
STORM: Refinement Types for Secure Web Applications

Nico Lehmann
UC San Diego

Rose Kunkel
UC San Diego

Jordan Brown
Independent

Jean Yang
Akita Software

Niki Vazou
IMDEA Software Institute

Nadia Polikarpova
UC San Diego

Deian Stefan
UC San Diego

Ranjit Jhala
UC San Diego

Abstract
We present STORM, a web framework that allows developers
to build MVC applications with compile-time enforcement of
centrally specified data-dependent security policies. STORM
ensures security using a Security Typed ORM that refines the
(type) abstractions of each layer of the MVC API with logical
assertions that describe the data produced and consumed by
the underlying operation and the users allowed access to that
data. To evaluate the security guarantees of STORM, we build a
formally verified reference implementation using the Labeled
IO (LIO) IFC framework. We present case studies and end-to-
end applications that show how STORM lets developers specify
diverse policies while centralizing the trusted code to under 1%
of the application, and statically enforces security with modest
type annotation overhead, and no run-time cost.

1 Introduction

We trust web applications with our most sensitive data: our
finances, health records, email, or even our participation in
political protests. While application developers go to great
lengths to protect this data, today’s approach to safeguarding
sensitive data by sprinkling access control checks throughout
the application is not working. Even companies with dedicated
security teams are failing. For example, in 2018 Facebook
accidentally allowed third-party applications to access the
photos of 6.8 million users without their explicit permission [1].
This was not their first (nor last) leak. And Facebook is not
unique: sensitive data exposure and broken access control
are—and have been for almost a decade—on the OWASP top
ten list of most common web application vulnerabilities [2, 3].

To fundamentally address this class of bugs, we need
to reduce the amount of code developers need to get right.
One promising approach to doing this is to centralize policy
specification, i.e., specify data access control policies in a
centralized place, and enforce policies automatically. This
could reduce the code developers need to get right from the
whole application—as a single missing check could introduce
a vulnerability—to the policy specification code.

Centralizing policy specification is not a new idea. Several
web frameworks (e.g., HAILS [4], JACQUELINE [5], and
LWEB [6]) already do this. These frameworks, however, have
two shortcomings that have hindered their adoption. First,
they enforce policies at run-time, typically using dynamic
information flow control (IFC). While dynamic enforcement
is better than no enforcement, dynamic IFC imposes a high
performance overhead, since the system must be modified to
track the provenance of data and restrict where it is allowed
to flow. More importantly, certain policy violations are only
discovered once the system is deployed, at which point they
may be difficult or expensive to fix, e.g., on applications
running on IoT devices [7].

Second, these frameworks are invasive—they typically
require modifications to the language runtime and database
object-relational mapping (ORM). For example, JACQUELINE
uses a faceted ORM and runtime to keep track of multiple
facets of any individual value and only shows the right facet
to the right user (e.g., when reading a password, a user can
see their own password but get a default facet when trying
to read another user’s password). HAILS and LWEB, on the
other hand, use labeled values at the ORM and language
level to restrict the flow of sensitive, labeled data. This means
that developers need to write code that is aware of faceted or
labeled values, i.e., they need to write code that is aware of the
underlying IFC enforcement mechanism. Worse, this invades
policy specification. For example, in HAILS, developers can’t
simply write declarative policies, they often need to use the
low-level APIs used to track and enforce IFC to, for example,
inspect and manipulate labeled values [4, 8]. This not only
increases the amount of code they need to get right, but also
makes it hard to get the policy right since manipulating labeled
values is still an IFC expert—and not web developer—task.

We built the STORM web framework to address these
shortcomings. With STORM, users specify all security policies
in a declarative language, alongside the data model, the
description of the application database schema. Policies are
logical assertions that describe which users are allowed to
view, insert, or update particular rows and columns of each

table in the database. STORM enforces these policies statically,
at compile-time—and non-invasively, without translating
them to labels or facets. This means that (1) STORM does
not impose any run-time overhead, (2) developers can catch
bugs due to policy violations (e.g., where the application
incorrectly handles sensitive data) early, and (3) they don’t
need to understand the details of the underlying enforcement
mechanism to specify or audit policy code.

STORM statically enforces policies using refinement
types [9]: types decorated with logical assertions that can
constrain values, e.g., to say that an Int is non-negative or
that a User is the author of a Paper. Our key insight is to refine
STORM’s API with logical assertions that describe the data
produced and consumed by the underlying operation and the
users allowed access to that data. We use this insight to realize
STORM via four contributions.

1. Design (§ 3) Our first contribution is a novel design that
enriches the data model with a declarative policy—the refined
data model—to generate an application-specific ORM layer,
which STORM annotates with refinement types that reflect the
security policies. To our knowledge, this is the first framework
to statically and unobtrusively enforce policies previously
thought to only be expressible using runtime enforcement.

2. Implementation (§ 5) Our second contribution is an imple-
mentation of STORM in Haskell that uses LIQUIDHASKELL,
an off-the-shelf refinement type checker to statically and
automatically verify whether the application code using the
security-typed ORM—e.g., code handling user requests
and rendering HTML responses—adheres to the policies.
STORM does this without imposing any invasive changes to
the language runtime or database ORM interface. At most,
developers write (untrusted and verified) light-weight type
annotations to help the checker prove their code does not leak.

3. Verification (§ 6) Our third contribution is a formally
verified reference implementation that proves that the STORM
API is secure by showing how to reduce a well-typed STORM
program into an LIO [10] program that never throws security
exceptions. This allows us to carry over the previously
mechanized non-interference results from LIO [6, 10] to show
that well-typed programs cannot leak or corrupt sensitive data.

4. Evaluation (§ 7) Our final contribution is an empirical eval-
uation of the expressiveness of STORM’s policy mechanism,
the programmer effort needed for static enforcement, and,
ultimately, of the reduction in the amount of code the developer
has to get right to not leak data in real web applications. First,
we show that our centralized policy specification approach
is expressive enough to describe, often more naturally, a large
suite of policies from the literature. Second, we use STORM
to write statically verified implementations of several case
studies from the literature, including those that had previously
only been amenable to dynamic policy enforcement, and
show that the effort is modest: the programmer need only
write 1 line of refinement type signatures per 20–30 lines

System Audit Static Uninvasive IFC

SWIFT [11] 7 3 7 3

SELINKS [12] 3* 3 7 7

RESIN [13] 7 7 3* 7

URFLOW [14] 3 3 3 3*
IFDB [15] 3 7 7 3

HAILS [4] 3* 7 7 3

JACQLN [5] 3 7 7 3

LWEB [6] 3* 7 7 3

DAISY [16] 3 7 7 3

STORM 3 3 3 3

Figure 1: We compare STORM to previous web frameworks
along various design goals. Audit: are the policies centralized
and easily auditable; Static: is the enforcement at compile-
time; Uninvasive: does enforcement require changes to the
run-time; and IFC: does the framework enforce information
flow control. We write 3*for almost-met goals.

of code (LOC). Third, we use STORM to build and deploy
two new end-to-end web applications for collaborative text
editing and video-based social interaction, that have been
used at our university and at several academic workshops,
respectively. We demonstrate that STORM distills the code that
the developer has to get right to compact, auditable policies
(under 70 LOC) that comprise under 1% of the application.

2 Goals & Related Work

We designed STORM with several goals in mind. First, the
framework should provide information flow control (IFC)
security to prevent not only explicitly bad data flows, but also
implicit leaks where publicly viewable results are conditioned
on sensitive data. Second, the framework should enable a
centralized, and hence, easily auditable policy specification.
Third, to find errors early, provide design-time feedback and
avoid run-time overhead, the framework should permit static
enforcement via automatic, compile-time verification. Fourth,
the framework should not require invasive modifications to
language run-times, database ORMs, or libraries. STORM
builds on previous work, summarized in Figure 1, which have
made great strides towards these goals.
IFC There are many flavors of IFC with different trade-
offs [17, 18]. Systems differ in when they enforce IFC: at
run-time via labels [10, 19–22], faceted values [19, 22, 23],
secure multi-execution [24], or at compile-time via
types [12, 25–28], or static analysis [29], or a hybrid combi-
nation [30–32]. Even within the same category, these systems
differ in granularity of enforcement—from fine-grained to
coarse-grained [33, 34], and the kinds of policies users can
specify [35]. The SWIFT [11] system uses a static IFC type
system [30] to enforce compile time security, but does not
integrate with database ORMs, and hence, lacks centralized

auditable specifications. IFDB [15] and DAISY [16] show
how to perform fine-grained IFC within DB systems, but
are not static, and focus on databases—and are thus not
complete frameworks for building applications. STORM
draws inspiration from the HAILS [4], LWEB [6], and
JACQUELINE [5] frameworks which enforce auditable IFC
policies that are associated with the application’s data model.
However, these approaches all perform dynamic enforcement
and require invasive changes to the DB layer or run-time.

Static Several static frameworks express data-dependent
policies using dependent types [36–38, 38, 39], la-
bels [11, 12, 28, 40], or first-order logic formulas [41]. All the
above require the programmer to sprinkle policy specifications
across the application controller and view code, which is error
prone and makes auditing difficult. SELINKS [12] centralizes
policies within special functions that un/wrap data with labels,
but requires invasive changes to the DB and run-time to propa-
gate labels and does not prevent implicit leaks. URFLOW [14]
enables verification of centralized and auditable specifications
without requiring invasive changes, by using a bespoke sym-
bolic execution algorithm to statically verify that the generated
SQL queries are (semantically) contained in some allowed set.
However, to statically compute the SQL queries, URFLOW
requires programmers to write their applications in a domain-
specific language (DSL). Further, URFLOW’s approach is
insufficient for full IFC as it misses implicit flows through SQL
queries (as illustrated in § 3.4). In contrast, STORM enforces
full IFC via off-the-shelf refinement type checking for a general
purpose language with a rich ecosystem with tools and libraries
for networking, databases, data serialization, etc. STORM uses
a statically typed API for monadic IFC in the style of [42, 43],
specifically, the approach of LIFTY [44], a core calculus that
shows how to track IFC with logical refinement types. Unlike
STORM, LIFTY cannot be used to build secure applications: it
does not have database APIs, a language to specify centralized
policies, formal guarantees for data-dependent policies, or
even a way to write executable code.

System-based Security Several frameworks employ privilege
separation to run application components with least privi-
lege [45–49]. Others like RESIN [13] and QAPLA [50] restrict
access to data by modifying the run-time to use fine-grained
discretionary access control, or use cryptography to provide
data confidentiality, authenticity, and integrity in the presence
of compromised application components [51–53], or use
proxies to implement web application firewalls [54,55]. While
some of these approaches, e.g., the use of cryptography are
complementary to our approach, without IFC, they cannot
prevent leaks that STORM eliminates by construction.

3 Design

We illustrate the design of STORM with a WishList application
where users can share wishes with followers. STORM uses the

model-view-controller (MVC) paradigm, where an application
has three key elements: models which describe the persistent
data important to the application, typically stored in a
database (DB) and accessed via an Object-relational mapping
(ORM); views which describe how the data corresponding
to, e.g., users’ requests are rendered on webpages via some
combination of CSS, HTML and JavaScript; and controllers
that respond to user’s requests by suitably querying the DB
via the models API, to produce an HTML or JSON results.

3.1 Auditable Policies via Refined Models
The key innovation in STORM is to centralize data-dependent
security policies with the data model, in a refined models file.
Models & Policies Figure 2 shows the refined models file for
the WishList app. The left column describes the data schema,
as a collection of three tables User, Wish and Follower. Each
row of the User table comprises the user’s name and email

address. Each row of the Wish table has an owner that identifies
the User that the wish belongs to, a text description of the
wish, and a numeric price. Each row of the Follower table
describes a tuple where user1 follows user2, with the status

column indicating whether a follow-request has been initiated
("pending"), accepted ("ok") or rejected ("no"). STORM lets
the programmer specify policies that govern which DB rows
can be inserted and which DB columns can be read or updated.
A policy is a predicate over a row and user that is True if the
user has access and False otherwise. The policy predicate can
refer to all the columns of the row (whose column the policy
is attached to) and so the values of those other columns can be
used to determine whether the user has access. For example, we
specify that Wishes can only be inserted by their owners via the
policy @IsOwnerwhich holds when the user equals the owner of
the row. Similarly, we specify that each Wish’s description and
price should only be read by the owner unless they are explic-
itly public via the policy @Public which holds when the user is
the owner or the level is "public". (Ignore the shaded Follow

for now: we will return to it in § 3.3.) Finally, we specify that
only the owner is allowed to update the description and price.
Default Policies The programmer can associate default poli-
cies with all the rows and columns not explicitly constrained
otherwise. For example, Allow grants access to all users, while
Deny grants access to none. Hence, default read @Allow and
default insert, update @Deny say that (unless otherwise
specified) anyone can read every column, and no one can
insert rows or update columns.

3.2 Access Control
Let’s see how STORM enforces the Public policy. Figure 3
shows a controller showWishes that responds to a request to dis-
play the wish list for a given user. (For now, ignore the shaded
code.) The controller uses the models API to create a Query

of the form Owner ==. user, which it executes using the ORM

User
name Text
email Text

Wish
owner UserId
descr Text
level Text
price Int

insert @IsOwner
read [descr ,price] @Public Follow
update [descr ,level] @IsOwner

Follower
user1 UserId
user2 UserId
status Text

assert @OkFollows
insert @IsPending
update [status] @OkOrNo

default read @Allow
default insert , update @Deny

declare follows : UserId → UserId → Bool

def IsOwner(row: Wish , user: User):
row.owner == user.id

def Public(row: Wish , user: User):
IsOwner(row , user) || row.level == "public"

def Follow(row: Wish , user: User):
row.level == "follower" && follows(user.id, row.owner)

def PublicFollow(row: Wish , user: User):
Public(row , user) || Follow(row , user)

def OkFollows(row: Follower):
row.status == "ok" ⇒ follows(row.user1 , row.user2)

def IsPending(row: Follower , user: User):
row.user1 == user.id && row.status == "pending"

def OkOrNo(old: Follower , new: Follower , user: User):
old.user2 == user.id && new.status `in` ["ok", "no"]

def Allow(row: a, user: User): True
def Deny(row: a, user: User): False

Figure 2: Refined Models: A centralized specification for the Wishlist App

showWishes user = do
viewer <- authUser
let pub = Level ==. "public"
let chk = if viewer == user then true else pub
let qry = Owner ==. user &&. chk
wishes <- select qry
descrs <- mapM (project Descr) wishes
respond (show descrs)

Figure 3: A showWishes controller. The highlighted code is
needed for conformance with the Public policy.

API function select to get all the DB Wish rows belonging to
user. Next, it extracts the description column for each row
by invoking the ORM API function project with the name
of the desired field. Finally, the controller uses the view API
function respond to send the descriptions to the session user.

Enforcement Recall that the policy Public stipulates that
descriptions should only be visible to the owner unless the
level is "public". Indeed, the showWishes controller, sans the
shaded parts, is dodgy as the current session user could be
asking for someone else’s wishes! STORM detects this error at
compile time, by: (1) inferring that the qry will return all rows
owned by user, (2) using the policy on Descr to determine
that the project’s results depend on values that are allowed

to be viewable only by user (unless marked "public"), and
then (3) complaining that by calling respond the results can be
observed by the sessionUser who may be different than user.

We can fix showWishes by modifying the query when user

is different than sessionUser. The modifications are shaded
in Figure 3. First, we use the view API’s authUser function
to get the current session (viewer), which we use to add a chk

clause to the DB query. When the target user is the session
user, the chk clause is the trivial query true (which holds of
all rows). However, if the target user is different, then the
chk clause stipulates that the level column be "public". The
type checker infers that qry returns all rows owned by the
session user, but only the public rows of other users. Hence,
the type checker determines that the subsequent data release
via project and respond conforms to the Public policy.

3.3 Information Flow Control

Next, let’s see how STORM lets the programmer enforce IFC
policies that (1) span values across different rows and tables,
and (2) restrict how data flows to multiple users who may be
unknown at the point where the data is accessed.

Policy Let us add social capabilities to our application by
letting users have followers with whom they can share their
wishes. We model this notion as a many-to-many Followers

relationship table and then add "follower" as a new possible

level value. Now the access to a particular Wish depends on
data residing in another row, in another table—a record existing
in the Followers table. STORM lets the programmer specify
this requirement simply by changing the read policy for descr
and price to @PublicFollow which is defined on the right
in Figure 2. The key insight to specifying such a cross-table
policy is that the existence of a Follower record witnesses the
follows relationship between two users. The refined-models
in Figure 2 makes this notion manifest as follows. First, at the
top, we declare the relationship as a binary predicate follows

between two UserIds. Second, the line assert @OkFollows

says that for each row of the Follower table, the follows

predicate holds between user1 and user2 if the status is "ok".
Third, we use the predicate to define the Follow policy that
says that when a wish’s level is restricted to "follower" then
the viewer user must be a follower of the wish owner. Finally,
we use Follower to define a new policy PublicFollow that
governs who is allowed to read the descr and price fields.
This new policy captures our informal requirement about the
three levels of viewers: "public", "private" and "follower".
Controller Continuing with the social aspect of the applica-
tion, a nice feature would be to send an email notification
containing a user’s (non-"private") wish list, to all of the
user’s followers, a few days before that user’s birthday. Our
application implements this feature in the notifyFriends

controller in Figure 4. The code starts by selecting the list
of non-private wishes and projecting out their descriptions
into the list descrs. Next, we query the DB to determine the
list of followers flwUsrs. Finally, we use sendMail containing
the wish decriptions descrs to all the users in flwUsrs.
Enforcement In the first phase notifyFriends accesses sen-
sitive information that should only be made available to a
data-dependent set of users who are, at that point, still to be
determined. However, STORM’s models API tracks this fact by
combining the semantics of the wshQ query with the read policy
associated with Descr to infer that only the followers of user
are allowed access to the results of the first sub-computation
that creates descrs. In the second phase, STORM’s models
API tracks the semantics of the flwQ query to determine that
flws is a set of valid follows-tuples, and hence, that each user
in flwUsrs is a valid follower of user. In the final phase, the
signature for sendMail in STORM’s view API checks that all the
recipients in flwUsrs have the right access, and hence verifies
the controller. If the programmer forgot the Status ==. "ok"

clause, type checking would fail as flws would contain pairs
with pending status, and hence, flwUsrswould contain possible
non-followers outside the set allowed access by the first phase.

3.4 Implicit Flow Control
Next, let’s see how STORM prevents implicit IFC violations in-
volving publicly viewable data that was generated conditioned
upon data the recipient should not be privy to. Recall, from
Figure 2, that each wish has a price that should only be read

notifyFriends user = do
-- Get list of wishes
let wshQ = Owner ==. user &&.

Level <-. ["public","follower"]
wishes <- select wshQ
descrs <- mapM (project Descr) wishes
-- Get list of followers
let flwQ = User1 ==. user &&. Status ==. "ok"
flws <- select flwQ
flwIds <- mapM (project User2) flws
flwUsrs <- select (UserId <-. flwIds)
-- Notify followers
sendMail flwUsrs (show descrs)

Figure 4: A notifyFriends controller. The highlighted code
eliminates the IFC violation of the PublicFollow policy.

usersWithExpensiveWishes min = do
let qry = Price ≥. min &&. Level ==. "public"
wishes <- select qry
users <- mapM (project Owner) wishes
respond (show (nub users))

Figure 5: A usersWithExpensiveWishes controller: The
highlighted code eliminates the implicit flow violating the
PublicFollow policy. The nub function removes duplicates
from a list.

per the PublicFollow policy, i.e., by everyone (if "public"), by
followers (if "follows") or else, only by the owner. The code
in Figure 5 implements a controller that shows the session user
a list of all the users that have a wish whose price exceeds
the min threshold. (For now, ignore the shaded code.) If a
programmer is not careful, they may think this code conforms
to the application’s policy as it returns a list of wish owners
and owner is a publicly viewable column governed by the
default read @Allow policy.

Enforcement However (absent the shaded code) STORM is
unimpressed, as the list of expensive wishes was obtained
by conditioning over the sensitive price column. STORM’s
models API tracks that the qry accesses the Price field, and
infers that the result of the DB computation select qry should
only be observed by users that satisfy the PublicFollow policy.
Thus, when responding to the session user on the last line,
STORM reports an error as it cannot prove that the session
user satisfies the PublicFollow policy. To fix the code we must
restrict the Price comparison to the wishes that the session user
is allowed to access, for example, to all "public" wishes, as
shown by the shaded diff in Figure 5. Now, as detailed in § 5.1,
the type checker uses the models API to track the semantics
of qry to infer that the results of the select computation may
be made available to all viewers, thus verifying that the code
conforms to the application’s centralized policy.

4 Brief Intro to Refinement Types & IFC

STORM is implemented using two foundational blocks:
Refinement types (§ 4.1) and Compositional IFC (§ 4.2).

4.1 Refinement Types
Refinement types let the programmer decorate the source
program’s types with logical assertions from a decidable logic
to specify subsets of values of the decorated type [56, 57]. For
example, the non-negative integers can be specified as

type Nat = {v:Int | 0≤v}

Pre- and Post-Conditions The user can write pre- and
post-conditions for functions by refining the input and output
types of functions. For example, sum adds the integers 0...n

sum :: n:Nat → {v:Nat | n≤v}
sum 0 = 0
sum n = let t = sum (n-1) in n + t

We assign sum a refined function type, comprising an input
type (pre-condition) that says that the function should only
be invoked on non-negative integers, and an output type (post-
condition) that says the result is a non-negative integer lower-
bounded by the input n. Refinement type checking proceeds
be generating a verification condition (VC), a logical formula
whose validity implies the program type checks [9, 39, 58–60].

Bounded Refinements Generic APIs require a means of
abstracting over particular policies and invariants of individual
applications. We do so using bounded refinements [61]
which allow (1) abstracting over the refinements (like
type variables <A ...> abstract over concrete types) and
(2) constraining the refinements with which the variables
can be instantiated (like subtyping bounds <A extends ...>

constrain type instantiation). For example, we can type the
function composition operator compose f g x = f (g x) as

compose :: (Cmp f g r) ⇒ (y:b → {v:c| f (y,v)})
→ (z:a → {v:b|g(z,v)})
→ (x:a → {v:c|r(x,v)})

where Cmp f g r .
= ∀x,y,z. g(x,y)⇒ f (y,z)⇒ r(x,z)

In the above, f , g and r are (abstract) refinement variables. The
specification says that compose takes as input two functions
that respectively map their argument y (resp. z) to an output
v that satisfies the assertion f (y,v) (resp. g(z,v)), and returns
as output a function that maps its input x to a value v that
satisfies the assertion r(x,v). The abstract refinements f , g and
r are related by the refinement bound Cmp f g r which states
that r is the relational composition of f and g. The signature
is generic and precise in that it abstracts over the concrete
post-conditions established by the arguments to compose while
still letting us characterize the semantics of the result. Further,
the (Horn clause) structure of the bound ensures that type

checking remains decidable. Thus, we can use an SMT solver
to automatically verify

sum2 :: n:Nat → {v:Nat | n≤v}
sum2 = compose sum sum

by automatically inferring that the refinement variables f , g,
and r can all be instantiated to the refinement λ n v→n≤v.

4.2 Compositional IFC
Next, we give a high-level overview of the method used by
STORM to enforce IFC in a compositional manner.

Primitive Operations and Computations An application is a
collection of request handlers. Each handler is the sequential
composition of a set of primitive operations that either read
from or write to the database or send results to some users. For
example, consider the handler e14 illustrated in Figure 6 that
is composed from the primitive operations e1,...,e4 as:

e12 = do e1;e2 e34 = do e3;e4 e14 = do e12;e34

Thus e12, e34 and e14 are computations built from primitive
operations using the sequential composition (;) operator.

Authorizees and Observers Each primitive operation either
reads data, e.g., from the database, that only a subset of users,
the authorizees, are allowed to view, or writes data, e.g., to
the network, thus providing it to a subset of recipients, the
observers. For example, suppose that in the handler in Figure 6,
the operations e1 and e2 read sensitive data with authorizees
auth1 and auth2 respectively. Similarly, assume that e3 and
e4 write data to observers obs3 and obs4 respectively.

Information Flow Control requires that whenever some
primitive operation ei reads data that is restricted to authorizees
authi, all subsequent operations e j only write data to observers
obs j that are contained in authi. For example, the handler in
Figure 6 respects the given security policy if

obs3⊆auth1 obs4⊆auth1
obs3⊆auth2 obs4⊆auth2

(1)

To enforce IFC we could expand each handler out into its
sequences of primitive operations and then do the inclusion
checks, e.g., via symbolic execution [14]. Sadly, this approach
runs aground when there is a combinatorial explosion of
paths through the handlers, or with loops or recursion which
generate infinitely many possible computations.

Compositional Enforcement STORM circumvents path ex-
plosion using a two-step compositional approach [42, 44, 62],
where each computation e is typed as 〈auth, obs〉where auth
(resp. obs) under-approximates (resp. over-approximates) the
authorizees (resp. observers) of e. First, STORM assigns the
primitive operations the types

e1 ::〈auth1, /0〉 e3 ::〈 /̄0, obs3〉
e2 ::〈auth2, /0〉 e4 ::〈 /̄0, obs4〉

Figure 6: A request handler that sequences the primitive
operations e1−e4 with authorizees authi and observers obs j.

where /0 and /̄0 are the empty and universal sets of users.
Next, STORM assigns the ; operator a type that ensures that
whenever we compose two computations e and e′: (a) The
observers of e′ are contained in the authorizees of e, i.e.,
obs′ ⊆ auth (b) The authorizees of e;e′ are the intersection
of those of e and e′, i.e., auth∩auth′, and (c) The observers
of e;e′ are the the union of those of the sub-computations,
i.e., obs∪obs′. The implementations of e12 and e34 yield the
(trivial) constraints /0⊆auth1 and obs4⊆ /̄0, and types

e12 ::〈auth1∩auth2, /0〉 e34 ::〈 /̄0, obs3∪obs4〉

Finally, when we compose e12 and e34 to get the computation
e14 we get the constraint obs3∪obs4 ⊆ auth1∩auth2 which
is equivalent to the IFC constraints (1). Next, let us see how
our implementation represents the authorizees and observers
with refinements and uses a typed API to compute, propagate
and check those sets to enforce centralized security policies.

5 Implementation

We designed STORM to enable compile-time enforcement of
centralized, data-dependent policies without any modification
to the run-time. To achieve these goals, our design requires:
(1) An expressive, data-dependent way to associate DB fields
with the authorizees allowed access to those fields. (2) A way
to connect DB queries with the authorizees allowed access
to the query results. This set of users depends on the data in
the underlying rows, so we also need to characterize the values
of the rows returned by the query. (3) A way to aggregate the
authorizees and observers across computations. (4) A way to
ensure that observers who are provided sensitive data are a
subset of the users authorized by the policy.

STORM achieves the above goals by refining the type
abstractions (API) provided by each MVC layer with logical
assertions that describe the invariants of the data processed by
the operations, and the policies that govern access to that data.
This is tricky as the assertions must simultaneously satisfy
three properties. First, they must be precise to capture the
semantics of the policies and DB operations. Second, they
must be generic to enable reuse across many different web
applications. Third, they must be decidable so applications can
be automatically verified by SMT solvers. Next, we introduce
the three principal data types of the STORM API (Figure 7)
and use them to design a precise, generic and decidable API.

Policies A STORM policy is a binary predicate on a DB
row and user, which we represent as a predicate of type
row → user → Bool. The policy is data dependent as the
predicate can use the row’s values to determine if a user is
authorized. For example, Figure 2 specifies the policy Public
as a predicate on the Wish row and a user. Each policy is
attached to a column of a row specified in the ORM description
in the models file. For example, in Figure 2 we attach the
policy Public to the description column to specify that the
description should only be viewable to users other than the
owner when the row’s access level is "public".

Fields ORM libraries typically represent individual database
columns as their own datatypes. STORM uses the PERSISTENT
library [63] which represents each DB column as a type
Field row valwhere row represents the underlying row (table),
and val represents the value of the column itself. For example,
in the code below, the DB table on the left is translated to the
fields Owner, Descr and Level which respectively represent the
corresponding DB columns as plain program values.

DB Table ORM Fields
Wish
owner UserId Owner :: Field Wish UserId
descr Text Descr :: Field Wish Text
level Text Level :: Field Wish Text
price Int Price :: Field Wish Int

Policies in Fields STORM’s first pillar is a refined Field that
represents policies at the type-level, by parameterizing the
datatype with two abstract refinements (Figure 7):

pol: row→ user→ Bool sel: row→ val→ Bool

The refinement pol is instantiated with the policy attached to
the Field; sel is a selector predicate that provides a type-level
description of the value of the corresponding column. STORM
uses the models file in Figure 2 to automatically generate the
following types for Owner, Descr, Level and Price

Field 〈⊥, λr v → v=r.owner 〉 Wish UserId
Field 〈PublicFollow, λr v → v=r.descr 〉 Wish Text
Field 〈⊥, λr v → v=r.level 〉 Wish Text
Field 〈PublicFollow, λr v → v=r.price〉 Wish Int

Thus, STORM’s refined fields provide a uniform mechanism
to lift data-dependent specifications up into types.

Queries Modern ORMs, going back at least to LINQ [64],
allow the user to use Fields to build queries, e.g., of type
Query row to represent query objects (or ASTs, not the results
themselves) that access the DB table represented by row.
STORM introduces a way to refine the types of the query API
to track, at the type-level, the authorizees of the query results.
As the policies are data-dependent, our API must also track the
values of the rows in the query results. STORM achieves these
goals via the second pillar of its API, a type that represents
each DB Query parameterized by two refinements (Figure 7):

pol: row→ user→ Bool inv: row→ Bool

data Field 〈 pol: row → user → Bool , sel: row → val → Bool 〉 row val
data Query 〈 pol: row → user → Bool , inv: row → Bool 〉 row
data RIO 〈auth: user → Bool , obs: user → Bool 〉 val

Figure 7: The central types of the STORM API

As with Field, the refinement pol denotes the authorizees for
each row returned by the query. Crucially, our query building
API will ensure that pol intersects the authorizees across all
the columns read by Query, not only those for the particular
fields that are ultimately viewed by the viewers. This allows
STORM to track implicit flows when filtering over sensitive
columns, e.g., in the usersWithExpensiveWishes controllers
from Figure 5. The refinement inv is an assertion that holds
of every row returned by the query. The inv refinement enables
type-level tracking of the query semantics which is essential
for data-dependent policies. For example, the type

Query 〈PublicFollow, λr→r.level=“public”〉 Wish

describes a query on the Wish table, where (1) the query’s
results may only be accessed when the level is "public" or
by the owner’s followers, and (2) each returned row’s level

column has the value "public".
Computations Standard ORMs use a monadic type to
represent computations with side-effects. Haskell’s IO val

describes computations that access the DB, send email or net-
work responses to yield a val value. The last pillar of STORM’s
API is the monadic RIO type that describes handlers and is
parameterized with two refinements that track the authorizees
and observers of the underlying computations (Figure 7):

auth: user→ Bool obs: user→ Bool

STORM ensures that in every RIO 〈auth, obs〉 val computation
(1) auth is an under-approximation of the authorizees of
the data the computation depends upon, and (2) obs is an
over-approximation of the observers to whom the computation
provides data. STORM then prevents leaks by ensuring that
when sub-computations e1 and e2 are sequenced, the observers
of e2 are contained in the authorizees of e1 (§ 3.3).

5.1 Model API
STORM’s models API lets applications compose Fields to
build a Query and then to execute each Query to obtain an RIO

computation that provides access to DB values (Figure 8).
Query Operators Standard ORMs let the programmer write
atomic queries using relational operators that test whether the
value of a column equals (or disequals, exceeds, etc.) some
run-time program value. For example, Level ==. "public"

in Figure 3 denotes a Query that will return all Wish rows
whose Level column is "public". Similarly, Price ≥. min in
Figure 5 is a Query that will return all Wish rows whose price
column exceeds the value of min.

Compile-time enforcement poses three challenges. First,
the constructed Query’s type must track the policy describing
the set of users who are allowed access to the Fields upon
which the query result depends. Second, the constructed
Query’s type must capture the invariant that each row returned
by the query will, in fact, have the corresponding field-value
equal-to "public", or greater than min, etc. Finally, we must
achieve the above in a generic fashion that abstracts over the
underlying DB column, so that the programmer can reuse the
operators like ==. across different tables.
Refined Query Operators We solve the above challenges
with the types for the refined query operators equals (==.)

, not-equals (/=.), less-than (<=.), element-of (<-.) in
Figure 8. For example, the signature for the equality operator
(==.) says that given (1) a Field indexed by a policy and
selector, and (2) a comparison value satisfying a property p,
the operator returns as output a Query with the same policy
as the input Field where the resulting rows are guaranteed
to satisfy the invariant. The crucial equality relationship is
specified by the bound FldEq sel inv p which says that

∀r, fv, v. sel(r, fv) ⇒ p(v) ⇒ fv=v ⇒ inv(r) (2)

Recall that each Field’s sel-ector predicate characterizes the
value of the Field in a given row. That is, sel(r, fv) holds when
the value of the Field in row r is fv. Thus, the bound (2) says
that for any row r, the invariant inv(r) holds whenever the
field’s value fv equals any value v that satisfies p. To get a dif-
ferent comparison, e.g., less-than or disequality, we need only
modify the = relationship in the bound to≤ or 6= respectively.
Query Combinators ORMs let us use combinators to build
complex queries from simpler ones. For example, the query
Level ==. "public" &&. Price ≥. min in Figure 5 returns all
Wish rows whose Level is "public" and Price exceeds min.

Compile-time enforcement requires the combinators’
signatures meet two goals. First, the combined Query’s policy
predicate should be the intersection of the users allowed
access to each sub-query. Second, the combined Query’s
invariant should be the conjunction (for (&&.)) or disjunction
(for (||.)) of the sub-query invariants.
Refined Query Combinators We achieve the above with the
signatures for (&&.) and (||.) in Figure 8. The conjunction
combinator (&&.) takes two input sub-queries of type
Query 〈pol1, inv1〉 row and Query 〈pol2, inv2〉 row respectively,
and returns a Query 〈pol1tpol2, inv〉 row. The output Query’s
policy is the join of the two inputs, i.e., the set of authorized
users is the intersection of those allowed by pol1 and pol2.

(==.) :: (FldEq sel inv p) ⇒ Field 〈pol, sel〉 row val → val 〈 p〉 → Query 〈pol, inv〉 row
where

FldEq sel inv p .
= ∀r, fv,v.sel(r,v)⇒ p(fv)⇒ (fv=v)⇒ inv(r)

(&&.) :: (And inv1 inv2 inv) ⇒ Query 〈pol1, inv1〉 row → Query 〈pol2, inv2〉 row → Query 〈pol1tpol2, inv〉 row
where

pol1tpol2
.
= λr u→ pol1(r,u)∧ pol2(r,u)

And p q r .
= ∀x. p(x)⇒ q(x)⇒ r(x)

select :: (PolAuth pol inv auth) ⇒ Query 〈pol, inv〉 row → RIO 〈auth, >〉 [row 〈 inv〉]
where

PolAuth pol inv auth .
= ∀r,u. inv(r)⇒ auth(u)⇒ pol(r,u)

project :: (PolAuth pol inv auth) ⇒ Field 〈pol, sel〉 row val → row 〈 inv〉 → RIO 〈auth, >〉 val
where

PolAuth pol inv auth .
= ∀r,u. inv(r)⇒ auth(u)⇒ pol(r,u)

join :: (Auth1 sel1 sel2 pol1 inv auth, Auth1 sel1 sel2 polq inv auth, Auth2 sel1 sel2 pol2 inv auth, SelOn sel1 sel2 on) ⇒
Field 〈pol1, sel1〉 row1 val → Field 〈pol2, sel2〉 row2 val → Query 〈polq, inv〉 row1 →
RIO 〈auth, >〉 [(row1 〈 inv〉 , row2) 〈on〉]

where
SelOn sel1 sel2 on .

= ∀r1,r2,v.sel1(r1,v)⇒ sel2(r2,v)⇒ on(r1,r2)
Auth1 sel1 sel2 pol inv auth .

= ∀r1,r2,v,u.sel1(r1,v)⇒ sel2(r2,v)⇒ inv(r1)⇒ auth(u)⇒ pol(r1,u)
Auth2 sel1 sel2 pol inv auth .

= ∀r1,r2,v,u.sel1(r1,v)⇒ sel2(r2,v)⇒ inv(r1)⇒ auth(u)⇒ pol(r2,u)

Figure 8: Selected functions from STORM’s Models (ORM) API

The bound And inv1 inv2 inv states that the output Query’s
invariant is the conjunction of that of the inputs’ inv1 and inv2.

Example: Building Queries Let’s see how STORM’s API
types the query Level ==. "public" &&. Price ≥. min from
Figure 5. First, by composing the respective Field types
for Level and Price with that of the (==.) operator, the type
checker infers the left and right conjuncts have types

Query 〈⊥, λr→r.level=“public”〉 Wish
Query 〈PublicFollow, λr→r.price ≥ min 〉 Wish

which (&&.) combines to type the conjoined query as

Query 〈PublicFollow,λr→r.level=“public” ∧ ...〉 Wish

Selecting Rows Lastly, the API has functions to query the
database. ORMs export a select function that executes a
Query to return a list of matching rows. STORM’s API refines
the type of select to use the Query’s policy and invariant
to determine: (1) the set of users authorized access to the
results, and (2) the invariants of the result itself, as the data
may then be used to generate subsequent queries. To this
end, STORM assigns select the signature in Figure 8, which
says that it takes as input a Query 〈pol, inv〉 row and returns
as output a computation RIO 〈auth, >〉 [row〈inv〉]. That is, the
computation produces a list of rows where each row satisfies
inv. The resulting computation’s observers are the empty set
> .
=λu→ false. However, the computation’s authorizees auth

are defined by the bound PolAuth pol inv auth which says a

user u is authorized to access a row r that satisfies the Query

invariant only when that row and user satisfy the Query policy.

Projecting Fields In standard ORMs, the rows returned by
select are opaque: a project operation must be used to extract
the value of a given column (Field). STORM’s API refines the
type of project to track the authorizees of the extracted value
via the signature in Figure 8, which says that project takes
an input Field 〈pol, sel〉 row val and a row〈inv〉 and returns a
computation RIO 〈auth, >〉 val. Like select the computation
has an empty set of observers (>). Further, the signature
reuses select’s bound to ensure that computations authorizees
auth are contained within those specified by Field’s policy.

Example: Selection and Projection Recall the Query in
Figure 5 which looks for all the public Wish rows whose price
exceeds min. As shown in the previous example, the Query’s
policy and invariant predicates were inferred to be

pol .
=PublicFollow inv .

=λr→r.level=“public” ∧ ...

Thus, at the select the type checker infers the authorizees auth
to be the set of all users, as the invariant implies the policy
predicate. If, as in Figure 5, the Level ==. "public" clause
was absent, the above implication would not hold, yielding
a smaller set of authorizees auth. This would would render
the handler ill-typed, as it (implicitly) leaks the sensitive Price

value to observers outside auth.

Joining Tables ORMs let the user replace inefficient nested
loops over multiple tables with efficient join operations.

STORM provides a join function that tracks (1) the authorizees
of the sensitive data accessed by the query, and (2) the invari-
ants of the resulting rows. STORM’s join accounts for the
policies in both tables via the signature in Figure 8. The type
says that join takes as input the two Fields to join on (the ON

clause) and a Query to filter the results (the WHERE clause), and
returns a list of record pairs that satisfy the Query’s invariant
and the on condition. The on condition is defined by the SelOn
bound which says the condition holds for rows r1 and r2 if their
respective join fields are equal. Further, the resulting compu-
tation’s authorizees auth are defined by the bounds Auth1 and
Auth2 which limits auth to users authorized to view the join
and query fields for the subset of rows selected by the query.

Example: Join Recall the controller in Figure 4 which notifies
the followers of a user after inefficiently computing them
(flwUsrs) with two select queries: one to access the rows of
the Follower table and one to get the corresponding rows of
User. We can efficiently compute flwUsrs with a single join

let joinQ = User1 ==. user &&. Status ==."ok"
flwUsrs <- join User2 UserId joinQ

which returns a list of (Follower, User) pairs whose second
component are user’s followers who can then be notified.

5.2 Controller & View API

Existing ORMs for effect-sensitive languages like Haskell
encapsulate controllers and views in a monadic API to
distinguish effectful DB and network computations from pure
ones. STORM refines the monadic API to track the authorizees
and observers of each controller computation.

Controller API The key element of the controller API is the
monadic bind operator that sequences computations. When c1
and c2 are computations, of type RIO a and RIO b respectively,
the expression bind c1 (λx → c2) is the computation that
runs c1, binds its result of type a to x and then runs c2. In
Haskell and similar languages, sequential blocks

do {x1 <- e1; ... xn <- en; e}

are translated to

bind e1 (λx1 → ... bind en (λxn → e))

STORM’s signature for bind (Figure 9) ensures three prop-
erties of any sequential composition bind c1 (λx → c2).
(Leak-freedom) First, we ensure that c2 does not leak sensitive
information accessed in c1. That is, we ensure that the
observers obs2 of c2 are contained in the authorizees auth1 of
c1, via the bound auth1 v obs2. (Authorizee-strengthening)
Second, the the authorizees of the sequenced computation are
auth1tauth2: the users authorized to access the data read by
both sub-computations. (Observer-weakening) Finally, the
the observers of the sequenced computation are obs1uobs2:
the users who are observers of either sub-computation.

return :: a → RIO 〈⊥, >〉 a

bind :: (auth1vobs2) ⇒
RIO 〈auth1, auth2〉 a →
(a → RIO 〈auth2, obs2〉 b) →
RIO 〈auth1tauth2, obs1uobs2〉 b

where
authvobs .

= ∀u. obs(u)⇒ auth(u)

authUser : RIO 〈⊥, >〉 {u :User|u=sessionUser}
respond : Text→ RIO 〈⊥, λu→u=sessionUser〉 ()
sendMail : [user 〈 p〉] → Text → RIO 〈⊥, p〉 ()

Figure 9: Selections from STORM’s Controller & View APIs

View API STORM’s view API provides a function authUser

whose signature (Figure 9) states that it returns the identity of
the currently authenticated session user. Handlers can use this
function to determine suitable responses to HTTP requests,
e.g., by constructing and executing DB queries using authUser

(§ 3.2). The view API has a respond function whose signature,
shown in Figure 9, specifies that it takes Text or JSON data
and sends it back to the currently authenticated sessionUser.
Recall that the Leak-freedom guarantee provided by the type
of bind ensures that whenever respond is used, the recipient is
authorized to view the data used to construct the corresponding
Text or JSON payload. Unlike previous frameworks which
require potentially unsafe declassification [6], STORM’s view
API includes a way to sendMail responses to lists of users,
where type checking ensures that data is disclosed per the
application’s centralized policy (§ 3.3).

5.3 Policies and Updates

Non-trivial applications require policies that relate rows
across tables. (We found 9/11 of the benchmarks in our
evaluation require policies that span tables § 7.1.) For example,
in the WishList app (§ 3.3) we required that only the owner’s
followers be allowed to read the description of a non-public
Wish. The follower relationship is naturally stored in a separate
Follower table. Hence, we must support policies that say that
access is allowed if there exists a particular row in a different
table. In the case of WishList a user can view a descr for a Wish
when there exists a row in the Follower table whose status

is "ok" that relates the viewer with the Wish owner. The direct
way to specify such a policy is with existentially quantified
refinement predicates, or alternatively to add a relational join
to the set of logical operations. Unfortunately, both of these ap-
proaches take the predicate language out of the efficiently SMT
decidable fragment, thus precluding automatic verification.

Witnessing Existentials with Predicates STORM allows cross-
table policies by using uninterpreted predicates to provide
evidence that certain rows exist in (other) tables. First, the

policy declares there is a suitable relation without providing
any definition for it. For example, in Figure 2 we declare a
binary follows predicate that holds for a pair of users. Second,
the policy asserts that each record establishes the predicate
holds for the tuple of values in the record. This predicate is
then added as an invariant that holds of every record of the cor-
responding table. For example, in Figure 2 we assert that, e.g.,
OkFollows holds for each Follower record. Consequently, the
type checker assumes that every term of type Follower satisfies
the invariant, and hence, provides concrete evidence that the
follows relationship holds between users in the record’s fields,
if the status is "ok". In this way, STORM lets us specify cross-
table policies, while ensuring refinements stay decidable.

Predicates vs. Updates Predicates are timeless: once the
relationship is established it holds forever. This is problematic,
e.g., if the record is updated or deleted, which would require
us to similarly invalidate those invariants in the code. We
reconcile the tension between timeless predicates and updates
by separating two goals: (1) provide security guarantees
locally within a single controller action, and (2) reflect the
effects of updates and deletions globally across multiple
controller actions. That is, locally, we want that within a single
action, a Alice should be able to view Bob’s wishes only if at
some point during the action the Follower table contained a
tuple (Alice, Bob, "ok"). However, if during an action, Bob
revoked access, e.g., by updating the "ok" to "no", then in
subsequent controller actions we must deny Alice access.

Soundness via Monotonicity and Erasure Our uninterpreted-
predicate method achieves these goals as follows. First, we
impose a syntactic restriction that the predicates appear posi-
tively (i.e., not under a negation). Implicitly, the predicates are
interpreted to be true if they held of any database snapshot dur-
ing the handler action. In other words, the predicates are mono-
tonic: i.e., once established, they continue to hold till the end of
the action. Second, STORM’s compositional design erases the
assertions at the end of each controller action, as each action
is checked in isolation starting with no assertions. That is, the
assertions must be re-established by future actions by querying
the database, ensuring that if one action updates the database,
e.g., to revoke privileges, then accesses will be prevented in
subsequent handler actions. Thus, monotonicity lets us soundly
enforce the policy locally in an action, and erasure lets us prop-
agate the effects of updates globally across actions, essentially
by viewing the predicates as holding per handler action.

6 Verification

We establish the security guarantees of STORM in two steps.
First, we implement a formally verified Labeled IO (LIO)
library [10], whose API ensures that well-typed clients do not
throw dynamic IFC exceptions, i.e., do not leak. Second, we
use our typed LIO library to implement λSTORM, a simplified
reference implementation of the STORM API. (Unlike λSTORM,

the full STORM implementation supports tables with arbitrary
many columns and SQL types, and implements DB queries
using existing ORM libraries backed by SQL databases.) As
well-typed λSTORM applications are well-typed LIO clients,
we are guaranteed they do not leak.
IFC with Labeled Values In LIO, Labels are elements from
a lattice whose partial order v specifies allowed flows [10].
LIO secures data by wrapping it with Labels indicating the
level at which it is visible

data Labeled a = {val: a, lbl: Label}

LIO enforces IFC by maintaining an ambient (or current)
label lc which keeps track of the most sensitive value read
during the computation. The ambient label lc starts at⊥ and is
updated, i.e., monotonically increased using the labels of the
sensitive data accessed during the computation. The system
enforces IFC by blocking any output to a security level below
lc, as this would correspond to an (undesirable) information
flow from a high (e.g., Secret) level to a low (e.g., Public)
level. The undesirable flow is blocked via a dynamic IFC
exception that aborts the computation.
Refined LIO Computations LIO encapsulates secure com-
putations in a monadic interface that systematically creates,
propagates, updates labels to enforce IFC. To this end, LIO
structures computations as label-transformers of type LIO a

which are functions that take as argument the current label
l and returns the updated label l′ and the computation’s result:
a value of type a. λSTORM refines LIO a to implement the
computation type (§ 5) as

type RIO 〈auth, obs〉 a =
{l :Label|lvobs}→({l′ :Label|l′v ltauth}, a)

The precondition requires that obs over-approximates the
observers who are given access by the computation’s ambient
label l. The postcondition ensures that the updated label l′

includes the authorizees for the computation.
Verified RIO API We make the RIO type abstract, and let de-
velopers write secure applications by exposing a monadic API
(bind and return) extended with three operations. (1) label l

v protects a value v by wrapping it with a label l. The operation
enforces IFC by checking that the label l is not below the
ambient label lc. If the check fails, the program aborts with a
(dynamic) IFC error [10]. (2) unlabel lv takes a labeled value
lv of type Labeled a and returns a computation producing the
(unwrapped) a value. unlabel ensures the ambient label is
updated at each sensitive data access by raising the ambient
label to be at least that of lv’s label. (3) downgrade l k lets us
safely unlabel Boolean-valued computations by taking ceiling
label l and a Boolean-valued computation k, and then executes
k at label l, updating the ambient label to lc t l: Crucially, if
the computation k’s label exceeds the ceiling l, then downgrade

returns a default value False. This ensures that the True result
is only observed for computations that safely occur under the
ceiling l. We type the RIO API with refinements that verify

(a) the λSTORM implementation of the API type-checks, and
(b) well-typed clients do not throw IFC exceptions.
Policies For brevity, in λSTORM we assume the DB stores a
single type Val of primitive values and that each table has
exactly two columns. In λSTORM, a data-dependent policy is
a function that maps DB rows’ Values to Labels that protect
access to each column

type Policy = Val → Val → Label

A Spec declares the policy for a table via one per column

data Spec = {p1 :Policy , p2 :Policy}

Tables A DB Row is a pair of labeled values

data Row = { f1 :Labeled Val , f2 :Labeled Val}

We define a type for Rows that are protected by the Spec s via
the refinement sat s r which states that the row r’s columns
are labeled per s’ policies

type RowS s = {r :Row| sat s r}
where sat s r .

= ∧i∈1,2 s.pi r. f1.val r. f2.val= r. fi.lbl

Thus, we implement database Tables as a package

data Table = {spec : Spec , rows : [RowS spec]}

comprising a policy specification spec, and a collection of
rows protected by labels satisfying spec. Thus, type checking
ensures that every Table contains rows that are protected as
mandated by the Table’s spec.
Verified ORM λSTORM implements the models API (Figure 8)
on top of our refined LIO interface in about 800 lines of code.
We use label and unlabel to respectively implement insert
and project. We implement Query using an algebraic datatype
indexed with predicates that respectively represent the policy,
and invariant associated with the query. Finally, we use
downgrade to implement select, update and join and verify
their correctness with a reference eval function that represents
query semantics at the type-level. We use LIQUIDHASKELL
to verify [65] that λSTORM implements the API, which, coupled
with previously established non-interference results for
LIO [6, 10] proves λSTORM applications do not leak.

7 Evaluation

We evaluate STORM by asking three questions: How expres-
sive is STORM’s policy specification mechanism? (§ 7.1)
What typing burden does STORM’s static verification place
on developers? (§ 7.2) Does STORM reduce the code that
developers need to get right in real applications? (§ 7.3)

7.1 Expressiveness
We evaluate the expressiveness of STORM’s specification
mechanism porting the security policies of nine case studies
spanning four state-of-the-art approaches for centralized

System Benchmark Model Policy

URFLOW secret 8 9
poll 14 16
calendar 15 29
gradebook 18 24
forum 19 34

JACQUELINE conference 42 46
course 32 11
health 79 23

HAILS gitstar 16 21
LWEB bibifi 312 101

Table 1: Expressiveness comparison: Numbers are LOC.

policy enforcement in web applications, summarized in
Table 1: (i) From URFLOW [14] we ported a minimal
application for storing Secrets; a message Forum with
fine-grained access-control; a Calendar app where users share
details of their schedule specifying who may learn details
about it; and an anonymous Poll app where the creator can
draft a poll and later mark it as live; (ii) From HAILS [66]
we ported GitStar, a code hosting web platform inspired by
GitHub; (iii) From JACQUELINE [5] we ported a Conference

manager that supports designation of roles, paper submissions,
assignment of reviews and review submissions; a Course

manager that allows instructors and students to organize
assignments and submissions; a HealthRecord Manager based
on the HIPAA privacy standards; (iv) From LWEB [6] we
ported BIBIFI, a web-site to host the “Build it, Break it, Fix
it” security-oriented programming contest [67].

URFLOW’s specification language is the closest to ours: poli-
cies are specified as declarative SQL queries over the DB state,
instead of STORM’s logical assertions. As such, we found
porting URFLOW policies to STORM to be straightforward.

JACQUELINE uses multi-faceted execution to dynamically
enforce policies specified as boolean functions. We were
able to express all but one policy from the JACQUELINE case
studies. The sole exception was a policy from the Conference

manager where conflicts between PC members and papers
are stored in a PaperPCConflict table. A PC member can only
see the author and the content of a paper if there is no conflict
present in this table. Our specification language does not
support policies that depend on the absence of rows, and we
thus have to express conflicts differently. Like in URFLOW,
policies in STORM are limited to those that can be proven to
hold issuing simple queries to the database, including joins,
but without using more complex features like grouping or
sorting rows, which we leave to future work.

HAILS and LWEB use labels to dynamically enforce
policies. The policies in their case studies directly ported
over to STORM. In many situations we were able to specify
the requirements in a more natural and declarative way.
Specifically, HAILS and LWEB accommodate data-dependent

policies by querying the database at runtime to associate labels
with meaning derived from the database state. For example, to
even specify the Follow in the wishlist app (§ 3) one needs to
query the database to check a corresponding Follower record
exists. This is a problem. First, they duplicate DB queries as
the data returned by these policy queries is often also relevant
for the application logic. Worse, the queries may leak or fail,
making it hard to reason about policy specification. In LWEB,
such queries are trusted and written outside their declarative
policy specification language. But even when they are not
trusted (e.g., as in HAILS), exceptions in policy specification
code due to failed (or unsafe) queries are hard to debug.

7.2 Effort

We evaluate the burden that STORM’s static typing puts on the
programmer by implementing three case-studies—WishList

(§ 3) and the Course and Conference apps from JACQUELINE.
We pick these because they have a wide range of policies that
were previously thought to only be enforceable dynamically.

WishList (§ 3) allows users to save wishes and browse
those of other users. We implemented a version with the
PublicFollow policy which allows access to others’ wishes
when the wish is public or the user is a follower.

Conference [5] models a conference manager with a blind
review process. Users can be authors of papers or PC members
who write reviews. STORM enforces several policies: only
a PC member should be able to view data that could reveal the
identity of a reviewer; scores or the overall decision should
be viewable by non-PC users only when the PC has made deci-
sions public; even in the public stage, a paper’s reviews should
only be accessible to PC members or the papers’ authors;
some data like a paper’s text should be visible to the PC or
authors, but can be made public if the paper has been accepted.

Course [5] is a course management system with two kinds of
users: students who enroll in courses, receive assignments and
turn in submissions, and instructors who grade submissions
and send final scores. STORM enforces policies like: only the
instructor of the class or the student can view certain data like
the student’s final grade for the class; only the instructor or
the authoring student can access an assignment submission.

Typing Annotations Static enforcement requires program-
mers to write some untrusted (and verified) type annotations.
STORM uses the off-the-shelf LIQUIDHASKELL checker
whose inference engine reduces the typing annotations needed
for verification [68]. Hence, programmers need only annotate
the allows and gives labels for top-level controllers with
assertions describing the access provided by the controller.
Many of these are trivial assertion where the computation
(1) does not read or output sensitive data and may be typed
RIO 〈⊥,>〉 a or (2) is not composed with other sensitive
computations and may be typed RIO 〈>,⊥〉 a. The remainder

express restrictions specified in policies, as exemplified by
the signature for Conference’s getReviews controller:

p:Paper → RIO 〈λv→PcOrAuth(v,p),>〉 [Review]

This says that user v can access the Reviews of p only if v is
on the PC or the decisions have been made and v authored p.
Quantitative Evaluation Table 2 summarizes our quantitative
evaluation of the programmer effort needed for static enforce-
ment. For each case-study, we show (1) the total lines of code
of the application split across the client (where applicable),
server, the DB model, and the policy specification; (2) the typ-
ing annotations required to statically verify that the server code
conforms to the policy; and (3) the time taken to verify the ap-
plication. Overall, our results show the programmer overhead
is modest: 1 line of type (resp. non-trivial type) annotations ev-
ery 19 (resp. 29) lines of code across the three case studies. We
measured verification times using a commodity laptop running
Arch Linux with 16GB of memory and a quad core Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz processor. While the
results show room for improvement the times themselves were
acceptable for interactive development: refinement type check-
ing is modular and the developer focuses on one controller
at a time, for which verification typically takes a few seconds.

7.3 Auditability
The ultimate proof-of-the-pudding is: does STORM reduce
the amount of code the developer has to get right in real
web applications? To answer this question, we built and
deployed two new applications: VOLTRON and DISCO. In
both applications, the code is divided into a browser-based
client written using the VUE.JS framework [69] and a STORM
server that handles and provides sensitive data. The client does
not know anything about the security policies: all enforcement
is done server-side, where the policies are used to statically
restrict how data is provided in response to client requests.
VOLTRON allows instructors to simultaneously view the
progress of multiple groups of students collaborating on
in-class programming exercises. Administrators can create
new classes and assign them an instructor. Instructors can
then enroll students and assign them to groups. Each group
is assigned a hash which gives them access to a text buffer
that is synchronized in real-time using Google’s firebase
service [70], providing collaborative editing. While students
can only access their group’s buffer, instructors can view all
their classes’ buffers. VOLTRON has two essential policies:
(1) only administrators can create classes and only instructors
can enroll students to a class; and (2) a group’s buffer is only
accessible to the group’s members and the class’ instructor.
We deployed VOLTRON for four month in Fall 2020 and
regularly use it in two classes with about 50 and 100 students.
DISCO abbreviates Distant Socialing, an application that
simulates the “hallway track” for facilitating social interaction
in, e.g., a conference or workshop. In DISCO, an organizer

Application LOC Ver. (s)

Server Models Policy Client Annot.

Conference 644 25 57 - 43 (32) 79
Course 198 24 19 - 5 (1) 20
WishList 334 12 21 - 20 (12) 27
Voltron 756 32 37 1012 29 (17) 44
Disco 859 43 32 4630 43 (16) 120

Total 2851 140 166 5844 125 (72) 290

Table 2: Time (in seconds) to verify each application and
lines taken by Server code, DB Model definitions, Policy
specification code, Client code and typing Annotations.
Non-trivial typing annotations are shown within parentheses.

can set up video chat rooms for attendees to join and talk to
each other. Once logged in, attendees find themselves in the
“Lobby” where they can see other users currently connected
and view their “badges”. Users can choose to “join” a room, in
which case they enter a video chat with the other participants
in that room. Organizers can limit the capacity of rooms and
broadcast announcements to all users. Additionally, attendees
can directly message each other. The majority of DISCO’s
policies correspond to some form of access control—e.g.,
operations like managing rooms and sending invitations are
restricted to organizers, and personal details about individuals
can only be edited by those users. We do, however, enforce
two information flow policies: (1) only the recipient of a direct
message is allowed to see its content; and (2) if a user has their
visibility set to private, only people currently in their room
can see their location.

DISCO was deployed at the Programming Languages Men-
toring Workshop (PLMW) in June 2020 and at the Verification
Mentoring Workshop (VMW) in July 2020. In the latter, we
had about 107 registered users in all and a peak of 55 users
using DISCO simultaneously. The application elicited very pos-
itive responses from users who wrote: “DISCO is great, it has
been fantastic having it as a platform for social interactions at
VMW!”, “In my experience, DISCO worked amazingly well!”,
and “DISCO was among the best parts of VMW this year”.

Quantitative Evaluation Table 2 compares the size of the
policy specification code—that the developer has to get right—
with the rest of the web application: the implementation of the
server, and additionally the JavaScript clients for VOLTRON
and DISCO. We find that for real applications like VOLTRON
and DISCO, which require many controllers to implement the
application functionality, STORM’s policies account for under
4% of the server code, and under 1% if we include the client.

Discussion STORM helped discover an information flow bug in
DISCO that arose due to the subtle interaction of two seemingly
independent features—and would likely have gone unnoticed
otherwise. First, DISCO users can set their visibility to private
and the UI, accordingly, should not reveal to others when they

join a room. Second, each DISCO room has an associated
topic which is protected by a policy that allows users inside the
room to change it. A type error alerted us to a conflict between
these policies. In particular, enforcing the topic policy could
implicitly reveal the location of an invisible user (violating the
first policy). We designed and implemented VOLTRON without
using explicit policies, and only added them afterwards. While
the process of building VOLTRON took several person-months,
the verification process required only minor changes to the
code—including the checks that eliminated the implicit
leak—and was finished in under two days. Our experience
suggests developers informally consider policies when
programming and structure code to facilitate verification.

8 Conclusion & Future Work

We presented the STORM framework for writing MVC-style
web applications with statically enforced, data dependent se-
curity policies. STORM shows how the MVC architecture nat-
urally lends itself to IFC, by centralizing policies as part of the
model and then using a type-refined ORM API to track infor-
mation flow across database queries and handler computations.

The RIO monad is the glue that binds together the different
elements of STORM to precisely track the effects—each
computation’s authorizees and observers—needed to enforce
IFC. In principle, it should be possible to integrate our
approach to any language that supports similar fine-grained
effect tracking. On the flip side, however, a limitation of our
design is that programmers have to structure their controllers
in the restricted RIO monad which limits the effects available
to them. Our evaluation shows how a broad range of effects
(database queries, HTTP requests, emails, random number
generation) can be integrated into the RIO monad which
sufficed to build real web applications. It would be interesting
to investigate how to securely integrate other classes of effects
(e.g., exceptions which are historically leaky).

Another limitation apparent from our models API is that it
takes some toil to extend STORM to support DB operations like
select or join, which restricts the DB queries the developer
can write. In future work, it would be valuable to see how
to support more expressive queries by designing a way to
systematically and automatically refine an ORM library that
supports a large fragment of SQL.

Acknowledgments

Many thanks to the reviewers and Geoff Voelker for providing
excellent feedback on early drafts of this work. We are
especially grateful to our shepherd Jon Howell for spending
hours to help illuminate murky passages in the exposition. This
work was supported by the NSF under grant no. CNS-1514435,
CCF-1943623, CCF-1918573, CCF-1911213, CNS-2048262,
and by generous gifts from Microsoft Research and Cisco.

References

[1] T. Bar, “Notifying our developer ecosystem about
a photo api bug,” 2018, https://developers.facebook.
com/blog/post/2018/12/14/notifying-our-developer-
ecosystem-about-a-photo-api-bug/.

[2] The OWASP Foundation, “OWASP Top Ten,” 2020,
https://owasp.org/www-project-top-ten/.

[3] ——, “Top 10 2013,” 2013, https://wiki.owasp.org/
index.php/Top_10_2013-Top_10.

[4] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. Mitchell, and A. Russo, “Hails: Protecting data privacy
in untrusted web applications,” Journal of Computer
Security, vol. 25, 2017.

[5] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama,
C. Flanagan, and S. Chong, “Precise, dynamic informa-
tion flow for database-backed applications,” in PLDI.
New York, NY, USA: ACM, 2016, pp. 631–647.

[6] J. Parker, N. Vazou, and M. Hicks, “Lweb: information
flow security for multi-tier web applications,” PACMPL,
vol. 3, no. POPL, pp. 75:1–75:30, 2019. [Online].
Available: https://doi.org/10.1145/3290388

[7] T. Armerding, “The IoT: Too big (and buggy) to patch?”
2018, https://www.synopsys.com/blogs/software-
security/iot-big-buggy-patch/.

[8] D. Stefan, “LambdaChair policy,” 2014,
https://github.com/deian/lambdachair/blob/master/
LambdaChair/Policy.hs.

[9] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and
S. L. Peyton Jones, “Refinement types for haskell,”
in ICFP, J. Jeuring and M. M. T. Chakravarty,
Eds. ACM, 2014, pp. 269–282. [Online]. Available:
https://doi.org/10.1145/2628136.2628161

[10] D. Stefan, D. Mazières, J. C. Mitchell, and
A. Russo, “Flexible dynamic information flow
control in the presence of exceptions,” J. Funct.
Program., vol. 27, p. e5, 2017. [Online]. Available:
https://doi.org/10.1017/S0956796816000241

[11] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng, “Secure web application via
automatic partitioning,” in SOSP, T. C. Bressoud and
M. F. Kaashoek, Eds. ACM, 2007, pp. 31–44. [Online].
Available: https://doi.org/10.1145/1294261.1294265

[12] B. J. Corcoran, N. Swamy, and M. Hicks, “Cross-tier,
label-based security enforcement for web applications,”
in SIGMOD, 2009, pp. 269–282.

[13] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Improving application security with data flow assertions,”
SOSP, 2009.

[14] A. Chlipala, “Static checking of dynamically-varying
security policies in database-backed applications,” in
OSDI, 2010.

[15] D. A. Schultz and B. Liskov, “IFDB: decentralized
information flow control for databases,” in Eurosys,
Z. Hanzálek, H. Härtig, M. Castro, and M. F. Kaashoek,
Eds. ACM, 2013, pp. 43–56. [Online]. Available:
https://doi.org/10.1145/2465351.2465357

[16] M. Guarnieri, M. Balliu, D. Schoepe, D. Basin,
and A. Sabelfeld, “Information-flow control for
database-backed applications,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS P), 2019,
pp. 79–94.

[17] A. Sabelfeld and A. Myers, “Language-based
information-flow security,” 2003. [Online]. Available:
citeseer.ist.psu.edu/article/sabelfeld03languagebased.
html

[18] A. Sabelfeld and A. Russo, “From dynamic to static
and back: Riding the roller coaster of information-flow
control research,” in International Andrei Ershov Memo-
rial Conference on Perspectives of System Informatics.
Springer, 2009, pp. 352–365.

[19] T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama,
“Faceted execution of policy-agnostic programs,” in
PLAS, 2013.

[20] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley,
and E. Witchel, “Laminar: Practical Fine-grained
Decentralized Information Flow Control,” in PLDI.
ACM, 2009, pp. 63–74.

[21] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and
G. Morrisett, “All your ifcexception are belong to us,” in
2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 3–17.

[22] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language
for automatically enforcing privacy policies,” 2012.

[23] M. Ngo, N. Bielova, C. Flanagan, T. Rezk, A. Russo,
and T. Schmitz, “A better facet of dynamic information
flow control,” in Companion Proceedings of the The Web
Conference 2018, 2018, pp. 731–739.

[24] D. Devriese and F. Piessens, “Noninterference through
secure multi-execution,” in 2010 IEEE Symposium on
Security and Privacy. IEEE, 2010, pp. 109–124.

https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://owasp.org/www-project-top-ten/
https://wiki.owasp.org/index.php/Top_10_2013-Top_10
https://wiki.owasp.org/index.php/Top_10_2013-Top_10
https://doi.org/10.1145/3290388
https://www.synopsys.com/blogs/software-security/iot-big-buggy-patch/
https://www.synopsys.com/blogs/software-security/iot-big-buggy-patch/
https://github.com/deian/lambdachair/blob/master/LambdaChair/Policy.hs
https://github.com/deian/lambdachair/blob/master/LambdaChair/Policy.hs
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1017/S0956796816000241
https://doi.org/10.1145/1294261.1294265
https://doi.org/10.1145/2465351.2465357
citeseer.ist.psu.edu/article/sabelfeld03languagebased.html
citeseer.ist.psu.edu/article/sabelfeld03languagebased.html

[25] D. Volpano, C. Irvine, and G. Smith, “A sound type
system for secure flow analysis,” Journal of computer
security, vol. 4, no. 2-3, pp. 167–187, 1996.

[26] F. Pottier and V. Simonet, “Information flow inference for
ml,” in Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
2002, pp. 319–330.

[27] N. Broberg, B. van Delft, and D. Sands, “Paragon–
practical programming with information flow control,”
Journal of Computer Security, vol. 25, no. 4-5, pp.
323–365, 2017.

[28] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A
language for enforcing user-defined security policies,”
in 2008 IEEE Symposium on Security and Privacy (sp
2008). IEEE, 2008, pp. 369–383.

[29] D. E. Denning and P. J. Denning, “Certification of pro-
grams for secure information flow,” vol. 20, no. 7, 1977.

[30] A. C. Myers, “JFlow: Practical mostly-static information
flow control,” in POPL, 1999.

[31] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and
A. C. Myers, “Fabric: a platform for secure distributed
computation and storage,” in SOSP. ACM, 2009.

[32] P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: Mixing
static and dynamic typing for information-flow control
in haskell,” in ICFP, 2015, pp. 289–301.

[33] V. Rajani and D. Garg, “On the expressiveness and
semantics of information flow types,” Journal of
Computer Security, no. Preprint, pp. 1–28, 2019.

[34] M. Vassena, A. Russo, D. Garg, V. Rajani, and D. Stefan,
“From fine-to coarse-grained dynamic information flow
control and back,” Proceedings of the ACM on Program-
ming Languages, vol. 3, no. POPL, pp. 1–31, 2019.

[35] B. Montagu, B. C. Pierce, and R. Pollack, “A theory of
information-flow labels,” in 2013 IEEE 26th Computer
Security Foundations Symposium. IEEE, 2013, pp.
3–17.

[36] L. Lourenço and L. Caires, “Information flow analysis
for valued-indexed data security compartments,” in
Trustworthy Global Computing. Springer, 2014, pp.
180–198.

[37] ——, “Dependent information flow types,” in Pro-
ceedings of the 42nd Symposium on Principles of
Programming Languages. ACM, 2015, pp. 317–328.

[38] N. Swamy, J. Chen, and R. Chugh, “Enforcing stateful
authorization and information flow policies in Fine,” in
ESOP, 2010.

[39] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bharga-
van, and J. Yang, “Secure distributed programming with
value-dependent types,” in ICFP, 2011.

[40] S. Chong, K. Vikram, and A. C. Myers, “Sif: Enforcing
confidentiality and integrity in web applications,” in
USENIX Security, 2007.

[41] E. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. Schneider, “Logical attestation: an
authorization architecture for trustworthy computing,”
in SOSP, 2011, pp. 249–264.

[42] P. Li and S. Zdancewic, “Encoding information flow in
haskell,” in 19th IEEE Computer Security Foundations
Workshop, (CSFW-19 2006), 5-7 July 2006, Venice,
Italy. IEEE Computer Society, 2006, p. 16. [Online].
Available: https://doi.org/10.1109/CSFW.2006.13

[43] D. Schoepe, D. Hedin, and A. Sabelfeld, “Selinq:
tracking information across application-database
boundaries,” in ICFP, J. Jeuring and M. M. T.
Chakravarty, Eds. ACM, 2014, pp. 25–38. [Online].
Available: https://doi.org/10.1145/2628136.2628151

[44] N. Polikarpova, D. Stefan, J. Yang, S. Itzhaky,
T. Hance, and A. Solar-Lezama, “Liquid information
flow control,” Proc. ACM Program. Lang., vol. 4, no.
ICFP, pp. 105:1–105:30, 2020. [Online]. Available:
https://doi.org/10.1145/3408987

[45] M. N. Krohn, “Building secure high-performance web
services with OKWS.” in USENIX Annual Technical
Conference (ATC), General Track, Jun. 2004.

[46] A. P. Felt, M. Finifter, J. Weinberger, and D. Wagner,
“Diesel: applying privilege separation to database
access,” in Symposium on Information, Computer and
Communications Security. ACM, 2011, pp. 416–422.

[47] R. Cheng, W. Scott, P. Ellenbogen, J. Howell, and
T. Anderson, “Radiatus: Strong user isolation for
scalable web applications,” University of Washington,
Tech. Rep., 2014.

[48] A. Blankstein and M. J. Freedman, “Automating
isolation and least privilege in web services,” in Security
and Privacy. IEEE, 2014, pp. 133–148.

[49] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn,
A. DeHon, and J. M. Smith, “Breakapp: Automated, flex-
ible application compartmentalization,” in NDSS, 2018.

[50] A. Mehta, E. Elnikety, K. Harvey, D. Garg, and P. Dr-
uschel, “Qapla: Policy compliance for database-backed
systems,” in USENIX Security Symposium. USENIX,
2017, pp. 1463–1479.

https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1145/2628136.2628151
https://doi.org/10.1145/3408987

[51] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich,
M. F. Kaashoek, and H. Balakrishnan, “Building web
applications on top of encrypted data using Mylar,” in
NSDI, 2014, pp. 157–172.

[52] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun,
“Verena: End-to-end integrity protection for web
applications,” in 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 2016, pp. 895–913.

[53] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song,
“Shadowcrypt: Encrypted web applications foreveryone,”
in CCS, 2014, pp. 1028–1039.

[54] D. Muthukumaran, D. O’Keeffe, C. Priebe, D. M.
Eyers, B. Shand, and P. R. Pietzuch, “Flowwatcher:
Defending against data disclosure vulnerabilities in web
applications,” in CCS, I. Ray, N. Li, and C. Kruegel,
Eds. ACM, 2015, pp. 603–615. [Online]. Available:
https://doi.org/10.1145/2810103.2813639

[55] F. Wang, R. Ko, and J. Mickens, “Riverbed: Enforcing
user-defined privacy constraints in distributed web
services,” in NSDI. Boston, MA: USENIX, 2019, pp.
615–630.

[56] R. L. Constable and S. F. Smith, “Partial objects in
constructive type theory,” in LICS, 1987.

[57] J. Rushby, S. Owre, and N. Shankar, “Subtypes for speci-
fications: Predicate subtyping in PVS,” IEEE TSE, 1998.

[58] P. Rondon, M. Kawaguchi, and R. Jhala, “Liquid types,”
in PLDI, 2008.

[59] J. Bengtson, K. Bhargavan, C. Fournet, A. Gor-
don, and S. Maffeis, “Refinement types for secure
implementations,” in CSF, 2008.

[60] J. Hamza, N. Voirol, and V. Kuncak, “System FR:
formalized foundations for the stainless verifier,”
PACMPL, vol. 3, no. OOPSLA, pp. 166:1–166:30, 2019.
[Online]. Available: https://doi.org/10.1145/3360592

[61] N. Vazou, A. Bakst, and R. Jhala, “Bounded
refinement types,” in ICFP, K. Fisher and J. H. Reppy,
Eds. ACM, 2015, pp. 48–61. [Online]. Available:
https://doi.org/10.1145/2784731.2784745

[62] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A
core calculus of dependency,” in POPL. ACM, 1999,
pp. 147–160.

[63] M. Snoyman and G. Weber, https://www.yesodweb.com/
book/persistent.

[64] M. Torgersen, “Querying in c#: how language integrated
query (LINQ) works,” in OOPSLA, R. P. Gabriel,
D. F. Bacon, C. V. Lopes, and G. L. S. Jr., Eds.

ACM, 2007, pp. 852–853. [Online]. Available:
https://doi.org/10.1145/1297846.1297922

[65] R. Jhala and N. Lehmann, github.com/storm-
framework/core.

[66] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. C. Mitchell, and A. Russo, “Hails: Protecting
data privacy in untrusted web applications,” in
OSDI, C. Thekkath and A. Vahdat, Eds. USENIX
Association, 2012, pp. 47–60. [Online]. Available:
https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/giffin

[67] A. Ruef, M. Hicks, J. Parker, D. Levin, M. L. Mazurek,
and P. Mardziel, “Build it, break it, fix it: Contesting
secure development,” in CCS, 2016, pp. 690–703.

[68] B. Cosman and R. Jhala, “Local refinement typing,”
Proc. ACM Program. Lang., vol. 1, no. ICFP, Aug. 2017.
[Online]. Available: https://doi.org/10.1145/3110270

[69] “Vue.js: The progressive javascript framework,”
https://vuejs.org/.

[70] “Firebase realtime database,” https://firebase.google.
com/docs/database.

A Artifact Appendix

Abstract

Our artifact contains (a snapshot of) the source code for the
implementation of STORM from § 5, the formally verified refer-
ence implementation λSTORM described in § 6), the various poli-
cies, case-studies and applications used in our evaluation § 7.

Scope

The artifact provides a way to reproduce the results in the
paper. First, we provide examples of how a programmer might
write insecure code that fails to respect particular policies,
as described in Section 3 and show how those mistakes are
caught by refinement type checking. Next, the code shows
how STORM is implemented on top of existing ORM and
networking libraries as described in § 5. Further, the artifact
contains the verified reference implementation of λSTORM

from Section 6 which shows how the API can be implemented
on top of an LIO interface. Finally, addition, to the source
code described above we include the various scripts used to
compile the applications and measure the verification time
and code annotation overheads that we report in Section 7.

https://doi.org/10.1145/2810103.2813639
https://doi.org/10.1145/3360592
https://doi.org/10.1145/2784731.2784745
https://www.yesodweb.com/book/persistent
https://www.yesodweb.com/book/persistent
https://doi.org/10.1145/1297846.1297922
github.com/storm-framework/core
github.com/storm-framework/core
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/giffin
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/giffin
https://doi.org/10.1145/3110270
https://vuejs.org/
https://firebase.google.com/docs/database
https://firebase.google.com/docs/database

Contents

The artifact comprises the following sub-directories and files:
storm-core—the source for the verified reference implemen-
tation λSTORM (§ 6); models—the ported policies from the
expressiveness benchmarks (§ 7.1); case-studies—the source
for the ported case-studies (§ 7.2); disco and voltron—the
source for the end-to-end applications (§ 7.3); and fig9.py—
the script used to generate Table 2. Each sub-directory contains
a manifest file that links to the github commits for STORM and
LIQUIDHASKELL that are needed to compile the application.

Hosting

You can obtain the artifact from github by run-
ning git clone --recursive on the repository
https://github.com/storm-framework/artifact It suf-
fices to use the main branch, specifically, commit 3

eb138ab5145e688504eff71c669c6570701e10b.

Requirements

You can run the artifact on any machine computer running
Linux or MacOS after installing the following software. The
artifact requires python 3.7 and the following dependencies.
(1) stack v2.5.1 which can be installed by following these
instructions1; (2) z3 v4.8.8 which can be installed by
downloading the binary 2. You can ignore the shared libraries
and bindings for Java and Python; just download and place a
suitable z3 binary somewhere in your PATH. (3) tokei v12.1.2

which is used to count lines of code 3. Familiarity with the
stack build system for Haskell would be useful to evaluate
the artifact but it is not necessary.

λSTORM Implementation (§ 6)

Directory storm-core has the source for the verified ref-
erence implementation λSTORM from § 6. To verify, run
cd storm-core && stack build.

Policies (§ 7.1)

The code in models/ contains the policies ported to evaluate
expressiveness as described in § 7.1. This directory does not
contain verifiable code, only the ported models files. The
models files are grouped by the original tool they were taken
from, e.g., the models file for the Calendar application in
URFLOW is in models/src/UrWeb/Calendar/Model.storm.

1https://docs.haskellstack.org/en/stable/README
2https://github.com/Z3Prover/z3/releases/tag/z3-4.8.8
3https://github.com/XAMPPRocky/tokei#installation

Case Studies (§ 7.2)
The case studies used to evaluate the burden STORM puts on
programmers as described in § 7.2 are in case-studies. There
is a stack project for each case study.

Verify the Code To verify one of the case studies go
to the corresponding directory and build the project.
For example, to verify the WishList application run
cd case-studies/wishlist && stack build.

Breaking the Code To check how STORM catches leaks open
case-studies/wishlist/src/Controllers/Wish.hs. The func-
tion getWishData at line 156 extracts the information out of a Wish.
The query between lines 164 and 171 checks if the viewer is friends
with the owner of the wish. Remove the check frienshipStatus
==. "accepted" from the query, i.e., the query should look like:

friends <- selectFirst
(friendshipUser1 ' ==. owner &&:

friendshipUser2 ' ==. viewerId)

Then verify by running stack build. Forgetting to check if the
friendship is "accepted" causes a leak as the viewer may not be
friends with the Wish owner, yielding an error:

|
173 | level == "friends" →

| project wishDescription ' wish
| ^^^^^^^^^^^^^^^^

Automation Evaluation (Fig 2)
To produce the count of lines of code in 2 run python3 fig9.py

Application: Disco (§ 7.3)

Verify the Code To verify Disco’s server code is leak free run
cd disco/server && stack build

Break the Code Open the file disco/server/src/Controllers
/Room. The function updateTopic on line 36 implements the
functionality that allows a user to update a room’s topic. If not done
carefully, this operation may produce a subtle information flow bug
as described in the discussion of § 7.3. Line 42 checks that the user’s
visibility is set to "public" and only then allows them to update the
topic. Update lines 42 to 50 to

Just roomId → do
UpdateTopicReq {..} <- decodeBody
validateTopic updateTopicReqTopic
_ <- updateWhere

(roomId ' ==. roomId)
(roomTopic ' `assign ` updateTopicReqTopic)

room <- selectFirstOr notFoundJSON
(roomId ' ==. roomId)

roomData <- extractRoomData room
respondJSON status200 roomData

Nothing → respondError status403 Nothing

and run stack build. Forgetting to check if the visibility is set to
public produces an error when accessing the user’s current room as
the information may be leaked. You should see:

https://docs.haskellstack.org/en/stable/README
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.8
https://github.com/XAMPPRocky/tokei#installation

**** LIQUID: UNSAFE ***********************
src/Controllers/Room.hs :39:23: error:
...

|
39 | userRoom <- project userRoom ' viewer

| ^^^^^^^^^

Application: Voltron (§ 7.3)

Verify the Code You can verify the code by cd voltron/server
&& stack build

Break the Code Open the file voltron/server/src/Controllers
/Class.hs The function addRoster at line 102 implements the
functionality to enroll a list of students to a class. This operation is
restricted to instructors of the class which is checked by the query
in lines 109 and 110. Removing the clause classInstructor' ==.
instrId so the query reads:

cls <- selectFirstOr
(errorResponse status403 Nothing)
(className ' ==. rosterClass)

produces an error as the user does not have enough permissions:

**** LIQUID: UNSAFE ************************
src/Controllers/Class.hs :113:19: error:
...

|
113| mapT (addGroup clsId) (rosterGroups r)

| ^^^^^

src/Controllers/Class.hs :114:19: error:
...

|
114| mapT (addEnroll clsId) (rosterEnrolls r)

| ^^^^^

	Introduction
	Goals & Related Work
	Design
	Auditable Policies via Refined Models
	Access Control
	Information Flow Control
	Implicit Flow Control

	Brief Intro to Refinement Types & IFC
	Refinement Types
	Compositional IFC

	Implementation
	Model API
	Controller & View API
	Policies and Updates

	Verification
	Evaluation
	Expressiveness
	Effort
	Auditability

	Conclusion & Future Work
	Artifact Appendix

