTake.(L, pcs).(pc, op, pc′) is given in the
fifth column of Figure 3. Assignments get taken if the lvalue written
to is in the live setLive. Assumes, corresponding to branches, are
somewhat trickier. An assume gets taken if there is a path from the
current edge that can “bypass” the step location, or if there exists
a path from the current edge to the step edge along which a live
variable gets modified. If the step location can be bypassed, then
it means that if the program had taken the other branch direction,
then it may have bypassed the step location and hence not executed
along the slice suffix. If there is a path between the source location
and the step location along which a live lvalue gets written, it means
that if the program had taken the other branch direction then it may
have written that live lvalue (which it didn’t along the path being
sliced, as the lvalue is currently live), and thus not been able to
execute the slice suffix.

Algorithm PathSlice We now show how the above can be com-
bined to make a linear pass over a path to obtain its slice. The Al-
gorithm PathSlice is shown in Figure 1. There is a main “while”
loop which iterates backwards over the entire path, starting at the

op WP.ϕ.op Rd.op.l′ Wt.op.l′ Take.(L, pcs).(pc, op, pc′)

l := e ϕ[e/x] l′ ∈ Lvs.e l = l′ l ∈ L
assume(p) ϕ ∧ p l′ ∈ Lvs.p false WrBt.(pc, pcs).L ∨ pc ∈ By.pcs

f() ϕ false Mods.f.l true
return ϕ false false Mods.f.L wherepc′ = Cf.pcout

Figure 3. WP, Rd, Wt, Take for PI

Algorithm 1 PathSlice

Input: Program Pathπ.
Output: Path Sliceπ′.

1: π′ := [·]
2: i := |π|
3: Live := ∅; (·, ·, pcstep) := π.i
4: while i ≥ 1 do
5: e := π.i
6: tk := Take.(Live, pcstep).e
7: if tk then
8: π′ := e :: π′

9: (pc, op, ·) := e
10: Live := (Live \Wt.op) ∪ Rd.op
11: pcstep := pc
12: i := i− 1
13: return π′

last edge. The initialLive set is the empty set and the initial step
location is the target location of the last edge of the path.

In each iteration the loop, we invokeTake to see if theith
edge should be added to the slice. IfTake returnstrue then we
(1) update theLive set by removing the lvalues written in theith
operation and adding the lvalues read in this operation, (2) update
the step location to be the source of the current operation, and
(3) add the edge to the path slice. We then decrementi and proceed
to the next edge until we have processed all the edges, at which
point we return the edges accumulated in the slice so far as the path
slice.

THEOREM 1. For any program pathπ PathSlice.π is a sound and
complete path slice ofπ. Moreover,PathSlice.π is computed in
time linear in the size ofπ, with a linear number of calls toWrBt
andBy.

The above theorem can be shown by induction on the path.
The algorithmPathSlice enjoys the stronger property, that as it
iterates backwards over the path, at each point, the set of edges
that it has “taken” in the slice,i.e., the slice suffix is a sound and
complete path slice for the path suffix at that point. Precisely, the
algorithm maintains the following inductive invariant. At any step
of the algorithm, we have already selected a subset of edges into the
slice, call this the slice suffixS. Letϕ beWP.true.S, the weakest
precondition along the slice suffix. At any point in the path, let
the step location bepcs, the live lvalues beLive, and the current
location bepc. The invariant is that if the program can reachpc
with data values for the lvalues inLive satisfyingϕ, then either
the program loops forever, or there is a feasible path in the CFA
from pc to pcs such that the data values for the lvalues inLive
at the end of the path still satisfyϕ. Notice that the last condition
implies (by definition ofϕ) the slice suffix is executable frompcs

and this valuation to the lvalues all the way to the final location.

3.4 Pointers

We now describe how the above generalizes to the setting where
in addition to integer variables, the programs contain derefer-
ences. Lvalues now generalize to memory locations, and corre-
spond to either declared variables or dereferences of pointer-typed
expressions. Boolean expressions are extended to contain checks of
pointer equality.

The only change that must be made in the algorithm described
above, is in the definition ofWt, which must be generalized to deal
with updates due to aliasing. Suppose that we have precomputed
the aliasing relationsMayAlias and MustAlias on the lvalues of
the program. We sayMayAlias.l.l′ (respectively,MustAlias.l.lv′)
if l may (respectively, must) be aliased tol′. We require that
the computedMayAlias be an over-approximation of the actual
points to relation, and that the computedMustAlias be an under-
approximation of the actual points to relation.

The definition ofWt.op.l′ (used to defineWrBt) is general-
ized to Wt.op.l′ if op is l := e and MayAlias.l.l′. The defi-
nition of Wt.op, used to update theLive set in line 10 of Al-
gorithm PathSlice, changes to the set{l′ | MustAlias.l.l′} if
op ≡ l := e, and remains the empty set otherwise. The algorithm
PathSlice is identical to the one previously described, once the gen-
eralized versions ofWt are used. With these generalizations, The-
orem 1 holds for programs with pointers.

4. Programs with Procedures
We now describe how to generalize path slicing to programs with
procedure calls. First, we generalize the definition of the syntax
and semantics of programs, and describe what program paths look
like in this setting. For clarity of exposition, we make the following
assumptions: (1) all variables are integer valued,i.e., there are no
pointers, (2) parameters and return values are passed to and from
procedures using global variables (i.e., there are no formal param-
eters or return values), (3) local variables for different procedures
have disjoint names, and there is no recursion. Our method gener-
alizes to and our implementation deals with programs without any
of the above restrictions.

Syntax. We generalize the definition of programs from Section 3
to contain procedures and calls. A program contains a set ofglobal
variablesV , and each proceduref contains in addition a set of local
variablesVf . Parameters are passed to procedures via global vari-
ables (i.e.,parameters are written into some globals, and the called
procedure copies the values from the globals into its own local vari-
ables). Similarly, procedures return values via global variables.

We extend the set of operations labeling CFA edges to include
call operations of the formf() and return operationsreturn. We
assume that in any CFACf = (PC f , pc0, pcout, Ef , Vf), every
edge(pc, return, pc′) is such thatpc′ = pcout, i.e., all “return”
statements lead to the exit location of the CFA. Aprogram is a
set of CFAsP = {Cf0 , . . . , Cfk}, where eachCfi is the CFA
for a functionfi. There is a special functionmain with CFA Cmain

corresponding to the procedure where execution begins.

Semantics.With our various assumptions about the program, the
definitions of states and transitions remain essentially unchanged.
The relation

op
; for the new operations call and return is simply the

identity relation. Similarly, the weakest precondition for a call or
return statement is the identity map.

Program Paths. The only change brought about by the addition
of procedures is in the definition of program paths, which must be
extended to reason about calls and returns. Letπ be a sequence
of CFA edgesπ.1; . . . ; π.n. Define Call.1 = 1 and for each
2 ≤ i ≤ n defineCall.i as:

Call.i ≡


i− 1 if π.(i− 1) = (·, f(), ·)
Call.(Call.(i− 1)) if π.(i− 1) = (·, return, ·)
Call.(i− 1) o.w.

We say thatπ is a program pathif for each2 ≤ i ≤ n: (1) if
π.(i− 1) = (·, f(), ·) thenπ.i = (Cf .pc0, ·, ·), (2) if π.(i− 1) =
(·, return, ·) thenπ.i is a successor ofπ.(Call.(i−1)), and, (3)π.i
is a successor ofπ.(i − 1) otherwise. Intuitively,Call.i is the
operation that “begins” the call frame to which theith operation
belongs. It is easy to see that for any program pathπ, for all i > 1,
the edgeCall.i is of the form(·, f(), ·) for somef. As before, the
traceTr.π is the sequence of operations on the pathπ. A path
π is feasibleif the traceTr.π is feasible, and we say the path is
infeasible otherwise.

Path Slicing. We now describe how to generalize the algorithm
from the previous section to work in the presence of procedure
calls. To do so, we will require another (precomputable) relation
Mods. Intuitively, for a functionf and lvaluel, we sayMods.f.l
if the lvalue l can be modified directly insidef , or within any
function that may (transitively) be called byf . Formally

Mods.f.l ≡ WrBt.(Cf .pc0, Cf .pcout).l

where the definition ofWrBt is the same as before. We extend this
to sets of lvaluesL as:

Mods.f.L ≡ ∃l ∈ L : Mods.f.l

We write byMods.f the set{l | Mods.f.l}. Notice that this set
can be computed by using a standard Mod-Ref analysis [1].

Next, we generalizeTake to deal with calls and returns. Given
a return statement, we should only take it and analyze the path
between the call corresponding to the return, if a variable in the
live set can be modified by the call. A call statement is always
taken, as we shall see below, this is done so as to keep the queries to
WrBt, By intraprocedural. The formal definition ofTake for calls
and returns is shown in the third and fourth rows of Figure 3.

Finally, to generalizePathSlice to handle calls and returns, we
replace line 12 (in Figure 1) (i := i− 1) with:

i := if ¬tk & op = return then Call.i− 1 elsei− 1

That is, if we find that thereturn was not taken, meaning the func-
tion being returned from is not relevant, then instead of processing
the path through the function, we seti to the first edgebeforethe
call. Notice that this implies that whenever a call operation is pro-
cessed, the corresponding return must have been taken (or there
was no corresponding return). With these generalizations, Theo-
rem 1 holds for programs with procedures as well.

4.1 Intraprocedural Relations

As we always “take” call operations, the algorithmPathSlice de-
scribed above has the property that whenever a query is made to
WrBt or By, the pair of program locations used in the query belong
to the same CFA. Hence, efficientintraproceduralalgorithms can
be used to compute those relations. We next describe how to obtain
these relations via a fixpoint computation which can either be done

explicitly or using symbolic techniques based on BDDs [26, 4]. We
assume thatMods has been computed by a standard mod-ref analy-
sis, and hence, we can computeWt for every operation (Figure 3).

Computing WrBt. Recall thatWrBt.(pc, pc′).l if l is written
betweenpc andpc′, equivalently, ifl is written on some edge that
is both reachable frompc and can reachpc′. Thus, we perform the
following intraprocedural fixpoint computation. LetOut andIn be
the leastfixed points of the equations below:

In.pc ≡
⋃

e:(pc′,·,pc)

e ∪ In.pc′

and

Out.pc ≡
⋃

e:(pc,·,pc′)

e ∪ Out.pc′.

The setIn.pc (respectively,Out.pc) contains the set of edges that
can reachpc (respectively, can be reached frompc). ThenWrBt is
defined as:

WrBt.(pc, pc′).l ≡ ∃(·, op, ·) ∈ Out.pc ∩ In.pc′ : Wt.op.l.

Computing By. To compute the setBy.pc, we perform a fixpoint
computation to see which locations of the CFAC to which pc
belongs, can reach the exit location without passing throughpc.
This is stated as the least fixpoint of the following equations:
By.pcout ≡ ∅ and forpc 6= pcout,

By.pc ≡
(
{pcout} ∪ {pc

′ | (pc′, ·, pc′′) ∈ E ∧ pc′′ ∈ By.pc}
)
\ {pc}

That is, a locationpc′ belongs toBy.pc if either it is the exit node,
or it has a successor that belongs toBy.pc (andpc never belongs to
By.pc). Notice that if a location cannot even reach the exit location,
then it does not belong toBy.pc.

4.2 Optimizations

We analyze traces produced by a model checker to discover
whether a given program path is infeasible (and must be used to
refine the set of dataflow facts used for analysis), or whether it cor-
responds to a feasible path to the error location (indicating a vio-
lation of the specification being checked). We now describe some
optimizations of the algorithm that are particularly suited to this
application.

Unsatisfiable Path Slices.An alternative way to compute the
weakest precondition of a traceτ is to first rename the variables
so that they are in SSA form, so that the weakest precondition is
the conjunction of a set of constraints, with each constraint directly
corresponding to a (SSA-renamed) operation [12, 16]. As we iter-
ate backwards over the path in order to obtain the slice, every time
we take an operation, we generate the constraint corresponding to
that operation, and assert that constraint to a decision procedure. If
at any point the decision procedure reports that the set of asserted
constraints is unsatisfiable, we stop the slicing at that point and re-
turn the sequence of edges taken till that point, since adding more
operations to the slice will not alter the fact that it is unsatisfiable.

Skipping Functions.The algorithmPathSlice works very well in
slicing away paths through procedures that do not affect the live
variables. In several of our examples, we found paths where the
path to the target has a deep call stack at the end. Hence, along the
given path, a sequence of calls must be made in order to reach the
target location. As each function on this call stack calls the next
function under some specific conditions, all the guards preceding
the calls get added to the path slice. However, each of these guards
may be irrelevant to the reachability of the target: for our purposes,
it is sufficient that there issomefeasible path from the start of each
function on the stack to the location where the function calls the
next function on the stack. On the other hand, if some live lvalue

can be written between the start and the location where the next
function is called, then we should not slice away those edges. This
is done by changing the “else” condition on the line 12 ofPathSlice
(Figure 1) to be:

if ¬tk & ¬WrBt.(pc0, pc).Live then Call.i elsei− 1

We found that in some cases this enabled the slice to contain only
those branches that guarded modifications to variables relevant to
the property. This led to the discovery of the appropriate dataflow
facts. Without this modification, whenever the path to the error lo-
cation contained a deep call stack with several branches guarding
the path from the entry of a function to the point where the next
function on the stack was called, the resulting path slice was infea-
sible because of these irrelevant branches, which caused irrelevant
data flow facts to be added to the system. However after this modi-
fication the resulting slice is not guaranteed to be complete.

5. Experiments
We have implemented the algorithm to generate path slices in the
BLAST software model checker [17].
Benchmark Programs and Property.Table 1 shows our bench-
mark programs. The column LOC shows lines of code before and
after preprocessing, the number of lines before preprocessing is ob-
tained by simply runningwc -l in the source directories, the pre-
processed lines of code do not include comments or blank spaces.
The procedures column show the number of modeled procedures.
This does not include external C system libraries to which calls may
have been made. The benchmarkijpeg is taken from the Spec95
benchmarks suite.

We checked the correct behavior of file pointers. We instru-
mented the code to track the system callsfopen andfdopen to
mark the return value as an open file pointer (in case it is non-null).
For everyfprintf, fgets, or fputs, we check that the file argu-
ment is an open file. Finally, we instrumentfclose to expect an
open file, and change the file state to closed.

Our methodology to check the file property was the follow-
ing. For each instrumented program, we check that a certain func-
tion call error introduced by the instrumentation can never be
called. Each call to error in the program can be independently
checked, and the program satisfies the property iferror can-
not be called on any program execution path. Instead of checking
each error separately, we cluster calls toerror accord-
ing to their calling functions, and then check each function that
can potentially call error independently. The column Number
of checks in Table 1 shows the number of functions that can po-
tentially call error directly (the first number), as well as the total
number of points instrumented with calls toerror . The col-
umn Results shows the number of checks on which the tool proved
that the file access was safe, the tool claimed an error trace, and
the tool timed out, respectively. We set a timeout limit of 1000s per
check. The total time shows the total time of all checks that fin-
ished (i.e.,excluding the 1000s for each check that timed out), and
the Maximum time is the maximum time taken by any one check
that finished. Finally, the number of refinements shows the number
of abstract counterexample traces produced. These are the traces
that were reduced using AlgorithmPathSlice.

We found three violations of the specification in wuftpd. The
part of the program relevant to the error trace is shown in Figure 4.
The error trace says that thefgets in statfilecmd can fail. Since
we do not model the library functiongetrlimit, it is possible for
it to return a nonzero value, and hence it is possible forftpd popen
to return a NULL file pointer. Since at other places of the program,
the returned file pointer fromftpd popen is checked for NULL,
we believe that this is a bug. The other violations were similar.
In privoxy, the error trace read data off a configuration file and

void statfilecmd(char *filename)
{

FILE *fin ;
. . .
fin = ftpd popen(line, (char *)‘‘r", 0);
. . .
while(1) {

tmp = fgets(line, sizeof(line), fin);
. . .

}
}
FILE *ftpd popen(char *prgm, char *typ, int closestderr)
{

FILE *iop ;
rlp.rlim max = ∼ 0UL;
rlp.rlim cur = rlp.rlim max;
tmp = getrlimit(7, & rlp);
if (tmp) {

return ((FILE *)((void *)0));
}
. . .

}

Figure 4. Counterexample in wuftpd

Figure 5. Effect ofPathSlice

accessed an (unchecked) file pointer based on the data read. Again,
since we do not model configuration files, we flag this as a possible
error.

Figure 5 shows the effect of running the path slicing algorithm
on the abstract counterexample traces produced in the check. The
x-axis shows the size of the original traces in number of basic
blocks. They-axis shows the size of the reduced trace as a percent-
age of the original trace, computed as|PathSlice.π|

π
· 100%, whereπ

is the original trace. They-axis is in logarithmic scale. On the aver-
age, the projected traces are less than 5% of the original traces. The
largest projected trace is 57% of the original trace, this happens in
openssh where the input trace has 47 operations, and the output has
27. However, as the trace sizes go up, the ratio of projected trace

Program Description LOC Procedures Number of Results Total time Max time Number of
checks refinements

fcron 2.9.5 cron daemon 12K/14K 121 10/25 10/0/0 22.95 9.56 15
wuftpd 2.6.2 ftp server 24K/35K 205 33/59 30/3/0 2417.41 412.08 74
make 3.80 make 30K/39K 296 19/44 18/1/0 89.8 32.7 35
privoxy 3.03 web proxy 38K/51K 291 15/54 13/2/0 107.5 69.1s 13
ijpeg jpeg compression 31K/37K 403 21/43 21/0/0 128.0s 121.6 23
openssh 3.5.1 ssh server 50K/114K 745 24/84 23/0/1 2211.5 554.1 135

Table 1. Benchmarks and analysis times.

to the original trace goes down. This is true across all our bench-
marks. In particular, for traces over 1000 basic blocks in size, the
projected traces are less than 1% of the original trace. This con-
firms our intuition that while the size of the counterexample traces
grow with the size of the program, for simple properties, there is
usually a small abstraction that is sufficient to prove the unsatisfi-
ability of a trace, and conversely that there is a simple explanation
of a counterexample.

Limitations. We now describe certain limitations that we found
on further experiments. The first limitation is the use of depth
first search in the context-free reachability algorithm which results
in very long counterexamples. We are investigating breadth first
search algorithms that find the shortest counterexamples. The sec-
ond limitation is in Blast’s imprecise modeling of the heap. The
third is due to inefficiencies in the current implementation.

We tried to check the file property on the program muh (version
2.1rc1), an IRC proxy. The program was 15K lines of code after
preprocessing, had 152 functions, of which 14 were instrumented
with a total of 25 possible error points. We were surprised to find
that 9 checks failed with error found or Blast not finding new
predicates. On closer examination of the source code, we found
that muh was handling file pointers in the following way. There is
a hash table (built as an array of linked lists) that keeps a map from
channel names (strings) to file pointers. There are operations to add
channels to this table, open or close a file pointer entry in the table,
and to remove channels from this table. Since we do not model the
heap precisely, Blast was unable to reason about file pointers being
put inside these linked lists. We believe that techniques from shape
analysis [22] may help in this example.

Second, we tried to check the file property on gcc. We took
gcc code from the Spec95 benchmark suite. The total number
of modeled procedures was 2026. We instrumented 703 sites for
checks of correct file usage, these instrumentations were scattered
in 132 different functions. Again, we tried to check correctness
for all instrumentations in the same function together. We met
with limited success on gcc. Of the 132 checks we ran on, only
76 finished in the allotted time of 1200s per query. This time
includes all the model checking, projection, and refinement time,
but does not include the cost of building the alias and the mod/ref
information. We looked at the breakdown of the time taken, and in
all cases, the time was dominated by the computation ofBy and
WrBt. We believe that efficient implementations of these analyses
using state-of-the-art techniques like BDDs [5, 26, 20] to represent
the information succinctly can ensure that the techniques scale to
large programs. We are currently investigating such algorithms.

However, refinement steps that did finish in the allotted time
confirmed our expectations that the projected trace will be much
smaller than the original counterexample. Figure 6 shows the re-
sults for AlgorithmPathSlice on 313 gcc counterexamples. The
largest counterexample we encountered had 82,695 basic blocks,
however, after projection, the number of operations was a 43. For
larger counterexamples, the reduced trace was less than 0.1% of
the original size. The reduced traces were amenable to usual coun-

Figure 6. Trace projection results for gcc

terexample analysis, but the original traces were not. The sizes
of counterexamples also show that some form of slicing must
be performed in order to get efficient counterexample analysis in
counterexample-guided abstraction refinement, since the size of
trace formulas generated is usually beyond the limit of current de-
cision procedures.

References
[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.
[2] T. Ball, M. Naik, and S.K. Rajamani. From symptom to cause:

Localizing errors in counterexample traces. InPOPL 03: Principles
of Programming Languages, pages 97–105. ACM, 2003.

[3] T. Ball and S.K. Rajamani. The SLAM project: debugging system
software via static analysis. InPOPL 02: Principles of Programming
Languages, pages 1–3. ACM, 2002.

[4] D. Beyer, A. Noack, and C. Lewerentz. Simple and efficient relational
querying of software structures. InProc. WCRE, pages 216–225.
IEEE, 2003.

[5] R.E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8):677–691, 1986.

[6] S. Chaki, J. Ouaknine, K. Yorav, and E.M. Clarke. Automated
compositional abstraction refinement for concurrent C programs:
A two-level approach. InSoftMC 03: Software Model Checking,
2003.

[7] Hao Chen and David Wagner. MOPS: An infrastructure for examining
security properties of software. InProceedings of the 9th ACM
Conference on Computer and Communications Security (CCS’02,
Washington, DC), pages 235–244. ACM Press, 2002.

[8] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program
verification in polynomial time. InPLDI 02: Programming Language
Design and Implementation, pages 57–68. ACM, 2002.

[9] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[10] J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In

POPL 95: Principles of Programming Languages, pages 379–392.
ACM, 1995.

[11] C. Flanagan, R. Joshi, X. Ou, and J.B. Saxe. Theorem proving using
lazy proof explication. InCAV 03, LNCS, pages 355–367, 2003.

[12] C. Flanagan and J.B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. InPOPL 00: Principles

of Programming Languages, pages 193–205. ACM, 2000.
[13] J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.

In PLDI 02: Programming Language Design and Implementation,
pages 1–12. ACM, 2002.

[14] Grammatech. Codesurfer 1.9. Technical report, 2004.
[15] A. Groce and W. Visser. What went wrong: Explaining counterex-

amples. InSPIN 03: SPIN Workshop, LNCS 2648, pages 121–135.
Springer, 2003.

[16] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan.
Abstractions from proofs. InPOPL 04: Principles of Programming
Languages, pages 232–244. ACM, 2004.

[17] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. InPOPL 02: Principles of Programming Languages,
pages 58–70. ACM, 2002.

[18] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs.ACM TOPLAS, 12:26–61, 1990.

[19] B. Korel and J. Laski. Dynamic program slicing.Information
Processing Letters, 29:155–163, 1988.

[20] O. Lhotak and L.J. Hendren. Jedd: a BDD-based relational extension
of Java. InPLDI 2004, pages 158–169, 2004.

[21] M. Mock, D.C. Atkinson, C. Chambers, and S.J. Eggers. Improving
program slicing with dynamic points-to data. InFSE 02: Foundations
of Software Engineering, pages 71–80. ACM, 2002.

[22] S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic.ACM TOPLAS, 24:217–298, 2002.

[23] Scott A. Smolka Samik Basu, Diptikalyan Saha. Localizing program
errors for Cimple debugging. InFORTE 04: Formal Techniques
for Networked and Distributed Systems, LNCS 3235, pages 79–96.
Springer, 2004.

[24] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3:121–189, 1995.

[25] M. Weiser. Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method. PhD
thesis, 1979.

[26] J. Whaley and M.S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. InPLDI 2004, pages
131–144. ACM, 2004.

[27] X. Zhang and R. Gupta. Cost effective dynamic program slicing. In
PLDI 04: Programming Language Design and Implementation, pages
94–106. ACM, 2004.

