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ABSTRACT

Data races occur when multiple threads are about to access th
same piece of memory, and at least one of those accessesiie.a wr
Such races can lead to hard-to-reproduce bugs that are time c
suming to debug and fix. We presentiR\y, a static and scalable
race detection analysis in which unsoundness is moduthtza

few sources. We describe the analysis and results from quarex
iments using RLAY to find data races in the Linux kernel, which
includes about 4.5 million lines of code.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Reliability, Verification

1. INTRODUCTION

Data races occur when multiple threads are about to access th
same piece of memory, and at least one of those accessesiie.a wr
Such races can lead to hard-to-reproduce bugs that are time c
suming to debug and fix, especially if the code base is largas;T
to build large, reliable concurrent programs, we requiracerde-
tection algorithm that is (19tatig in that it runs before the program
is executed, (2sound in that it should guarantee that it finds all
races, and (3¥calable in that it should be effective on programs
comprising millions of lines of code.

The above three goals have previously never been achievad al
once. In particular, while sound and static race detecéohriques
have proven to be effective, the largest programs they hese e
been applied to are on the order of tens of thousands of lihes o
C code [23] and little over a hundred thousand lines of Jade co
[20]. Furthermore, while some static race detection athors run
on millions of lines of code [8], they are extremely unsouadd
therefore miss many errors.
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In this paper, we take a step towards achieving all threesgnal
developing RLAY, a static and scalable algorithm that can perform
race detection on programs as large and complicated as tlog Li
kernel (which comprises 4.5 million lines of C code). IEIRY
unsoundness isodularizedto the following sources: (1) R AY
ignores reads and writes that occur inside blocks of asgecoble;

(2) RELAY does not handle corner cases of pointer arithmetic cor-
rectly; (3) RELAY uses a per-file alias analysis to optimistically
resolve function pointers; and (4)ERAY uses a set of simple but
unsound syntactic filters to categorize warnings into jikelces
(these filters are unsound in that they can remove real raBes)
cause unsoundness ireRaY is modularized, we can easily revisit
the above sources of unsoundness as we devise more prealige an
ses, with the hope that one day we will makeLRY entirely sound.

The standard mechanism for preventing data races is toensur
that for each shared Ivalue, there exists a uniget that is held
whenever a thread accesses the Ivalue. By ensuring thabagly
thread can hold a lock at any given time, we can ensure thaebse
of races. One family of algorithms for inferring whether s
lock exists is that based on computitagksets These algorithms
determine either statically [7, 8, 27] or dynamically [25,38] the
set of locks held by the program at every program point. If the
intersection of the locksets at each point the Ivalue is ssma is
non-empty then there are no races on the Ivalue. If the et
is empty, the analysis conservatively reports that therg beaa
race on the Ivalue.

While static lockset based techniques have proven to betizie
for race analysis, there are significant hurdles that mustdssed
to scale them to millions of lines of systems code. First iffi-
cult to tell which piece of memory a given operation will aally
affect. The Ivalue being accessed need not be in global seojpe
may have been passed into the function as a parameter, asd thu
the actual memory accessed can only be determined by a karefu
calling-context-sensitive analysis. Second, for simikzasons, it
is difficult to tell which locks are held at each point, as itherd
to tell exactly what locks are acquired and released by uarap-
erations as the locks may be derived from structures passasl i
parameters. As a result, it becomes hard to tell if the sedbakd
held at two different accesses are the same, as the locks amay h
very different syntactic names. Third, in low-level systeoode,
the acquisition and release of locks is not syntacticalbted (as is
the case in Java). A lock may be acquired in one function, the a
cess may happen in a second function, and the lock may beseelea
in a third function. As a result, many modular type-based R0
and flow-insensitive [20, 19] approaches cannot be appfigtis
setting, and instead a precise flow-sensitive approacluisres.

The technical contribution of this paper is a technique fr a
dressing the above limitations. In particular, we introgltiee con-



cept of arelative locksetwhich describes the changes in the locks
being held relative to the function entry point. These realiock-
sets allow us to summarize the behavior of a function indépen

of the calling context. For example, the summary of a fumctio
whose formal isx may say that the field- >f is accessed inside
the function while holding all locks that were held on enfiys

x- >l ockl, and minusx- >l ock2. The information about this
guarded access is not absolute — it is relative to the locld dte
the entry point, which allows R.AY to plug the summary in while
analyzing any callers.

This switch to relative locksets, rather than absolute det is
the key to scalability: relative locksets allows us to aggieely ex-
ploit modularity. In particular, RLAY analyzes functions in isola-
tion to compute summaries that capture the behavior of aifumc
for any calling context, and then it composes these summéoie
determine whether races exist. This leads to a bottom-ugextn
sensitive analysis over the call graph that scales to pnogras
large as the Linux kernel. The modularity also enables easy p
allelization. Because functions can be analyzed indepelyleve
can run our analysis of the Linux kernel using the FWGrid telus
of machines [1] in about 5 hours, as opposed to the 72 howlsdst
without parallelization.

This paper presents our work in two parts. We first present the
RELAY algorithm for scalable race detection. In particular, Sec-
tion 2 describes an overview of our algorithm through a sevg-
ample, while Section 3 describes the algorithm in detail. thiéan
describe in Section 4 experimental results of runnimy & on the
Linux kernel. Currently, RLAY generates warnings for races that
can happen betweexplicitly created kernel threads and not user
threads that have entered the kernel via system calls. \féle
summary generation scales to the entire kernel, a consegun
the unsound treatment of function pointers is that only 5@%lof
46872 functions of the kernel are reached from explicitatirere-
ation sites. For these siteseRay produces 5022 race warnings.
By applying a set of heuristic filters on the warnings to proné
likely false positives, we reduced the number of warningsrdto
161, of which we categorized 31, finding 25 actual races (a¥80
race detection rate).

2. OVERVIEW

This section presents an overview of thelRRy race detection
algorithm using the example code from Figure 1. The codegn Fi
ure 1is a simplified version of two functions from the Linuxikel.

On the left of Figure 1, the functiomi r o_r ead_st at s takes as
input a single parametei that is a reference to a complex struc-
ture. On the right, the functioai r o_t hr ead takes a pointer to a
device structure. The latter function is ¢hread entry pointi.e., it

is the first function that a new thread begins executing frdm.
the sequel, suppose that multiple threads can begin ergotin-
currently from this entry point. The structure ththtrefers to is a
shared structure — it may be accessed outside the threathgunn
ai ro_t hr ead, and thus, it can possibly be accessed by multiple
concurrently running threads. Similarly, becauseviaé s array
used on line 5 is declared to be global, it can be accessedfby-di
ent threads, and so it is shared.

Locks are acquired and released by calling appropriateifure
on the lock arguments. Thus, in the code from Figure 1, we can
deduce (assuming thai r o_r ead_st at s is called only from
within ai r o_t hr ead), that the locld- >pri v- >| ock is held
whenever the lvalud- >pri v- >pwr . ev is accessed. Since line
1 is the only place the Ivalue is accessed, we can therefare co

that is held, and so the write may cause a race, since two @& mor
threads could simultaneously perform the write.

We devised a precise analysis that scales to millions of lofe
code by aggressively exploiting modularitg., by analyzing func-
tions in isolation to compute summaries that capture thediehof
the function independent of the calling context, and thempmas-
ing the summaries to determine whether races exist. Inqodeti
our algorithm for race analysis is built using the followiimgredi-
ents.

1. Relative Locksets: A relative locksefat a location is a disjoint
pair of locksets(L, L_) (resp. called the positive and negative
locksets), which encodes tlifferencebetween the locks held at
the given location and the locks held at the function entcatimn.
Intuitively, the setL is the set of additional locks that are def-
initely acquired onall executions from the entry to the location.
The setL_ is the set of all locks that may have been released on
someexecution from the entry to the location. It is important to
remember thal ; is amustset and thal._ is amayset.

2. Guarded Accesses: A guarded access a triple of anlvalue, the
relative lockseat the program location where the access takes place
and thekind of access, either @ead or awrite. The set of guarded
accesses of a function is the set of triples correspondiagdesses
that may occur during the execution of the functioreLRY works

by computing an overapproximation of the set of guardedssase

of each thread entry point. Once this set is computet, /R com-
pares pairs of guarded accesses whose Ivalues may be akased
each such pair, RLAY determines if the intersection of the positive
locksets is empty, and if so, reports a race warning.

3. Function Summaries: To compute the guarded accesses for
each thread entry point,ERAY builds the call graph and traverses
itin a bottom up manner, computing the guarded accessesdbr e
function along the way. To this endeRAY computestwo sum-
maries for each function. The first isrelative lockset summayry
which is the relative lockset of the exit location of the ftion.
This summary soundly approximates the effect the functemsdn
the set of locks held by the thread justforecalling the function.
The second is guarded access summaryhich is a set of guarded
accesses that includes the guarded accesses that may odogr d
the execution of the function. R AY computes the summaries in a
bottom-up manner, plugging in the summaries ofdhlkeesat call-
sites to compute the guarded access summaries and retatiset

of thecallers

4. Symbolic Execution: In order for a summary to capture the be-
havior of a function regardless of the calling context, thenmary
must be expressed in terms of the formals of the function, ek w
as globals. In this way, the summary can be instantiated atla c
site by replacing formals in the summary with the actualseds
in at the call site, thus producing information in the cafleron-
text. As an example, for thai r o_t hr ead function, we want to
compute a summary stating thdit >pri v- >| ock is held when
d- >priv- >pw . ev is accessed, not that - >l ock is held
whenai - >pwr . ev is accessed. To build such summaries, one
must re-express accesses inside a function in terms of ttalgl
and the formals. To this end,BRAY performs an intra-procedural
symbolic execution that maps each local Ivalue to a valuessged

in terms of the incoming values of formals, and the incomial v
ues of globals. With appropriate join operators to handlegeme
nodes, we can handle loops while preserving terminatiorthén
course of the intra-procedural analysis, whenever a fanctall is

clude there are no races on the Ivalue. On the other hand, whenéncountered, the guarded access summary of the calleecisdgup

d- >priv->stats. rx_piswrittentoonline5, there is no lock

to the guarded accesses of the caller (after replacing theefe in



airo_read_stats(ai) { airo_thread(d) {

. L+ ={}L-={} J

1: if (ai->pwr.ev) { 6: dev = d;
2: unlock(&ai->lock); 7: ai = _dev->priv;
3: return; * 8: lock(&ai->lock); L+ = {d->priv->lock} L- = {}

} : 9: air‘o_r‘ead_stat;(ai);

¢ L+ = {} L- = {ai->lock} . L+ = {} L- = {d->priv->lock}

4: unlock(&ai->lock); }

ai->stats.rx_p < vals[43];
} (L+ ={}L-= {ai—>lock}) (L+ ={}L-= {d—>priV->lock})

d- >priv {},{} read
ai - >pwr . ev {1 {} read d->priv->pw.ev {d- >priv- >l ock}, {} | read
ai - >stats.rx_p | {}, {ai - >l ock} | write d->priv->stats.rx_p | {},{d->priv->lock} | write
val s [0] {}{ai - >l ock} | read val s [0] {},{d- >priv- >l ock} | read

[ Lval | Relative Lockset | Kind ] [ Lval | Relative Lockset | Kind ]

Figure 1: Simplified example from Linux kernel. Below each function,the curved box we show the relative lockset summary for the
function, and below it, the guarded access summary for thetifon.

the summary with the symbolic values of the actual parammeter  not acquire any locks, and it may release (in fact in this cése

the callsite). Similarly, the set of locks that must be heid anay definitely does release) tlaé - >| ock lock.
have been released is updated, using the lockset summag of t  After having computed the relative lockset information for
callee. ai ro_read_stats, RELAY iterates through the statements of

We combine the above in theeERAY modular race analysis tool  ai ro_r ead_st at s to find the guarded access set of the func-
as follows. RELAY processes functions bottom-up in the call graph, tion. There are three accesses in this function: the read of

starting with leaves, and working its way up the call grapELRY ai - >pwr . ev on line 1, with a relative lockset f{}, {}); the
repeatedly picks a function to analyze amongst all the fanst read of theval s array on line 5, with a relative lockset of
whose callees have been analyzed. ({},{ai - >1 ock}); and the write taai - >st ats. r x_p with
For each function being analyzedgRay performs three analy- the same lockset. This information is collected in the gedrac-
ses: first a symbolic execution, second a relative locksalysis, cess summary of the function, which is shown in the left taifle
and third a guarded access analysis. The symbolic exedstimed Figure 1 (the indeX in val s[0] represents all array indices).
to express the values contained in memory locations in tefrie Next, ReELAY picks the functionairo_thread. The
incoming values of the formals and the globals. This synchiok relative lockset for the entry location is the same as for
formation is required by the two subsequent analyses. Thave airo_read_stats, namely({},{}). The symbolic execution
lockset analysis is an iterative dataflow analysis that taais a tracks that at7: the Ivaluedev refers to the formald, and
relative lockset at each program point. For call sites, tiedyasis that at8: the Ivalueai - >| ock refers tod- >pri v- >| ock.
uses the summaries of callees to compute the lockset afteath As a result, the relative lockset &: (just before the call
Once a fixed point is reached, the relative lockset computethé to airo_read_stats) is ({d- >priv- >l ock},{}), indi-
function’s exit point becomes the relative lockset sumnfrthe cating thatd- >pri v- >l ock was added since the entry point
function. After performing the relative lockset analysisafunc- of the function. Now the call tai ro_read_stats is ana-
tion, RELAY runs a guarded access analysis on that same function.lyzed. The relative lockset summary fai ro_read_stats
The guarded access analysis maintains a monotonicallgasiztg is ({}, {ai - >l ock}), and since the symbolic execution tells us
set A of guarded accesses. The analysis iterates through all thethat ai is in fact d- >pri v, the instantiated summary in the
statements in the function (in a flow-insensitive way), acalat- caller's context is({}, {d- >pri v- >l ock}). Updating the in-
ing in A the locations being accessed, along with the locks being formation from before the call{d- >pri v- >I ock}, {}), with
held during those accesses. The information about whidtslace the effect of the cal({}, {d- >pri v- >l ock}) gives us the in-
held at the access points is provided by the results of ttativel formation({}, {d- >pri v- >l ock}) after the call. In particular,
lockset analysis. after the call, we have lost the information we had previpasiout

Consider the program comprising the two functions d->priv- >l ock being held, becausai ro_read_stats
shown in Figure 1. RLAY begins with the leaf function releases that lock. Furthermore, we gain the informatiat th
ai ro_read_stats. Initially, the relative lockset at the entry  since the beginning of execution @fi r o_t hr ead, the lock
point is the pair({},{}). The calls tounl ock result in the d- >pri v- > ock may end up being released because of the call
addition ofai - >I ock to the negative lockset of program points to ai ro_read_st ats. Since the call is the last statement in
3: and5: . Because negative locksets anaysets, the negative  ai r o_t hr ead, the information after the call becomes the rela-
lockset of the exit point is th@nion of those of its predecessor tive lockset summary foai r o_t hr ead.

program point8: and5: , namelyai - >| ock. Because positive Next RELAY processes all the statementsdnr o_t hr ead
locksets aremustsets, the positive lockset is thietersectionof to compute its guarded access set. There is only one access in
those of the predecessors, which is the empty set. Thusltiere ai ro_t hr ead itself, namely the read oflev- >pri v at line
lockset summary of the function is the paif}, {ai - > ock}). 8 (the write toai is not recorded becauss is a local stack

This summary states that tlaé r o_r ead_st at s function does variable). Using the symbolic information, this read ascés



recorded in the guarded access summary (shown in the right ta formals, globals re X

ble of Figure 1) as an accessde >pri v with relative lockset PTA reps pe P

({},{}). The other accesses in the guarded access summary of Symbolicvalues o € O ::= x| z.f | p.f | (x0).f
ai ro_t hread are added when the call & ro_read_stats symbolic values v € V= T |L]| i | init(o) |

is processed. Since the relative lockset of &fie >pwr . ev en- ) must(o) | may(os)
try in the summary ig{},{}) (i.e., no locks were added or re- symbolic map ce ¥=0-V

moved), the relative lockset for this access in the call¢uss the
relative lockset at the callsite. For the other two accesthin
summary ofai r o_r ead_st at s, the negative lockset contains
ai - >l ock, which, after plugging in the actuals corresponds to
d- >pri v- >l ock as shown in the last two rows of the guarded
access set shown in the figure.

Figure2: Symbolic analysis domain

of lvalue o; must (o), which represents a value that must point to
Ivalue o; andmay(os), which represents a value that may point to
any of the Ivalues iws. Finally, a symbolic execution map € %
Race Warnings. Once RELAY has computed the guarded access is a function from symbolic Ivalues to symbolic values.

summaries for all functions that are thread entry pointegfiorts The symbolic execution keeps track of a symbolic map at each
warnings for all pairs of accesses, where the Ivalues maiidses, program point, and this symbolic map is updated using flovefun
and whose positive locksets have an empty intersectionwhede tions. The flow function for a simple assignment= e evaluates

at least one of the accesses is a write. Suppose that a sdasd al ¢ in the current map to a symbolic value, and then updatesthe
analysis shows that the Ivalues corresponding to the azseiswn map. For assignments through pointers, namely= e, the flow
on the right table of Figure 1 have no other aliases. In thieca function evaluateg to a symbolic valuev; ande to a symbolic
RELAY reports that: valuewvs. Which Ivalues are updated in the store depends on the
valuewv;. For example, ifv; is must(o), then onlyo is updated to
the valuev,. As another example, if; is may(os), then all the
Ivalues inos are updated to the valug. The remaining cases, not
2. There are no races due to concurrent accesses toshown here, are very similarin nature.
d- >priv->pw.ev as (the intersection of) the posi- When performing symbolic execution on a given function, we
tive lockset(s) is non-empty. must account for the effect that other threads may have osi#te
) ) of variables. To do this, we use our Steensgard’s pointsiadyais
3. There may be a race involving concurrent accesses 10 g compute the set of locations that may escape the curnergdh
d->priv->stats.rx_p in different threads, as (the in-  \yhich means that they could be accessed by another thread. We
tersection of) the positive lockset(s) is empty. The a®@®sS  hen map these locations To(meaning “any possible value”) after
involved in this race are the access on line 5, but from twe dif  ¢5ch invocation of the symbolic flow function. This approach

1. There are no races due to concurrent accessealte or
d- >pri v as both accesses would be reads.

ferent threads. handling thread interaction is very conservative. Howgtegtains

full precision on non-escaping local variables, which & nost

3. ALGORITHM important locations to keep track of when re-expressingsses in

This section describes our race detection algorithm inildeéta a function in terms of its formal parameters. For exampleljr

outlined in Section 2, our algorithm performs a bottom-ugplgsis 8 of Figure 1, our symbolic execution is able to conclude that
that has three interacting components: a symbolic exet(8ec- lock being acquired isl- >pri v- >| ock because the variables
tion 3.1), an analysis that computes lockset changes (Be812), involved, namelydev on line 6 andai on line 7, are non-escaping

and an analysis that computes guarded accesses (SectioA.3  local variables.
ter the bottom-up analysis has finished running, the reatdtsised .
kol 9 3.2 Lockset Analysis

to generate warnings (Section 3.4).
After the symbolic execution has finishedg RxY runs a relative

3.1 Symbolic Execution lockset analysis. A relative locksétis a pair(L ., L), where the
Before starting the symbolic execution, we perform Steartg setL+ C O represents the locks that have definitely been acquired
flow-insensitive points-to analysis [26], computing cawaéve since the beginning of the function, and the Eet C O represents

representative nodes for all Ivalues. These represeatatides the locks that may have been released since the beginnirtge of t
are used in our symbolic execution to ensure terminationr Ou function. We denote bl = 2% x 2° the set of all relative locksets.
symbolic execution analysis keeps track of the values auedan The lockset analysis is a dataflow analysis whose domaireis th
memory locations in terms of the incoming values of the fdsma lattice(IL, L, T, C, U, M), where the ordering is defined as:

and the globals. Our analysis is fairly standard, and thaildedf

the symbolic execution are orthogonal to the contributibrour *1=(00).T=(00
work, so we only present an overview of our analysis here. The o (Ly,L_)C (L, L )iff L', CLy AL_ C L

domains of the symbolic execution are shown Figure 2. We use

metavariabler € X to denote formals and globals, and metavari- o (Ly,L)u (L, L) =(Ly NIy, L-UL").

ablep € P to denote representative nodes from the Steensgard AN / ’

flow-insensitive points-to-analysis. The €&tof symbolic lvalues o (L L) M(LS, D) = (L+ U L5, L- N L7)

denotes the locations that our symbolic execution anakeps The analysis runs bottom-up on the call graph. After a fuomcti
track of, and these include formals, globals and field/wiaic- f has been analyzed, its effect on locksets is stored as a symma
cesses through these. We usec 2° to represent a set of lvalues.  LockSummary(f) € L that represents the relative lockset at the
The setV of symbolic values denotes the values that our symbolic end of the function. For simplicity of exposition, we assuthat
analysis computes, and these include; which means “not as- functions take only one parameter.

signed yet”; T, which means “any possible value;;which repre- The flow function for the lockset analysis is shown in Figure 4
sents a constant integefiit (o), which denotes the incoming value  Because we model lock and unlock operations as functios, th#



lockUpdate : L x L. — LL

rebind : T x Function X Fxpr — T

lockUpdate ((Ly, L-), (L', L)) =
(Ly Uy — 10w L)~ 1)

Figure 3: Relative lockset update

F:StmtxL—L
F(call(e,a),L) =

|—| let Ly = LockSummary(f)in
lockUpdate(L, rebind(Ly, f, a))
fEtargets(e)

F(s,L)=1L

Figure 4: Lockset flow function

only statements that modify locksets are function calts. In par-
ticular, thel ock(|) function is modeled as having a relative lock-
set summary of{1}, {}) and theunl ock( 1) function is mod-
eled as having a relative lockset summéfy, {1}). Given a func-
tion call e(a), for each possible functioyf thate may represent,
the flow function first retrieves the summabypckSummary(f),
and then, using theebind function shown in Figure 5, it replaces
all occurrences of’s formal in the summary with the actual being
passed in. The resulting rebound summary represents thgeba
in the lockset that occur from the momefitstarts executing un-
til it reaches a return. To find the relative lockset after ¢hé to

f (relative to the caller’s entry point), we apply the changes
dicated by the summary to the incoming relative lockset.sT$i
done using thdockUpdate function shown in Figure 3. In par-
ticular, the positive differences are added together andredhe
negative differences, with the following post-processiting locks
that may have been releasedfimre removed from the final must-
have-acquired lockset, and the locks that must have beerradq
in f are removed from the final may-have-been-released lockset.

3.3 Guarded Access Analysis

Once the lockset analysis from Section 3.2 has finished cbmpu
ing the relative locksets for all program points of a givendiion,
the guarded access analysis uses this information to centpat
guarded accesses performed by the function.

A guarded access is a tripte= (o, L, k), whereo € Q is the
Ivalue being accessed; € L is the relative lockset at the point
where the access is made, andc K = {Read, Write} is the
kind of access being made (either a read or a write). The st of
guarded accesses is denoteddby- O x L x K.

For each function, our guarded access analysis maintains a

guarded access sdtC A for the entire function. After the lockset
analysis has reached a fixed point for a given function, tleedgpd
access analysis starts out by initializing the functioniargled set
to the empty set. Then, for each statemeini the function, the ac-
cess set is updated by calliifpdate AccessSet (s, L), whereL is
the relative lockset computed by the lockset analysis gbthgram

point right befores. As statements are being processed, the guarded

access set increases monotonically, and when all staterimetiite
function have been processed, the final guarded accesseetbés
the access summary of the function. For a functforwe denote
the access summary ¢fby AccessSummary(f).

The most important cases of tliédateAccessSet function are
shown in Figure 6. For a function cal(a), UpdateAccessSet

rebind(q, f, e) = q[formal(f) — eval(e)]

Figure5: Rebinding formals to actuals. The functiemi(e) eval-
uatese to a symbolic value using the store computed by the sym-
bolic execution at the program right befarés used.

UpdateAccessSet : Stmt x L. — void

UpdateAccessSet(x :=e, L) =
A := AU{(eval(e), L, Read)}
A:=AU{(z, L, Write)}

UpdateAccessSet (call(e,a), L) =
A:= AU{(e, L, Read), (a, L, Read)}
foreach f in targets(e) do
foreach (o, Ly, k) in AccessSummary(f) do
let L' = lockUpdate(L, rebind(Ls, f, a)) in
let o' = rebind(o, f,a)in
if isAccessible(o”) then
A:=AU{(, L k)}

Figure 6: Guarded access update. We only show the case for as-
signment to a global, and a function call.

copies all guarded accesses from the callee, re-expretsngin
the caller’s context. In particular, for each possible fiow f that

e may represent, we look up the access summary,odnd for
each guarded acceés, Ly, k) in the summary, we useebind to
re-express® and L in terms of the caller’s actuals. We also use
lockUpdate to plug the rebound. into the caller’s context.

The resulting Ivalue’’ and locksetl’ are added to the guarded
access setl only if o' is accessible from globals or from the for-
mals of the function being analyzed. TheAccessible(o’) call
performs this pruning by running a reachability query in filogv-
insensitive points-to graph from the globals and formatkémnode
representing’.

3.4 Warning Generation

Once the bottom-up guarded access analysis from Section 3.3
has finished running on all functions, th&nerate Warning func-
tion from Figure 7 uses the resulting guarded access surasnari
generate warnings. Th&enerate Warning function takes as a pa-
rameter the thread entry points, which are all the functjmssed
to thread creation sites, in addition to the original thréeat starts
executing when the kernel boots up.

For each pair of thread entry point§enerate Warning re-

2Func

Generate Warnings : — void

Generate Warnings ( Thread EntryPoints)
foreach (f, f') in ThreadEntryPoints* do
foreach (o, L, k) in AccessSummary(f) do
foreach (o', L', k') in AccessSummary(f') do
let (Ly,L_)=Lin
let (L', L )= L"in
if mayEqual(o,0’) A (Ly+ N Ly =0) A
(k = Write V k' = Write) then
Generate Warning (o, o)

Figure 7: Producing warnings



trieves the guarded access sets for the two entry pointstheamd
it searches for two guarded accesses such that the Ivaluebena
equal, the must-hold locksets do not overlap, and one of the a

4.2 Warnings

RELAY uses the guarded access sets to generate 5022 warnings
using the method described in Section 3.4. Rather than taider

cesses is a write. If two such accesses are found, a warning isthe herculean task of sifting through all these warningschse to

generated.

The mayFEqual function determines if two Ivalues could be the
same (that is to say, could alias). NominallyayEqual looks up
the representative node of the two Ivalues in the flow-insigas
points-to graph, and returns true if the two representatbdes are
the same. To improve precision, some sound syntactic ctereks
added to avoid going to the points-to graph when it is not aded
For example, if the two Ivalues are the exact same variahén t
mayFqual immediately returns true without consulting the points-
to graph.

4. EXPERIMENTS

We now describe our experiences runnirgLRY on a large soft-
ware base, the Linux Kernel v. 2.6.15, which is about 4.5iamill
lines of code, spanning 46872 functions, scattered acr8842L
files. The kernel was first pre-processed usingrth&eal | yes
option and with loadable module support turned off so as trima
mize the code included in the build. This choice serves toaem
strate the scalability of our techniques as well as to oldattose
understanding of the variety of idioms used in systems code f
synchronizing and avoiding data races.

We begin in Section 4.1 with some details about the implement
tion of RELAY. We then describe the results of runninglRy on
the Linux kernel. In particular, R.AY’s sound, context- and flow-
sensitivity resulted in the generation of 5022 warningefav4.5
million line code base). We performed a close analysis ofra ra
domly chosen subset of the warnings, and found that mosesgth
warnings were in fact false positives. We categorized ttsefpos-
itives based on the coding idioms used to prevent races, r@seit
the result in Section 4.2. Our categorization reveals thabtindly
remove the false positives would require sophisticatetyaaa that
are concurrency- , path- and shape- sensitive, and also tecail-
lions of lines, a challenging task that we leave to futurelwor

Instead, we used our categorization of the sample warninggs-t
vise post-processingarning filterscapable of automatically plac-
ing every warning into one of the categories (Section 4.3fterA
applying the filters we were left with 161 warnings, 31 of whic
we again carefully categorized. 25 of this subs®() were real
data races.

4.1 Implementation

RELAY is implemented in @AML and uses CIL[22] as a front-
end. To build the call graph, R Ay processes the kernel one file
at a time. It traverses each function’s body, adding callesdg
each function called within the body. The bottom-up analysin
process a function as soon as summaries of the callees heme be
computed. Thus, it is possible to analyze multiple functionn-
currently, as long as the summaries for their callees has ta®-
puted. RELAY exploits this by distributing the summary computa-
tions across a grid of 32 nodes each equipped with 2.8GhzsXeon
and 4Gb of RAM. Each SCC of the call graph is analyzed by a
fresh process. This process, which starts at any free notleein
grid, downloads the summaries of the callees to the locatite
tem, computes the new summaries for the SCC functions and the
informs a server of the whereabouts of the new summariesAR
took 72 hours to perform the whole analysis on a single machin
By distributing the computation, we were able reduce thdyaisa
time to 5 hours.

randomly sample and classify 90 of the warnings. This sagie
tained some races, but the vast majority of the warnings Ved¢se
positives. However, it turns out that most of the false peestin
the sample fell into one of a handful of categories descriieddw.
Each of these patterns appears to require a somewhat spetial
analysis as they require careful reasoning about pathtiséys
concurrency and the shape of the heap neither of which isteasy
scale.

1. Initialization: A common idiom is to allocate a structure within

a thread, and perform some initializatisithoutany synchroniza-
tion while the structure is still local to the thread, andrthe make

the structure accessible to other threads, by adding it tolaab
data structure. Even though subsequent accesses happlen whi
holding a lock, ReLAY will report a warning due to the first un-
protected access. Figure 8 shows a simple code fragmentfiom
kernel that illustrates this pattern. The lower functiolisca helper

to allocate a structure. The structurenn is allocated on lind.:

and passed back to the caller. At this point, the structumeots
shared and so on line some fields of the structure get initialized,
and then on lin&: the structure gets added to a global queue after
which it can be accessed by multiple thread€LRv would warn
about subsequent accesses being a race with the access 4n.lin

2. Unlikely aliasing: Many of the warnings reported are false pos-
itives because of the flow-, field- and arithmetic- insenijtiof the
alias analysis. For example, our alias analysis reportstieae is

a single “blob" representative node that represents ovedd@b-
jects, and race conditions reported on objects within thob lare
most likely false positives.

3. Unsharing: RELAY reported many warnings on objects that
are indeed shared, but which are not shatedng the time they
were accessed. A common situation where this happens iththat
object belongs in a shared list, and therefore can be aatéyse
multiple threads. However, jubeforea thread performs the access,
it removeghe object from the shared list, and then safely accesses
the object without any lock. Figure 9 illustrates this pattepam

is a reference to the first element of thage_addr _pool , and
this element is removed from the list in lide (after acquiring the
appropriate locks for the list). Then, the list lock is reded and on
line 2: the previously shared object referred togmis written

to without any synchronization.

4. Re-entrant locks: A significant fraction of the false warnings
we analyzed were because some data structures were pdotgttie
the kernel semaphore, which is a re-entrant lock. For sucks|o
acquires and releases can be nested, and faftexssted acquires,
the lock is actually released only aftersuccessive releasesER
LAY conservatively models these locks, by treating them aasekd
after the very first release call, and thus, finds severalnaisy-
nized shared accesses, even though they are protectedvigusre
acquires.

5. Non-parallel threads. Many false warnings arose due to unsyn-
chronized accesses that take place at instances when tie kaes
ensured, using one of several mechanisms, that there isaiy

gle active thread that can access the shared object. The most com
mon case is when an object is accessed from multiple thréatls,
the threads use program logic, including signals and otresrhiar
nisms, to order operations in such a way that the threadsenes



never run in parallel. One such example is shown in FigureQt0.

line 1: the functionst art _sync_t hr ead checks the shared __rxrpc_ cr eat e_connection(**_conn){

variablest at e to see if the thread already exists. If not, on line 1: conn = kmal [ oc(sizeof (...), ...);
2: it attempts to create the thread by looping until the thrests g % i' gg;]ﬁl ni E(()‘rg]‘g,‘)n” >timeout, ...);

created. After the creation succeeds, the parent thredd foeathe } o= - ’

child to set thest at e variable on line4: and then signal comple-
tion 6: , at which point, on lined: the parent returns. This code rxrpc_create_connecti on(*trans){

essentially ensures that only one copy of slyjc_t hr ead ever __rxrpc_create_connection(&conn);
runs, and so the access on lide is safe, even through B AY /= fill in the specific bits =/
will warn that two copies oync_t hr ead may write tost at e 4. g\fr‘p:fggfk-( Z‘ QET' ?anl)%n_' QFBLEI)ET
at the same time. There are other mechanisms that, like theeab Fle_ P ; nn_l S

; : : . . : list_add(&conn->id_link, _p);
require a very precise thread interleaving analysis, sacheuse /]
of blocking primitives likewai t _f or _conpl et i on (illustrated }

in the example). Figure8: Initialization

6. Conditional Locking: Several false warnings generated bg-R
LAY were because the program checks some condition to determine

whether to acquire locks, and later, checks a correlatediton to set _page_address(=*virtual){
determine whether the access should occur. Unfortundteyac- spi n_l ock_irq(&pool _I ock); _
quisition of the lock and the actual access occur in diffebémcks ~ pam = list_entry(page_addr_pool);

l'ist_del (&am>|ist);

spi n_unl ock_i rg( &pool _I ock);
pam >virtual = virtual;

spi n_l ock_i rq( &as- >l ock) ;

|1 st_add(&am>list, &pas->lh);
spi n_unl ock_i rgq( &pas- >l ock) ;

or functions thereby introducing a path-sensitivity peshl The
example in Figure 11 exhibits this pattern. The upper funmcti-
ther returndNULL without holding the lock if the condition on line
1: holds, or acquires the lock on lirle and returns a non-null
value. This return value is checked on lide before performing
the access on ling: .

-~ W N P

Figure9: Unsharing

4.3 Filters
We have devised simple syntactic filters based on the abdve ca
- . . ) : static sync_thread(*startup)({
egorization to automatically categorize the warningsehgtyield- 4: state = TP VS STATE MASTER:

ing a subset of the warnings that are very likely genuinesace 5. set sync_mesg_naxl en(state);
The design of these filters was guided by finding common petter 6: conpl ete(startup);
among the warnings in a given category. /1.
These filters are very aggressive, and they are unsoundgin th }
sense that they can remove real races too. However, singe thi

. ) . start_sync_thread(state, ...){
source of unsoundness is confined to a post-processingipees, 1: if (state == | P VS _STATE MASTER)
easily be removed as our analysis becomes more precise. ' return -EEXIST: -
We now describe the filters — in each case, in parentheses wer epeat :
list the categories the filter corresponds to. 2: if (kernel _thread(sync_thread, &tartup) < 0)
) o goto repeat;
1. Thread-local Allocation (Initialization): To handle the initial- 3: wait_for_conpletion(&startup);
ization false-positives, we filter out warnings on objedtattare return O;
allocated inside the thread within which the conflictingesxoc-
curs. Figure 10: Non-parallel threads

2. Large Points-To Reps. (Unlikely aliasing, Unsharing): For
unlikely aliasing we can filter warnings where the flow-insiéme
alias analysis is asked to compare Ivalues whose repréigsenta
nodes represent more thanlvalues for a parametek (¢ = 1

static » swap_info_get(entry){
1: if (!entry.val)

. ) oto 3;
for our results). Typically, these are nodes where diffedata- p :g&swap_i nfo[type];
structures are mixed at a common functieng(, two different 2. spin_l ock(&swap_l ock);
lists merging at a node removal function). As this filter caps return p;
warnings involving data-structures, it also applies to ‘theshar- 3: return NULL;

ing” pattern. }

3. Bootup thread (Re-entrant locks): The most heavily used re- ~ swap_free(entry){ .
entrant lock iskernel _sem This lock is mainly used by the .| f‘( S\)Nap—' nfo_get(entry);
boot-up thread which holds it for most of its execution. Thias 5 sa/ap entry free(p ):
filter warnings about re-entrant locks, it sufficed to filtearwings ' spi n_unl ock( &swap I bck)

where one of the accesses was in the boot-up thread.

4. Sameentry (Non-paralle threads): We noticed that many false

positives involving threads that cannot execute conctlgravere Figure 11: Conditional locking
warnings where the two accesses originated from the samacdhr

We therefore designed a filter that removes such warnings.
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Figure 12: The effect of filters on warnings.

4.4 Results

We evaluate the result of applying the filters using two dite
First, they should remove false positives., after applying the
filters, thefraction of real races left in the warning should increase
(Figure 12(a)). Second, they should not remove too manysrace
i.e., after applying the filters we should still be left with a podl o
warnings large enough to contain many real races (Figurg)12(

We applied the filters to the warnings as follows. First, wendr
a random sample of 90 warnings from the 5022 warnings gesterat
by RELAY. We manually placed each of the warnings into one of
the six categories described in Section 4.2. When a warm@hf
multiple categories, as was often the case, we placed thainvgar
into the first (according to the order shown) category.

Next, we applied the filters in the order described in Secti@n
Figure 12(b) shows how after each filter is applied, the totah-
ber of warnings as well as the number of warnings in the ménual
categorized sample set decreases. Figure 12(a) shows aalisth
tribution of the categories changes in the remaining sedmipdes,
as we apply more filters. The important thing to note heredsttie
dark solid bar, which represents the percentage of reas iadhe
sample set increases monotonically as we apply filters, @aches
80 % after having applied 4 filters.

We now describe the four steps in applying each one of the four
filters:

1. After applying the first filter (which is meant to removetial-
ization false positives), the total number of warnings drop

removed all the races that we had identified in our first sample
set.

3. After applying the third filter, the manually categorizeaim-
ple set went down to zero (bar 3), and so mesampledthe
set of 355 remaining warnings to obtain a new sample set of
59 warnings which we again manually categorized. After re-
sampling, we applied the third filter (bar labeled “resarfjple
namely the bootup-thread filter, which was meant to remove
the re-entrant locks false positives. At this point, thecpat-
age of false positives categorized as re-entrant lockedses
significantly, indicating that the filter is effective at rexing
these false positives.

4. After applying the same-entry filter (which is meant to oo
non-parallel threads false positives), all the non-pal#iireads
false positives have been removed (bar 4). At this point, the
number of remaining warnings is 161, and the size of the man-
ually categorized sample set is 31, of which 25 (80 %) are real
races. Note that we have not been able to devise a filter earget
at conditional locks, and therefore the majority of remagni
false positives fall in this category.

We conclude from the above that the filters effectively refhe
set of warnings and increase the fraction of races fid¥% to
80 %, without eliminating an unacceptably large number oésa
Counted another way, we manually analyzed 149 warningd,in al

2812 and the manually categorized sample set drops to 55 (barand found 53 races.

1). Moreover, the fraction of remaining sampled warnings th
are initialization false positives drops from abdgt% to 20%,
indicating that the filter did in fact remove a larger projmmt
of initialization false positives than other warnings.

. After applying the representative node filter (which wasamt
to remove false positives due to unlikely aliasing or unstggr

Races. After the application of the filters, the vast majority of war
ings are real races. Figure 13 shows one such race that asialiv
filters. By the time we obtained our results, this race haeaaly
been reported and fixed.

The race involves the read on lile of p- >si ze and the write,
online5: oft->si ze, sincet andp can point to the same object

the total number of warnings drops to 639 and the sample set and there are no common locks held. This race is serious decau
drops to 10 (bar 2). Of the remaining samples, there are no the functionchange_page_at t r uses thg- >si ze parameter

more unlikely aliasing or unsharing false positives, iatiicg
that the filter was a good heuristic for removing these fatse p
itives. This filter also had the unintended effect of remg\éi
the non-parallel-threads false positives. Unfortunatiélglso

that is passed in as the bound for a loop iterating over ay.dbnze

to the race the read @f- >si ze can return a stale bound causing
the loop insidechange_page_at t r to access the array out of
bounds.



i ounmap(vol atil e raddr){
read_| ock(&mist_|ock);
for (p =vmist; p; p = p->next) {
if (p->addr == addr) break;

1: read_unl ock(&mist_I ock);

change_page_attr(virt_to_p(p->phys_addr),
2: p->si ze >> PAGE_SHI FT);
}

/+ called with wite_lock(vmist_|ock) =/

__remove_vm area(raddr){

3: for (t =vnmlist; t = NULL; t = t->next) {
if (t->addr addr) break;

4: unmap_vm area(t);
5: t->size -= PAGE Sl ZE;
return t;

Figure 13: A real race found after applying filters.

5. RELATED WORK

We now present a brief overview of the vast body of work per-
taining to techniques for finding data races.

Dynamic Techniques. Most currently used race detection tech-
nigues are dynamic. These detectors principally use twb-tec
niques. The first is Lamport’'s happen’s-before relatior],[Li8ed

in [7, 18]. The second is dynamically computed locksets upeanp
ized by [25]. Much recent effort has gone into lowering therev
head imposed by dynamic analysis — for example by using stati
cally precomputed locksets to prune redundant checks [5R38
cent developments include the extension of these techsiiguend
atomicity[11] violations in Java code [29, 12], and the use of au-
tomated replay to determine whether a given dynamicallgatet
race is benign or harmful [21]. The principal drawback with d
namic approaches is that they only work on closed programshwh
can be executed, they require tests that sufficiently eserthie
code, and that ultimately, they cannot be used to classifpal
tential accesses. It is also unclear whether they can bedstal
multi-million line, low-level software.

Static Techniquesfor Java. Java’s native support for multithread-
ing coupled with its restricted use of syntactically scofweks has
given rise to a variety of static techniques for detectind prov-

Static Techniques for C. Analyses devised for finding races in C
programs must cope with several additional problems. Ryahc
among them is the use of unstructured locks, which forcenlaé a
ysis to be flow- and context- sensitive. The only approach moswk
of that has scaled to millions of lines iIsARERX, which also finds
deadlocks, and runs over large code bases in minutes. URiike
LAY, RACERX uses a top-down approach to computing the lock-
sets at each program point. The paper reports that in orcdeate,
several drastic compromises had to be made, such as tngtadi
summaries and representing all lvalues with their typesa Aesult,
the analysis discards valuable information prematuresgaiding
possible races well before the warning generation phas&seéso
quently, the tool was only able to unearth a small handful afnw
ings and, and an order of magnitude fewer races. A more jgrecis
approach is that of [23] which uses a constraint based tqakrid
computecorrelationsthat describe the locks that protect an Ivalue.
While this approach is as precise as ours, it has only bediedpp
to programs two orders of magnitude smaller than the Linux ke
nel. We conjecture that the principle bottleneck is the diffitask
of solving a monolithic set of constraints generated ovdlians
of lines of code. This is in contrast toERAY whose algorithm
is modular and readily parallelizable. Finally, heavyweigech-
nigues such as model checking [16, 24] have been applieddo fin
and prove the absence of races. These techniques are &lsgenti
situations where the synchronization is not lock-basetlinstead
is via exotic mechanisms like state variables, interruptlling,
or the idioms described in Section 4. It is unclear whethehsu
heavyweight methods can be scaled to large code bases.
Finally, while others have designed bottom-up analysesgusi
complete summaries [4, 6], our work, and the notion of paliak-
tion is directly inspired by the approach taken by [15].

6. CONCLUSIONSAND FUTURE WORK

In this paper we presented a static race detection analyais t
scales to millions of lines of C code. At the heart of our tégbhe
is the notion of a relative lockset which allows functiond®sum-
marized independent of the calling context. This, in tuloves us
to perform a modular, bottom-up analysis that is easy tolleivze.
We have analyzed 4.5 million lines of C code in 5 hours, aneraft
applying some simple filters, found a total of 53 races.

One of our long-term goals is to soundly eliminate false {pes
to the point where a large fraction of the remaining warnjrezy
more than70%, correspond to real races. To this end, we would

ing the absence of races in Java code. Early work includes thejike to replace the simple but unsound filters with sound ysesl

development of type systems that encode a static locksétsia

targeted at the coding patterns that we have found to be #uke le

[9, 10]. These type based approaches were made more expressi ing causes of false positives. Examples of such analysasima

by incorporating a notion odwnership[3]. Similar type systems
were designed to ensure race-freedom in Cyclone [14]. Windise
type systems are eminently scalable, they require usertatiom

thread-escape analysis for the initialization patteresa tonserva-
tive version of thelockUpdate function for the re-entrant locking
pattern, and a light-weight shape analysis for the unspauéttern.

though there has been some work on using SAT solvers [13] and  Another long-term goal is to address the problem of deter-

dynamic locksets [2] to infer the lock annotations. Anotliree of
work is that of [28] which finds races by computing @bject Use
Graphthat statically approximates the dynamic happens-betsre r
lation. A recent line of work [20] shows how to effectivelyaus
cloning-based context-sensitivity to drastically impeahe preci-
sion of lockset computations. The approach was further edfin
in [19] by using a notion of must-not aliasing to prune the afet
warnings. The above techniques exploit key properties v Ja
namely the scoped use of locks, which mitigates the needdar fl
sensitivity. Thus, while they are not directly applicaldeour set-
ting, we believe that it may be possible to apply ideas likeew
ship and must-not aliasing to lower the false positiveshiae due
to initialization and unlikely aliasing respectively.

mining “serious” races. Some of the races are clearly benign
as deduced from syntactic cues such as variable names like
oops_i n_pr ogr ess, while others appear to be dangerous. The
dangerous races are often those that cause higher-levahntem
bugs, such as atomicity violations or unsafe memory acedié®se
the one shown in Figure 13. We hope to usa Ry as a foundation
for finding such deeper semantic bugs.
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