Neurosymbolic Modular Refinement Type Inference

Georgios Sakkas
UC San Diego
gsakkas@ucsd.edu

Pratyush Sahu
UC San Diego
psahu@ucsd.edu

Abstract—Refinement types, a type-based generalization of
Floyd-Hoare logics, are an expressive and modular means of
statically ensuring a wide variety of correctness, safety, and
security properties of software. However, their expressiveness and
modularity means that to use them, a developer must laboriously
annotate all the functions in their code with potentially complex
type specifications that specify the contract for that function.
We present LHC, a neurosymbolic agent that uses LLMs to
automatically generate refinement type annotations for all the
functions in an entire package or module, using the refinement
type checker LIQUIDHASKELL as an oracle to verify the correct-
ness of the generated specifications. We curate a dataset of three
Haskell packages where refinement types are used to enforce a
variety of correctness properties from data structure invariants
to low-level memory safety and use this dataset to evaluate LHC.
Previously these packages required expert users several days to
weeks to annotate with refinement types. Our evaluation shows
that even when using relatively smaller models like the 3 billion
parameter StarCoder LLM, by using fine-tuning and carefully
chosen contexts, our neurosymbolic agent generates refinement
types for up to 94% of the functions across entire libraries
automatically in just a few hours, thereby showing that LLMs
can drastically shrink the human effort needed to use formal
verification.

I. INTRODUCTION

Refinement types are a type-based generalization of Floyd-
Hoare logics, where the programmer can specify correctness
requirements by decorating classical types (e.g.Int) with logi-
cal predicates (e.g.0 <= v) that provide additional constraints
on the values that can inhabit the type, thereby providing
a modular and expressive means of statically enforcing a
wide variety of correctness, safety, and security properties of
software. Refinement types have been developed for various
languages, from the ML family [1]-[4]], to C [S]-[7], Ruby
[8], Rust [9]], [10], TypeScript [11]], Scala [12], Solidity [13],
Racket [[14]. A recent paper presented a user study of 30
developers using refinement types for Java [[15]] that concluded
that “LiquidJava helped users detect and fix more bugs, and
that Liquid (Refinement) Types are easy to interpret and learn
with few resources.”

Sadly, as with other expressive and modular program verifi-
cation tools like ESCJava [[16] or Dafny [[17]], the wider usage
of refinement types is hindered by the fact that to effectively
use refinement types across their codebase, developers must
laboriously annotate all the functions in their code with po-
tentially complex type specifications that specify the behavior
of that function to the rest of the code. The expressiveness
of refinement contracts means that (unlike in classical type
systems where often a type can be uniquely determined from

Kyeling Ong
UC San Diego
k8ong@ucsd.edu

Ranjit Jhala
UC San Diego
rjhala@ucsd.edu

the code) there is an infinite space of possible specifications
for each function, which makes it tricky for the developer
to determine the right one. The problem is exacerbated by
modularity which means that the refinement type or contract
specified for a function f may be “correct” for f in isolation,
but may not suffice to verify f’s clients, and so the developer
has to go back and forth changing the annotations of functions
to get the entire codebase to verify.

In this paper, we present LHqH a neurosymbolic agent that
uses large language models (LLMs) to automatically generate
refinement type annotations for the functions in an entire
codebase, using the refinement type checker LIQUIDHASKELL
as an oracle to verify the correctness of the generated specifi-
cations. We develop our approach via three contributions.

1. Agent Our main contribution is an agent that systematically
traverses the codebase’s call-graph to generate each function’s
refinement type annotation. If we think of the refinement type
annotation as the analog of a procedure summary, then we
can think of our agent as a neurosymbolic program analysis,
that combines a “bottom-up” analysis which uses neural
LLMs to generate refinement type annotations (summaries)
for functions, with a “top-down” analysis that kicks in when
the LLM fails to generate correct types, that instead uses a
symbolic predicate abstraction technique to generate refine-
ment types from predicate templates obtained from the failed
LLM predictions. Thus, even where the LLM fails to generate
the correct type, its predictions can be used to generate an
abstract domain that allows the symbolic analysis to succeed.

2. Dataset Our second contribution is a dataset comprising
three Haskell packages: a suite of programs which are part
of a tutorial on refinement types, a Haskell implementation of
the Salsa20 cipher, and a widely used library that implements
Byte-Strings with low-level pointer operations. The dataset
includes a diverse set of functions, totalling about S5KLoC
annotated with refinement types that enforce a variety of
correctness properties ranging from data structure invariants
to low-level memory safety. This dataset was curated to
deliberately exclude code present in the popular open-source
code LLM training dataset The Stack [18]], [19], to ensure that
successful type generation is not simply due to memorization.

3. Evaluation Our final contribution is an evaluation of LHC
on our dataset, using a variety of pre-trained LLMs, including
StarCoder and CodeLLlama which were not trained on the code

IStands for Liquid Haskell Copilot or LHCOPILOT

in our dataset. We demonstrate that by fine-tuning these LLMs
on a small set of about 9,000 LIQUIDHASKELL programs, we
can greatly improve the agent. We show how by combining
the bottom-up generation of the neural models with top-down
symbolic inference using qualifiers from the LLMs predic-
tions, LHC can automatically generate refinement types for up
to 94% of the functions across entire libraries. Furthermore,
the entire generation process can be completed in just a few
hours, a significant improvement over the several days or
weeks of human effort that originally went into annotating the
packages, thereby indicating that LLMs can drastically shrink
the human effort needed to use formal verification.

II. BACKGROUND

We start with some preliminaries showing how refinement
types can be used to specify and verify properties of programs
§ and how LLMs can be used to automatically generate
the type annotations required for verification §

A. Refinement Type Checking with LIQUIDHASKELL

Specification Refinement type checkers like LIQUIDHASKELL
let the programmer specify correctness requirements decorat-
ing classical types with logical predicates — typically drawn
from an SMT-decidable theory — which provide additional
constraints on the values that can inhabit the type. A refined
base type of the form {v:T|p(v)} defines the set of values v of
type T such that additionally, the constraint p(v) is true of the
value v. For example, the type {v:Int | @ <= v} specifies
the set of non-negative integer values. A refined function type
of the form x:{In|pre(x)} -> {v:0ut|post(v, x)} can
specify pre- and post-conditions for the underlying functions
via constraints on the Input and Output types. For example,
the type x:{Int|0 <= x} -> {v:Int|v >= x} specifies a
function that requires non-negative inputs, and ensures that
the returned value is at least as large as the input x.

Refinement type checkers also allow the programmer to
specify properties of data using measure functions [3[], [20],
which are pure and total functions that map data types (such
as lists, trees, etc.) to SMT-decidable values (such as integers,
booleans, sets efc.). For example, the measure notEmp defines
a boolean predicate on lists that is true if the list is non-empty:
[al -> Bool

False
True

measure notEmp ::

notEmp [] =

notEmp (_:_) =

and we can use it to specify that a particular function should
only be called with non-empty lists

{-@ head :: {v:[al | notEmp v} -> a @-}
head (x:_) = x
head [] = error "empty list” -- runtime crash

Verification Refinement type checkers like LIQUIDHASKELL
verify the specifications by generating verification conditions
(VCs) — logical formulas whose validity, determined by an
SMT solver [21]], ensures that the program is type-safe. For
example, consider the code for the head function shown above,
and assume that error — which aborts the program with a
run-time panic — is a library function that is given the type

{-@ error :: {v:String | False} -> a @-}

That is, the precondition of error says it can only be called
with String messages such that the predicate False holds.
Since there are no such Strings, the program will only verify
if at compile-time, the refinement type checker can prove that
error is never actually called. LIQUIDHASKELL verifies the
code for head by generating the VC:

Y. notEmp(v) = —notEmp(v) = False

The first antecedent comes from the precondition that the input
list is a non-empty list, the second antecedent comes from the
fact that in the second case (where we call error) the input
list is matched against [] whose measure is False, and the
consequent Fulse arises from the pre-condition of error. The
SMT solver proves the above VC valid to verify that head
will never crash on non-empty lists.

Modularity and Annotations Refinement type checking is
modular in that when we check a client (e.g.head) that calls
a function (e.g. error) the only information known about the
callee is its type signature. This means that to analyze an
entire package or module, the programmer must annotate all
the functions of the module with (refinement) type signatures.

For example, consider the code in which shows
a small Haskell module that implements a function that
computes the average of a list of integers by computing the
sum of the integers and then invoking divide with the size
of the list. The divide function panics with error when the
divisor is 9, and otherwise calls the mathematical div operator.
The size function recursively traverses the input list to count
the number of elements in it.

To verify this module, the programmer must annotate each
of the three functions with a type signature. First, for divide
they must specify that the second argument is NonZero —
so that LIQUIDHASKELL can verify that error will not be
called at run-time. Second, for size they must specify that the
function returns a strictly positive result if the input is non-
empty. Finally, for average they must specify that the input
list is itself non-empty, which lets LIQUIDHASKELL determine
— using the annotation for size — that total is strictly
positive, and hence that the call to divide is also safe.

Symbolic Type Inference with Qualifiers Refinement type
checkers require type annotations in many places, e.g. for
(recursive) functions, polymorphic type instantiation and so
on. These can be viewed as type-based generalizations of the
classic problem of having to specify pre- and post-conditions
and loop- annotation invariants in Floyd-Hoare style verifiers
like ESCJava or Dafny [16], [22]]. As with loop invariants,
refinement type inference is undecidable in general, but the
type-based setting allows LIQUIDHASKELL to use a form of
abstract interpretation called predicate abstraction [2f], [23]].
Here, the programmer provides a set of qualifiers — predicate
fragments or templates — that LIQUIDHASKELL can then
automatically conjoin to infer refinement types. In our running

example in we could provide templates:

type NonZero = {v:Int | v /= 0}

type NEList a = {v:[al | notEmp v}

divide Int -> Int -> Int

divide _ @ = error "divide-by-zero”
divide x n = x “div™ n

size [al -> Int

size []

0
1

size (_:xs) + size xs

average xs = divide total elems

where
total = sum xs
elems = size xs

Fig. 1: Haskell module with multiple dependent functions.

v > 0
b):

qualif Qualo(v: a):

qualif Quall(v: a, xs: notEmp xs => v > 0

and then simply annotate average and size with the wildcard
types: average :: _ -> _ -> _and size :: _ -> _ after
which LIQUIDHASKELL will be able to automatically infer
the refinement type annotations needed to verify the module
[2]. Additionally, LIQUIDHASKELL can automatically extract
qualifiers from annotated type specifications. For example if
the programmer wrote a specification x: Int -> {v:[a] | x
< len v} -> a then LIQUIDHASKELL would automatically
extract a qualifier Qual2(v: a, x: b): x < len v and then
use it for subsequent type inference.

B. Neural Type Inference with LLMs

Even with symbolic refinement type inference, there is a
substantial burden on the programmer as they must be able to
either write down the types for all functions or divine a set
of suitable qualifiers from which types can be inferred. We
aim to reduce this burden by using large language models
(LLMs), specifically code-specific models, trained on large
tracts of source code, to assist the programmer in generating
the necessary type annotations needed to verify entire modules.

Constructing prompts LHC infers refinement types for entire
modules by repeatedly crafting prompts that can guide the
LLM to generate accurate and relevant refinement types for
each function. In the case of refinement types, LHC uses
LLMs that have been pre-trained on infilling missing (masked)
parts of programs, and generate prompts that provide context
about the Haskell code while indicating where the refinement
type is missing. For [Figure T| LHC builds the following LLM
prompt to generate a refinement type for divide

{-@ type NonZero = {v:Int | v /= 0} @-}
{-@ measure notEmp [al] -> Bool

notEmp [] = False

notEmp (_:_) = True @-}
{-@ type NEList a = {v:[al | notEmp v} @-}

divide Int -> Int -> Int
divide _ @ = error "divide-by-zero”
divide x n = x “div™ n

Few-shot prompting with function dependencies Few-shot
prompting is a technique used in the context of LLMs where
the model is provided with some examples (typically between
one and a few dozen) to illustrate the task it needs to perform.
This approach helps the LLM understand the pattern and
context of the task, improving its performance on similar tasks.
In contrast, zero-shot prompting provides no specific exam-
ples to the LLM, relying entirely on the model’s pre-trained
knowledge to perform the task based on a descriptive prompt.
Few-shot prompting generally yields better results than zero-
shot prompting as it gives the LLM concrete examples to learn
from, thereby reducing ambiguity and increasing accuracy.

In the context of refinement types, few-shot prompting can
be particularly useful. For instance, when asking a Code
LLM to generate refinement type annotations for Haskell
code, a few-shot prompt would include several examples of
functions annotated with appropriate refinement types. This
helps the LLM learn the patterns and constraints associated
with these types. By seeing specific examples, the LLM can
more accurately predict and infill the missing refinement type
annotations in new, un-annotated code.

Specifically, LHC adds all the functions and their types
in the prompt, that the target function depends on. For our
example in when we query a LLM to generate types
for average, the functions divide and size with their type
signatures will also be added to the prompt as extra examples
to help the LLM generate the correct type for average.

III. OVERVIEW

Let’s look at an overview of how LHC systematically
infers the refinement type annotations needed to automatically
verify a given Haskell codebase, by traversing its call-graph,
prompting the LLM to generate new type predictions that
can be locally verified by LIQUIDHASKELL, and then back-
Jjumping to a dependency when the predictions fail.

A. Initialization

The input for LHC is an un-annotated program, ie. a
program where some functions are not yet annotated with
a refinement type. Based on the running example the initial
program is the code from where we removed the

specifications for the target functions divide, size and
average. Helper type aliases, such as NEList and NonZero,
are standard in LIQUIDHASKELL and very commonly used by
more complicated refinement types in order to simplify them.
Therefore, here, they are left untouched for more context when
prompting the LLM to get more accurate predictions.

LHC State During the entire type inference process, LHC
maintains a global state S that captures the current state
Sy of each function f which corresponds to a triple

(fuel, type, predicts). The fuel represents the maximum num-
ber of times that LHC will attempt to infer a type for f before
giving up and asking the programmer to provide a type. The
type represents the current type that the function f has been
assigned and against which the implementation of f has been
verified, or L if no such type has been assigned. The predicts
queue stores all the predicted types from a LLLM that are yet
to be tried. For our example, the initial global state S maps
each of divide, size and average to a triple where fuel is
10, type is L and predicts is empty.

Dependencies Next, we identify the potential dependencies
between the different functions, because the order that we
generate types and verify them matters for the correctness of
our approach. We build the program’s call-graph and get all
function dependencies, where deps; is the set of functions that
f calls. For our example, average calls divide and size,
each of which have no dependencies. Thus, the call-graph has
a depth of 2: the dependencies of divide and size are empty,
and of average is [divide, size].

Worklist Finally, LHC maintains a worklist wkl with all the
functions that are yet to be explored and verified by our
approach. We initialize the wkl with all the root functions,
i.e. functions that have no dependencies. These roots will be
the starting points at which LHC will infer types. For our
example we initialize wkl with [divide, size].

B. Building the LLM prompt

LHC starts by popping divide from the working list wkl.
Since we have no type predictions so far, we need to call
the LLM to generate some. For that we make the following

prompt (as described in § [[I-B):

[al -> Bool
False
True

measure notEmp ::
notEmp []
notEmp (_:_)

type NonZero = {v:Int | v /= 0}

type NEList a = {v:[al | notEmp v}

divide Int -> Int -> Int
divide _ @ = error "divide-by-zero”
divide x n = x “div™ n

The prompt contains the program up to the function that we
are generating refinement types for, where we add a “dummy”
refinement type that the LLM needs to fill in.

DEPENDENCIES Optimization As described in § [[I-B] this is a
few-shot promping technique where all dependencies that the
target function calls, are added in the prompt. While divide
and size don’t have any dependencies and their prompts
remain as described above, the prompt for average would
include both of these functions when the DEPENDENCIES
optimization is enabled, since average calls both of them.

C. Generating type predictions

Given the above prompt for divide, the LLM will generate
the following types where the 3rd one is the correct one. E]

divide NonZero -> Pos -> Pos -- rejected
divide NonZero =-> Nat -> Pos -- rejected
divide Int -> NonZero -> Int -- correct
divide {v:Int | v /= 0} -> Nat -> Nat
divide NonZero -> Int =-> {v:Int | v > 0}

D. Verifying types

The next step is to identify a type from the prediction
queue above, that is locally correct, i.e. against which LIQUID-
HASKELL will verify the given function (here, divide). We
iteratively check divide against each of the candidate types,
decreasing divide’s fuel each time, until we reach a locally
correct type that is verified by LIQUIDHASKELL. After this
step, the global state is updated so that for divide, we have
two remaining type predictions in the predicts, the fuel has
been decreased by 3 since we tested that many type predictions
and the current type is updated to Int -> NonZero -> Int.

function fuel type/predicts

divide 7 Int -> NonZero -> Int /
NonZero -> Nat -> Nat
NonZero -> Int -> Nat

size 10 - /-

average 10 - /-

QUALIFIERS Optimization As described in § the pro-
grammer can provide a set of qualifiers and a wildcard type
for the target function in order to enable LIQUIDHASKELL to
automatically infer the appropriate refinement type [2]. When
we enable the QUALIFIERS optimization, we add the wildcard
type for the target function at the end of the list of predicted
types, i.e. divide :: _ -> _ -> _ for our example, in order
for this type to be tested as a last resort if all other types fail
verification. Additionally, we extract automatically all possible
predicates from the predicted refinement types to add the cor-
responding qualifiers in the program. For example, for divide
we would extract Quali(v: a): v /= 0 and Qual2(v: a):
v > 0 from the last two predictions from §

E. Updating the working list

After we locally verify divide with one of the predicted
types, we look up all functions f that call divide, i.e. the
functions f such that deps; contains divide, and we add
them to the working list wkl if all their dependencies are
resolved, i.e. all functions in depsf have also been locally
verified against their current type. In this case average calls
divide but average also depends on size, which we have
yet to explore. Therefore, no new functions are added to the
working list wkl, which now, only contains size.

As in § and § we perform the same steps for

size to generate type predictions:

2We consider here the top 5 predictions but in reality can generate up to
50 types in total

size :: xs:[a] -> {v:Int | v > 0}

size :: xs:[a]l -> {v:Int | v >= 0}

size :: xs:[al -> {v:Int | v = size xs}

size :: xs:[al -> {v:Nat | notEmp xs => v>0}
size :: xs:[al] -> {v:Nat | v = len xs}

The first predicted type xs:[a]l -> {v:Int | v > 0} is
rejected by LIQUIDHASKELL as it is not locally correct
as size can return @ on an empty list. The second type
xs:[al -> {v:Int | v >= 03}, however, is locally correct —
the output of size is always non-negative. (Note, however,
it is not the type that is needed to verify the whole module,
in particular, that is needed to verify average which we still
have not explored. We show next how this issue is resolved
in our approach.) At this point, the global state is updated to

function fuel type/predicts

divide 7 Int -> NonZero -> Int /

NonZero -> Nat -> Nat

NonZero -> Int -> Nat

size 8 xs:[a] > v:Int | v>=0/
xs:[a] -> v:Int
xs:[a] -> v:Nat
xs:[a] -> v:Nat | v = len xs

- /_

which corresponds to the partially annotated program:

| v = size xs
| notEmp xs => v > 0@

average 10

divide Int -> Int -> Int

divide _ @ = error "divide-by-zero”
divide x n x “div™ n

-> Int
[
1

size [al
size []

size (_:xs)

+ size xs

divide total elems

average Xs

where
total = sum xs
elems = size xs

At this stage, since all of average’s dependencies are also
locally verified, we can add it to the working list wkl, so that
we can generate and try types for it as well.

F. Back-jumping to a dependency when predictions fail

Now, LHC repeats the same generate-and-check procedure
for average as it did for divide and size. However, this time,
the 5 LLM-predicted types are invalid, in that none of them
can be locally verified against the implementation of average.
This could mean one of two things:

(1) One of average’s function dependencies has a type that
is either too weak (i.e. does not specify what the client
requires in its post-condition), or too strong (i.e. has a
pre-condition that rejects the actual inputs provided by
the client).

(2) All type predictions for average were wrong.

In this case, condition (1) holds as size had indeed a

problematic type as we hinted earlier, which made average
impossible to verify. However, at this stage, LHC cannot

distinguish between (1) or (2) — i.e. we do not know which
condition actually holds and therefore we need to make a
decision based on the global state.

Since all of the predictions in the predicts queue for
average are exhausted, and we have available fuel for it, we
choose to back-jump to one of average’s function dependen-
cies, in particular, the one that has the highest remaining fuel,
i.e. the one that has been the least tested and thus has the
most candidate type predictions left. The dependencies that
we can potentially back-jump to are not just the immediate
parent functions in the call graph, but any possible ancestor,
which in this case includes divide and size.

In this case, we would indeed jump back to the problematic
size that has the highest fuel of 8. In this process we clear
all current types for functions that directly or transitively call
size and we end up with the following state where average’s
fuel has now fallen to 5, as we made 5 unsuccessful local
verification attempts for it and additionally average and size
have no assigned type.

function fuel type/predicts
divide 7 Int -> NonZero -> Int /
NonZero -> Nat -> Nat
NonZero -> Int -> Nat
size 8 -/
xs:[a] -> v:Int | v = size xs
xs:[a]l -> v:Nat | notEmp xs => v > @
xs:[a] -> v:Nat | v = len xs
average 5 - /-

We now repeat the process of trying type predictions from the
predicts for size until we get another locally correct type.
Of the three remaining predictions predicts the first of these
is rejected by LIQUIDHASKELL’s local verification, but the
second is accepted yielding the state:

function fuel type/predicts

divide 7 Int -> NonZero -> Int /
NonZero -> Nat -> Nat
NonZero -> Int -> Nat

size 6 xs:[a] -> v:Nat | notEmp xs => v > 0/
xs:[a] -> v:Nat | v = len xs

average 5 - /-

At this point, we again add average to the working list wkl,
and proceed to generate fresh candidates, and to locally verify
them. In this second time, the LLM generates the candidates:

average xs:[Int] -> {v:Int | size xs > 0}
average NEList Int -> Int

average NEList a -> Int

average xs:NEList Int -> Int

average {v:[Int] | notEmp v} -> Int

and LIQUIDHASKELL rejects the first type to locally verify the
second candidate NEList Int -> Int, thereby completing
the verification of the whole program.

Algorithm 1 LHC’s algorithm

Algorithm 2 GETPREDICTIONS’s algorithm

Input: Code Repository R
Output Verified Code Repository R’
: procedure VERIFYCODEREPO(R)

2. S < [f — {fuel = N, type = L, predicts = 0}]
3: deps < BUILDCALLGRAPH(R)

4 wkl<{f € R | deps; = 0}

5: while wkl # 0 do

6: f < PopTop(wkl)

7: ps < GETPREDICTIONS(S, f)

8: t < TRYPREDICTIONS(S, f, ps)

9: if t = L then

10: wkl <~ wkl U BACKIUMP(S, f)

11: else

12: Sy.type ¢t

13: wkl < wkl U SOLVEDCALLERS(S, f, deps)

14: return R(S)

G. Asking the user for a type

Suppose that instead, the LLM generated a slate of incorrect
types for average such that while trying out the generated
candidates, the fuel for average falls to 0. In this case, we
are potentially in condition (2), where all the LLM predicted
types are wrong (i.e. fail to locally verify). In this scenario,
LHC falls back to ask the user to provide a type for average.

If the verification fails even with the user-provided type,
then we back-jump again to one of the dependencies and repeat
the whole process until the function is verified with the user-
provided type. That is, we presume that the user-provided type
is correct, and we get the LLM to generate types for the other
functions, so that the whole program verifies. Of course, our
goal is to minimize the number of times we have to resort to
asking the user for a type signature. In our example, assuming
the user provides the correct type NEList Int -> Int the
verification of the whole program succeeds and we return the
fully annotated program (shown in to the user.

IV. ALGORITHM

We describe here the full algorithm of the LHC agent:

an interactive approach to verifying a code repository R,
comprising a set of functions, by automatically annotating all
the functions in R with refinement types presents
LHC’s high-level iterative approach.
Global State We define as S the global state, that maps each
function f to its current state Sy which is a triple of the form
(fuel, type, predicts). The first element, fuel, is an integer
representing the upper bound on the number of remaining
verification attempts for f. The second element, type, is the
current type that has been assigned to and locally verified for
f or L denoting that no type has been assigned. The third
element, predicts, is a priority queue of the predicted types for
f against which f has not yet been locally verified. The global
state S is initialized such that for each f in the repository,
Sy for each function f has a maximum the S;.fuel is some
maximum N, the Sy.type is L, and Sy.predicts is empty.

Call Graph BUILDCALLGRAPH generates the repository’s
call-graph returning returns all function dependencies deps;

Input: State S, Function f
Output: LLM type predictions ps
1: procedure GETPREDICTIONS(S, f)

if Sy.predicts = () then
R + PROGRAM(S)
prompt <— MAKEPROMPT(R, f)
S¢.predicts - LLMGuess(prompt)

ps < Sy.predicts

return ps

AN AN

which is the set of functions that f calls, which we also call
the immediate dependencies of f. For example, the program
in has the following dependencies depsy;yige = 0.
deps,.,. = 0, deps = [divide, size].

Worklist Next, we initialize a worklist wkl of functions that our
procedure is going to operate on. The worklist wkl is initialized
with all functions f € R, such that the function f has no
dependencies. These are the root functions of the repository
from which LHC starts generating and checking types.

size average

Main Loop The main body of the algorithm is on lines 5 to
13, which iterates till all functions are assigned types and wkl
is empty. In each iteration we pop the top function f from the
wkl stack. Then, we get new or existing type predictions ps
(§ [IV-A) for the function f. We try to locally verify f with
a type from the predictions ps (§ [[V-B) until we successfully
find a type against which f locally verlﬁes in the module with
the current state S, i.e. with the currently assigned types for
the transitive dependencies of f. If none of the predictions ps
verified the function f, thus t = 1, we back-jump to f’s least
tested dependency (§ to continue the iterations from
there. If instead, a type t that locally verified the function f is
found, then we update the state Sy.type with the new type t,
and add in wkl the functions in SOLVEDCALLERS(S, f, deps).
These are all the functions g € R such that (a) g calls f (i.e.
[€ deps,), and (b) all the dependencies of g have an assigned
type, (i.e. Vh € deps,. Sp.type # L). We then continue to the
next iteration, ensuring all functions in wkl have been locally
verified.

A. Generating type predictions

describes the procedure of generating new type
predictions for a function f given a global state S. Initially,

we check if we have any remaining type predictions in the
function’s queue S¢.predicts and if there are, no new types are
generated and the remaining queue is just returned. Otherwise,
we retrieve the relevant functions from the codebase, given
the current state S, replacing any types that have already been
locally verified (i.e. already assigned to the type field in S) and
make a prompt for function f as discussed in § This
prompt is sent to the LLM to generate new type predictions,
which are then added to f’s prediction queue Sy.predicts.

B. Trying type predictions

presents the process of trying new type predic-
tions ps for a function f given a global state S, to find the first

Algorithm 3 TRYPREDICTIONS’s algorithm

Input: State S, Function f, Type Predictions ps
Output: Successful type t or Failure L
1: procedure TRYPREDICTIONS(S, f, ps)

while ps # () and Sy.fuel > 0 do

(t, ps) < GETNEXT(ps)

S¢.fuel < Sy .fuel — 1

if LHVerify(S, f, t) then

return t

if Sy.fuel = 0 then

return UserHint(f)

return |

R R AR AR o

Algorithm 4 BACKJUMP’s algorithm

Input: State S, Function f

Output: Transitive dependency f’ with max remaining fuel
1: procedure BACKJUMP(S, f)
2: allDeps < (0, wkl < {f}

3: while wkl # 0 do

4: f' + PoPToP(wkl)

5: allDeps <+ allDeps U { f'}

6: wkl <~ wklU {g | g € deps;/, g ¢ allDeps}
7: f'« L, maxfuel + 0

8: for all g € allDeps — {f} do

9: if maxfuel < Sy .fuel then

10: f' < g, maxfuel + S, .fuel

11: S < RESETDEPENDENCIES(S, f")

12: return f’

prediction against which f locally verifies. In each iteration,
we first check the remaining fuel for the current function f.
If it has reached O then we ask the user to provide a type,
as we discussed in (§ [[II-G). If there is more fuel left, then
we decrement f’s fuel Sy.fuel by one. Then, we get the next
prediction t from the queue ps, and assign the type to f and
query LIQUIDHASKELL to try to locally verify the program
using the other types already assigned in S. If the verification
process is successful, we return the locally verified type t, and
otherwise we continue to the next iteration. If we have tried
all the predictions in the queue ps and none of them locally
verified the function f, then we return L signalling that none
of the candidate predictions were successful.

C. Back-jumping to the least tested dependency

outlines the BACKJUMP procedure, which

identifies and returns the transitive dependency of a function f
that has the maximum remaining fuel. The algorithm begins by
finding all transitive dependencies of f. This is achieved using
a worklist wkl, initialized with f. The algorithm iteratively
processes each function in the worklist by popping the top
function f’, adding it to the set of all dependencies allDeps,
and then including all its immediate dependencies depsy, that
are not already in allDeps back into the worklist wkl. This
loop continues until the worklist is empty, ensuring that all
transitive dependencies of f are collected.

Once all transitive dependencies are identified, the next step
is to determine the dependency with the maximum remaining
fuel. The algorithm initializes f’ to L and maxfuel to 0. It

then iterates over each function ¢ in allDeps excluding f. If
the remaining fuel S,.fuel for a function g is greater than
maxfuel, it updates f’ to g and maxfuel to S4.fuel. This ensures
that the function with the maximum remaining fuel among the
transitive dependencies of f is selected.

After identifying the function f’ with the maximum re-
maining fuel, the global state S is reset for this function and
its dependencies using the RESETDEPENDENCIES procedure,
thereby restarting the verification process for f’ from scratch.
For each function f that calls f’, RESETDEPENDENCIES will
set Sy.type to L and recursively will be applied to each
caller f to reset all functions that indirectly depend on f’.
This allows the type verification process to strategically back-
jump to f’ and restart with updated predictions and fuel. The
selected function f” is then finally returned.

V. EVALUATION

Next, we describe our implementation of LHC
(LHCopPILOT), and an evaluation that addresses three
research questions:

RQ1: How accurate are LLMs at generating single refine-

ment types? (§

RQ2: How precisely can LHC verify whole codebases?
(8
RQ3: How efficiently can LHC verify a given codebase?

Qo)

Large Language Models For our evaluation, we focus on
Code LLMs, i.e. LLMs that have been pre-trained specifically
for generating code. Such models don’t usually require special
system or instruction prompts to effectively generate the target
code, unlike CHATGPT or GPT-40. Our emphasis is also on
smaller and public LLMs for two important reasons. First,
they can be more robust in generating types for the hundreds
of times it is necessary to verify the given codebase (and
likely just as effective [24]). Second, and more importantly,
to guard against the possibility of data-leakage (memoriza-
tion), we wish to ensure that our benchmarks are not in the
training set for the models. Therefore, we use the following
LLMs; STARCODER-3B [18]], CODELLAMA-7B [25] and
STARCODER2-15B [19] with 3, 7 and 15 billion trainable
parameters respectively. All the models are open-source and
have been pre-trained on public datasets of code [18]], [19]. In
each case, the training data does not include the benchmarks
considered here. We run all experiments with STARCODER-
3B and CODELLAMA-7B on an NVIDIA GeForce RTX 3080
Ti with 12 GB VRAM and an NVIDIA A100 PCle with 80
GB VRAM for STARCODER2-15B.

Fine-tuning datasets We fine-tune our models using The Stack
v2 [[19]], a public dataset of open-souce code with permissive
licenses, that includes a vast number of programming lan-
guages. While the dataset consists of less than 0.2% of Haskell
programs, those programs amount to over 1 million. Of those
programs, only 3350 used LIQUIDHASKELL and refinement
types. From these programs, we extract a dataset of 8903
unique refinement types, and we use them to fine-tune the

LLMs. Specifically, we use QLORA [26], an efficient fine-
tuning approach that reduces memory usage enough to fine-
tune much larger LLMs on smaller GPUs while preserving full
16-bit fine-tuning task performance. QLORA backpropagates
gradients through a frozen, 4-bit quantized pretrained language
model into Low Rank Adapters (LORA [27]). We fine-tune
STARCODER-3B and CODELLAMA-7B for 20 epochs, while
the larger STARCODER2-15B for 10 epochs due to limited
time and resources and its excessive cost.

Benchmarks We explore different benchmarks in order to
answer our research questions. First, for single refinement type
prediction (RQ1), we evaluate the different LLMs on a new
benchmark based on the publicly available online LIQUID-
HASKELL tutorial [28]]. We extract 68 refinement types from
the LHTUTORIALE[, corresponding to exercises with hidden
solutions, into separate programs along with their relevant
context, such as our running example in For each
refinement type in this benchmark, we build a LLM prompt
that includes the implemented Haskell function with its type
signature and any surrounding context from the corresponding
exercise. For example, any relevant functions, comments or
possible input-output test cases that can help verify the correct-
ness of the target function. Additionally, functions called by
the target function that are already annotated with refinement
types were also provided when available.

For the rest of our evaluation (RQ2 and RQ3), we use
two public Haskell libraries, HSALSA20 and BYTESTRING.
HSALSA20 is a Haskell implementation of the Salsa20 cipher
with refinement types used to track the sizes of various ciphers
and keys. BYTESTRING is a Haskell library for representing
and efficiently operating on byte-strings via pointer operations
that is widely used across the Haskell ecosystem; we use
refinement types to statically track pointer arithmetic and
ensure low-level memory safety. HSALSA20 was annotated
with refinement types by its developer, including 96 such
annotated functions, while we annotated 45 BYTESTRING
functions with refinement types, in order to establish a ground
truth type for these benchmarks. (While there are several other
LIQUIDHASKELL repositories available online, they are in
the training data for the LLMs we consider, and hence, are
excluded from our evaluation.)

Emulating User Interaction We selected benchmarks that
are already fully annotated with refinement types for each
function, so that we could emulate the user interaction —
UserHint in § — in our experiments using these ground
truth types. That is, when all the predicted types fail for a
given target function, we use the ground truth type used to
annotate the function in the original benchmark as the type
that was provided by the user.

Baselines We acknowledge the importance of evaluating
against a baseline. However, as we discuss in [section VI|
symbolic program synthesis methods have historically faced
significant challenges in this domain. Recent advances in

30ur benchmarks are available along with code for LHC at https://github.
com/gsakkas/ref-type-pred.

machine learning and LLMs have enabled substantial improve-
ments, making this problem more tractable. A purely random
generation approach would be of limited utility given the
immense size of the search space; the refinement type space
is much larger and more complex than the space of standard
Haskell types. Consequently, there aren’t any meaningful
baselines in the existing literature for generating refinement
types and verifying entire codebases effectively until now.

A. RQI: Single type prediction accuracy

presents the cumulative results on the LHTUTO-
RIAL. We have manually categorized the 68 programs with
single target functions that need to be annotated with a
refinement type as Easy, Medium and Hard, based on the
complexity of the ground truth refinement type. An example
of an "Easy" refinement type is average :: NEList Int ->

Int from our running example in|Figure 1} while a "Hard" type
would be for the following function:

{-@ zipOrNull :: as:[a]

-> bs:{[b]l | (notEmp as && notEmp bs)
=> (len bs = len as)}
-> {v:[(a, b)] | if (notEmp as && notEmp bs)
then (len v = len as)
else (len v = 0) }
e-}
zipOrNull :: [al -> [b] -> [(a, b)]
zipOrNull [] _ = []
zipOrNull _ [] = []
zipOrNull xs ys = zipWith (,) xs ys

This refinement type verifies the correctness of zipOrNull,
which zips two lists only if neither of them is empty. Other
"Hard" examples in our benchmark can include more com-
plicated predicates or functions with more dependencies. As
with any code generation tasks, longer programs (or refinement
types) with more dependencies tend to be more complicated
and difficult to generate with LLMs.

For each target function we generate 50 refinement types
using the pre-trained LLMs and their fine-tuned versions.
We also show the number of functions that the LLMs suc-
cessfully verified at We observe that all models
showcase great performance for Easy types, with slight im-
provements when fine-tuned. However, there is great im-
provement for all LLMs in the Medium and Hard categories.
Specifically, STARCODER-3B shows a 12-program improve-
ment in the Medium category, while CODELLAMA-7B and
STARCODER2-15B show a 7- and 9-program improvement
respectively. We see a similar improvement for the Hard pro-
grams with an increase of 10, 12 and 11 programs respectively.

We also present the pass@Fk results in [29] intro-
duced the pass@k metric, and the Codex paper [30] popu-
larized it recently, specifically for evaluating code generation
LLMs. To calculate pass@Fk, k code samples are generated per
problem and the problem is considered solved if any sample is
correct, where pass@QF is the total fraction of problems solved.
However, as it has been observed in [30], computing pass@k
this way can have high variance. Instead, to evaluate pass@k,
n > k samples per task are generated (in this paper, we use

https://github.com/gsakkas/ref-type-pred
https://github.com/gsakkas/ref-type-pred

LLM || Total (68) | Easy (17) Medium (30) Hard (21) || passQ1 pass@5 pass@10 pass@Q20 pass@50
STARCODER-3B 37 14 16 7 12.91% 30.19% 38.30% 45.82% 54.41%
+ FINE-TUNED 62 17 28 17 65.88% 82.25% 85.22% 87.63% 91.18%
CODELLAMA-7B 41 15 20 6 11.68% 32.01% 42.01% 50.85% 60.29%
+ FINE-TUNED 60 15 27 18 47.97% 71.76% 78.67% 83.62% 88.24%
STARCODER-15B 42 16 19 7 18.79% 41.67% 50.21% 56.78% 61.76%
+ FINE-TUNED 62 16 28 18 57.65% 78.79% 84.26% 88.19% 91.18%

TABLE I: LHTUTORIAL results: 68 total single type benchmark, where we divided the user-intended type into 3 difficulty
categories. We also present the pass@QFk metrics for the full benchmark.

LHTUTORIAL

HSALSA20

BYTESTRING

Pretrained: l Hard D Medium D Easy

68 Finctuned: [l Hard [] Medium [J Easy

pretained: [User MLHC Finetned: Juser MlLic
Qualifiers: []User ll LHC Dependencies: [] User [l LHC

Pretrained: D User l LHC Finetuned: D User l LHC
Qualifiers: D User l LHC Dependencies: D User l LHC

60

50

40

Correct types (#)
Correct types (#)

30

20

STARCODER-3B CODELLAMA-7B STARCODER2-15B

Fig. 2: LLM accuracy in generating sin-

gle refinement types. benchmarks.

n = 50 and k& < 50), and the number of correct samples ¢ < n
is counted in order to calculate the unbiased estimator:

)
(&)
pass@50 here represents the total accuracy of each LLM for
the LHTUTORIAL, i.e. the percentage of the target functions
that the LLMs generated at least one correct refinement type.

By fine-tuning, we observe great improvement for all
pass@QFk metrics, reaching a pass@10 of 85% and a pass@Q50
of 91% in some cases. We also see that there isn’t a big
improvement for £ > 10 samples, especially for the fine-tuned

models, indicating that sampling even 10 refinement types per
function can yield very accurate results with a fine-tuned LLM.

E

problems

passQk =

Fine-tuned LLMs — even with a small number of train-
able parameters — learn to encode LIQUIDHASKELL
programs and can generate correct refinement types for
91% of the target functions, an improvement of up to
35% from the out-of-the-box models.

B. RQ2: Whole codebase precision

Next, we evaluate LHC on the two Haskell codebases
HSALSA20 and BYTESTRING. We evaluate here four dif-
ferent approaches with each LLM, presented in for
HSALSA20 and BYTESTRING. First, we use the original
pretrained LLMs as a backend for LHC in order to gener-
ate the various refinement types. Second, we fine-tune the
models as described before. Next, we enable the QUALIFIERS
verification optimization, an optimization which automatically

STARCODER-3B CODELLAMA-7B STARCODER2-15B

45
40

Correct types (#)

STARCODER-3B CODELLAMA-7B STARCODER2-15B

Fig. 3: LHC accuracy in generating and verifying refinement types for our Haskell

extracts all qualifiers from the LLM predicted types and
adds corresponding pragmas in the context of the program,
as described in § This optimization also adds the
relevant wildcard type as a last candidate type, that is tested
when all LLM-predicted types are exhausted, which tells
LIQUIDHASKELL to perform symbolic type inference using
the qualifiers. Finally, we enable the DEPENDENCIES prompt
optimization for additional context. This optimization uses
few-shot prompting to add the verified dependency functions
to the LLM prompts (§ [[II-B).

Automatically Verified This metric (first column of
indicates the number of functions that were automatically an-
notated and verified by LHC without human intervention. For
example, STARCODER-3B in its fine-tuned version correctly
inferred types for 76 functions in HSALSA20 and verified up
to 86 functions when the QUALIFIERS and DEPENDENCIES
optimizations are enabled. CODELLAMA-7B shows similar
improvement. However, the larger STARCODER?2-15B reaches
up to 91 functions that are correctly annotated by LHC.

Correct Unverified Type Predictions This metric shows the
number of times that the LLMs generated a correct refinement
type for a function, but LHC ran out of fuel (as discussed in
§ [V-B) and the function was not automatically (and locally)
verified by LHC — thus not included in the previous metric.
In a real-world setting, however, before asking the user to
manually write a refinement for these unsuccessful functions,
as a preliminary step we could provide the list of LLM-
predicted types and have the user select or approve one in
order to mitigate the manual effort. While a higher number for
this metric indicates less dependency on manual input, it still
represents wasted cycles for LHC, where it couldn’t arrive to

Automatically Correct LHC Total LHC Type Pred. Verification
Benchmark LLM H Verified ‘ Unverified H Iterations | Time (mins) | Time (mins) | Time (mins)
STARCODER-3B 77 +7 562 257 81 176
+ FINE-TUNED 76 +9 583 227 76 151
+ QUALIFIERS 82 +5 400 295 61 234
2 + DEPENDENCIES 86 +3 337 238 71 167
3 CODELLAMA-7B 64 +20 760 246 113 133
— + FINE-TUNED 78 +9 485 252 88 164
< + QUALIFIERS 83 +7 365 239 66 173
E + DEPENDENCIES 87 +4 334 201 64 137
STARCODER2-15B 76 +13 496 351 154 197
+ FINE-TUNED 81 +10 472 336 151 185
+ QUALIFIERS 88 +3 314 358 123 235
+ DEPENDENCIES 91 +2 258 254 101 153
STARCODER-3B 27 +1 95 73 24 49
+ FINE-TUNED 29 +2 104 52 23 29
&) + QUALIFIERS 33 +3 99 49 22 27
E + DEPENDENCIES 35 +1 93 42 25 17
& CODELLAMA-7B 26 +1 114 87 34 53
[75) + FINE-TUNED 27 +1 110 84 34 50
m + QUALIFIERS 30 +0 137 90 35 55
; + DEPENDENCIES 32 +1 114 80 32 48
/M STARCODER2-15B 30 +1 95 115 56 59
+ FINE-TUNED 30 +2 88 110 51 59
+ QUALIFIERS 31 +2 101 121 55 66
+ DEPENDENCIES 33 +2 100 111 53 58

TABLE II: HSALSA20 (96 functions) and BYTESTRING verification results (45 functions)

the correct combination of refinement types in order to locally
verify the faulty ones. We observe that all LLMs have rela-
tively high numbers when QUALIFIERS and DEPENDENCIES
were not used. When we use both optimizations, the numbers
go as low as only 2 for STARCODER2-15B, since LHC was
able to automatically verify the vast majority of the functions
when using this LLM, as we showed earlier.

Cumulative results also shows the cumulative results
of the previous two metrics, i.e. the total number of functions
LHC was able to generate a correct type for and were
either automatically or manually verified. We observe that
for HSALSA20 even without the last two optimizations, LHC
generates a significant fraction — nearly 80% — of correct
types, but the optimizations nevertheless improve the accuracy
of types automatically generated by LHC to more than 90%.
However, for the more complicated module BYTESTRING
though, we observe that without the QUALIFIERS and DE-
PENDENCIES optimizations, we can only generate 60% of the
types, and the addition of symbolic qualifier inference and
context provides a significant improvement, allowing LHC to
generate correct types for up to 77% of the functions.

LHC can automatically generate formally verified types
for up to 94% of a codebase’s functions.

C. RQ3: Efficiency

The last four columns of summarize how efficiently
LHC can verify codebases.

LHC Iterations This metric counts the number of iterations
that LHC needs to verify the full module. Fewer iterations
suggest a more efficient verification process. We observe
that, for HSALSA20 that has more functions to verify and
deeper dependencies, there is a significant improvement in

the time we spent verifying them when we use QUALIFIERS
and DEPENDENCIES. On the other hand, for BYTESTRING,
we observe a slight overhead, for unclear reasons, but perhaps
due increasing the size of the prompts and getting diminishing
results from the extra context in terms of efficiency.

Total LHC Time This metric provides an overview of the total
time in minutes that LHC spent in fully verifying the modules.
At a high-level, it is remarkable that LHC is able to annotate
and verify entire codebases in 1-4 hours, as typically this
work takes days or weeks for a human to do. (Of course, this
comes with the caveat that with these benchmarks we know
that suitable types exist, and we emulated human assistance
when the LLM got stuck). The results also indicate that the
verification time varies significantly depending on the LLM
used and the specific optimizations applied. For instance, we
see that LHC with STARCODER-3B required 257 minutes to
verify HSALSA20, which was reduced to 227 minutes with
fine-tuning, then adjusted to 295 minutes with QUALIFIERS,
but drops to 238 minutes with DEPENDENCIES. Similarly,
CODELLAMA-7B and STARCODER2-15B models show no-
table reductions in verification time when dependencies are
included. In the BYTESTRING results, the trend is consis-
tent for STARCODER-3B and CODELLAMA-7B. However,
STARCODER2-15B shows no significant improvement.

Type Prediction & Verification Time These metrics evalu-
ate the time spent by LHC on generating type predictions
using LLMs compared to the time required for codebase
verification with LIQUIDHASKELL. Our analysis reveals that
smaller LLMs are notably more efficient, generating refine-
ment types more quickly and consistently than their larger
counterparts. Specifically, type generation by LLMs accounted
for approximately 37% of the total processing time when
using STARCODER-3B, whereas it increased to 44% when
employing STARCODER2-15B. Verification times with L1Q-

UIDHASKELL remain very consistent across different models.
Finally, introducing the QUALIFIERS and DEPENDENCIES
optimizations led to slight reductions in verification time,
primarily due to the enhanced accuracy of our approach.

LHC can, with modest emulated human assistance, an-
notate and verify entire codebases in a few hours. The
fine-tuning, QUALIFIERS and DEPENDENCIES optimiza-
tions greatly enhance verification efficiency by reducing
verification time by an average /8% (and up to 42%)
across real-world codebases.

D. Threats to Validity

We note three threats to the validity of our results. First,
we have only considered three codebases: the LHTUTORIAL,
HSALSA20, and BYTESTRING. It is entirely possible that
larger or more complex codebases may require annotations
that cannot be generated so effectively by LLMs. Second, our
approach currently doesn’t support mutually recursive func-
tions. A potential solution to this is to break the cycles created
by these mutually recursive functions by either requiring the
programmer to specify a type for one of the functions of
the cycle, or speculatively breaking the cycle and letting our
backtracking mechanism synthesize the types. However, we
have not tried either of these approached as mutually recursive
functions don’t occur in our benchmarks. Third, we have
emulated human assistance in our evaluation, meaning on our
benchmarks we know a priori that suitable refinement type
annotations exist. In a more realistic scenario using LHC on
a new codebase, such types may not exist because bugs in the
code may require it to be modified, or because of limitations in
the verifier (LIQUIDHASKELL) itself. We defer the evaluation
of LHC on new codebases with actual users to future work
(but note that this is challenging as realistically, annotation
requires days or weeks of human effort).

VI. RELATED WORK

Finally, we discuss some related lines of work on using
machine learning and LLMs to automate program verification.

Generating Proof Annotations LHC is most closely related
to several other neurosymbolic approaches to generating the
annotations needed for formal verification. CODE2INV [31],
[32], and Pei et al. [33] present techniques to synthesize
loop invariants [34]] using neural networks and fine-tuned
LLMs, respectively. Kamath et al. [35] and [36] integrates
LLMs natively with automated reasoners — ESClJava [[16] and
ESBMC [37] — to additionally check whether the generated
invariants are actually inductive and, optionally, further to
repair the invariants by querying the LLMs and reducing the
proposed invariants into an inductive set using the HOUDINI
algorithm [38]]. Several studies have also explored the genera-
tion of annotations and formal postconditions using advanced
techniques. Similarly, NL2POSTCOND [39] investigates the
transformation of natural language intent into formal method
postconditions using LLMs, proposing metrics for assessing

the quality of these transformations. Finally, LAUREL [40]
automatically generates helper assertions for proofs written
in DAFNY by leveraging LLMs as well. All the above focus
on a single goal: generating loop invariants, or contracts
for single functions in isolation. In contrast, LHC is an
interprocedural method that aims to generate interdependent
refinement type annotations (which generalize invariants, pre-
and post-conditions) across the whole codebase.

Generating Code from Specifications A different line of
work looks at using LLMs to synthesizing code from formal
specifications in proof-oriented languages. Misu et al. [41]] and
CLOVER [42] use LLMs to synthesize verified DAFNY code
corresponding to natural language and formal specifications.
Similarly, Chakraborty et al. [24] investigate using LLMs to
synthesize F* programs (and proofs) from dependent type
specifications. In contrast to the above, LHC’s goal is not
to generate code, but only the refinement contract annotations
needed for modular verification of existing code(bases).

LLMs for Proof Generation Several groups have looked
into using machine learning techniques to automate proofs
written in tactic-based interactive theorem provers. Sanchez
et al. [43] uses machine learning techniques to generate
CoQ proofs. BALDUR [44] explores the use of LLMs to
generate entire Isabelle/HOL proofs for program verification,
a departure from traditional proof assistants that generate
one proof statement at a time. Complementing this, Yang et
al. [45] introduces LEANDOJO, a tool that combines LLMs
with retrieval-augmented mechanisms to enhance theorem
proving in the LEAN environment, demonstrating improved
proof generation capabilities. Wu et al. [40] evaluates the
performance of LLMs in autoformalization in Isabelle/HOL,
introducing a neural theorem prover trained on autoformalized
statements. Unlike the above, LHC is designed to work in
the setting of SMT-based “auto-active” verification, where the
only programmer input is the code and the type specification;
the rest is handled by the SMT solver.

In-Context Prompting In-context prompting techniques have
been explored to enhance the few-shot learning capabilities of
LLMs. Liu et al. [47] investigates the relationship between in-
context example selection and GPT-3’s few-shot performance,
introducing a retrieval model for better example selection. Su
et al. [48]] proposes a framework for selective annotation to im-
prove accuracy in in-context learning scenarios. Lu et al. [49]
demonstrates the importance of prompt order, using model-
generated sequences to find optimal prompts, while Sorensen
et al. [50] introduces an information-theoretic approach to
prompt engineering, maximizing mutual information to select
the best prompts without relying on model weights or ground
truth labels. LAUREL [40] introduced a lemma similarity
metric to import potentially related lemmas to the current
proof. These lines of work inspired our DEPENDENCIES
optimization, where we augment our prompts with additional
context. Unlike the above, LHC does not rely on similarity
heuristics but instead, it includes the function dependencies of
the target function we are trying to locally verify.

[1]
[2]

[3]

[4]

[6]

[7

—

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

H. Xi and F. Pfenning, “Eliminating array bound checking through
dependent types,” in PLDI, 1998.

P. M. Rondon, M. Kawaguci, and R. Jhala, “Liquid types,” in
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI "08. New York,
NY, USA: Association for Computing Machinery, 2008, p. 159-169.
[Online]. Available: https://doi.org/10.1145/1375581.1375602

N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-
Jones, “Refinement types for haskell,” in Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming,
ser. ICFP "14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 269-282. [Online]. Available: https://doi.org/10.
1145/2628136.2628161

N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss,
J. Zinzindohoue, and S. Béguelin, “Dependent types and multi-monadic
effects in f,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016.
ACM, 2016, pp. 256-270, 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016 ;
Conference date: 20-01-2016 Through 22-01-2016. [Online]. Available:
https://popl16.sigplan.org/home

P. Rondon, M. Kawaguchi, and R. Jhala, “Low-level liquid types,” in
POPL, 2010.

M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer,
and D. Garg, “Refinedc: automating the foundational verification of
C code with refined ownership types,” in PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-25, 2021, S. N.
Freund and E. Yahav, Eds. ACM, 2021, pp. 158-174. [Online].
Available: https://doi.org/10.1145/3453483.3454036

C. Pulte, D. C. Makwana, T. Sewell, K. Memarian, P. Sewell, and
N. Krishnaswami, “CN: verifying systems C code with separation-logic
refinement types,” Proc. ACM Program. Lang., vol. 7, no. POPL, pp.
1-32, 2023. [Online]. Available: https://doi.org/10.1145/3571194

M. Kazerounian, N. Vazou, A. Bourgerie, J. S. Foster, and E. Torlak,
“Refinement types for ruby,” CoRR, vol. abs/1711.09281, 2017.
[Online]. Available: http://arxiv.org/abs/1711.09281

N. Lehmann, A. T. Geller, N. Vazou, and R. Jhala, “Flux: Liquid types
for rust,” Proc. ACM Program. Lang., vol. 7, no. PLDI, jun 2023.
[Online]. Available: https://doi.org/10.1145/3591283

L. Giher, M. Sammler, R. Jung, R. Krebbers, and D. Dreyer,
“Refinedrust: A type system for high-assurance verification of rust
programs,” Proc. ACM Program. Lang., vol. 8, no. PLDI, pp.
1115-1139, 2024. [Online]. Available: https://doi.org/10.1145/3656422
P. Vekris, B. Cosman, and R. Jhala, “Refinement types for typescript,”
in PLDI, 2016.

J. Hamza, N. Voirol, and V. Kuncak, “System FR: formalized
foundations for the stainless verifier,” Proc. ACM Program. Lang.,
vol. 3, no. OOPSLA, pp. 166:1-166:30, 2019. [Online]. Available:
https://doi.org/10.1145/3360592

B. Tan, B. Mariano, S. K. Lahiri, I. Dillig, and Y. Feng, “Soltype:
refinement types for arithmetic overflow in solidity,” Proc. ACM
Program. Lang., vol. 6, no. POPL, jan 2022. [Online]. Available:
https://doi.org/10.1145/3498665

A. M. Kent, D. Kempe, and S. Tobin-Hochstadt, “Occurrence typing
modulo theories,” in Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
296-309. [Online]. Available: https://doi.org/10.1145/2908080.2908091
C. Gamboa, P. Canelas, C. S. Timperley, and A. Fonseca, “Usability-
oriented design of liquid types for java,” in 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023. 1EEE, 2023, pp. 1520-1532.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00132

C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata, “Extended static checking for Java,” in PLDI, 2002.

K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning, E. M. Clarke and A. Voronkov, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 348-370.

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii,
T. Y. Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier,
J. Monteiro, O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H.
Yee, L. K. Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang,
R. Murthy, J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca,
M. Dey, Z. Zhang, N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh,
S. Luccioni, P. Villegas, M. Kunakov, F. Zhdanov, M. Romero, T. Lee,
N. Timor, J. Ding, C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao,
M. Mishra, A. Gu, J. Robinson, C. J. Anderson, B. Dolan-Gavitt,
D. Contractor, S. Reddy, D. Fried, D. Bahdanau, Y. Jernite, C. M.
Ferrandis, S. Hughes, T. Wolf, A. Guha, L. von Werra, and H. de Vries,
“Starcoder: may the source be with you,” 2023. [Online]. Available:
https://arxiv.org/abs/2305.06161

A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi,
A. Tang, D. Pykhtar, J. Liu, Y. Wei, T. Liu, M. Tian, D. Kocetkov,
A. Zucker, Y. Belkada, Z. Wang, Q. Liu, D. Abulkhanov, I. Paul, Z. Li,
W.-D. Li, M. Risdal, J. Li, J. Zhu, T. Y. Zhuo, E. Zheltonozhskii,
N. O. O. Dade, W. Yu, L. KrauB, N. Jain, Y. Su, X. He, M. Dey,
E. Abati, Y. Chai, N. Muennighoff, X. Tang, M. Oblokulov, C. Akiki,
M. Marone, C. Mou, M. Mishra, A. Gu, B. Hui, T. Dao, A. Zebaze,
0. Dehaene, N. Patry, C. Xu, J. McAuley, H. Hu, T. Scholak, S. Paquet,
J. Robinson, C. J. Anderson, N. Chapados, M. Patwary, N. Tajbakhsh,
Y. Jernite, C. M. Ferrandis, L. Zhang, S. Hughes, T. Wolf, A. Guha,
L. von Werra, and H. de Vries, “Starcoder 2 and the stack v2: The next
generation,” 2024. [Online]. Available: https://arxiv.org/abs/2402.19173
M. Kawaguchi, P. Rondon, and R. Jhala, “Type-based data structure
verification,” in PLDI, 2009.

C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation,
Stanford University, 1980.

K. R. M. Leino, “Dafny: An Automatic Program Verifier for Functional
Correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR), 2010. [Online]. Available: https://doi.org/10.1007/
978-3-642-17511-4_20

S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in Computer Aided Verification, 9th International Conference, CAV 97,
Haifa, Israel, June 22-25, 1997, Proceedings, ser. Lecture Notes in
Computer Science, O. Grumberg, Ed., vol. 1254. Springer, 1997, pp.
72-83. [Online]. Available: https://doi.org/10.1007/3-540-63166-6_10
S. Chakraborty, G. Ebner, S. Bhat, S. Fakhoury, S. Fatima,
S. Lahiri, and N. Swamy, “Towards neural synthesis for smt-
assisted proof-oriented programming,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.01787

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan,
Y. Adi, J. Liu, R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov,
I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong,
A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier,
T. Scialom, and G. Synnaeve, “Code llama: Open foundation models
for code,” 2024. [Online]. Available: https://arxiv.org/abs/2308.12950
T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized 1lms,” 2023. [Online]. Available:
https://arxiv.org/abs/2305.14314

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
2021. [Online]. Available: https://arxiv.org/abs/2106.09685

N. V. Ranjit Jhala, Eric Seidel, “Programming with refinement
types,” 2014. [Online]. Available: https://ucsd-progsys.github.io/
liquidhaskell-tutorial/

S. Kulal, P. Pasupat, K. Chandra, M. Lee, O. Padon, A. Aiken,
and P. S. Liang, “Spoc: Search-based pseudocode to code,” in
Advances in Neural Information Processing Systems, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds.,, vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: |https://proceedings.neurips.cc/paper_files/paper/

2019/1ile/7298332{04ac004a0cad4cc69ect616b- Paper.pdf

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, 1. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder,

https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://popl16.sigplan.org/home
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3571194
http://arxiv.org/abs/1711.09281
https://doi.org/10.1145/3591283
https://doi.org/10.1145/3656422
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3498665
https://doi.org/10.1145/2908080.2908091
https://doi.org/10.1109/ICSE48619.2023.00132
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2402.19173
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/3-540-63166-6_10
https://arxiv.org/abs/2405.01787
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2106.09685
https://ucsd-progsys.github.io/liquidhaskell-tutorial/
https://ucsd-progsys.github.io/liquidhaskell-tutorial/
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba,
“Evaluating large language models trained on code,” 2021. [Online].
Available: https://arxiv.org/abs/2107.03374

X. Si, A. Naik, H. Dai, M. Naik, and L. Song, “Code2inv: A deep learn-
ing framework for program verification,” in Computer Aided Verification
- 32nd International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part II, ser. Lecture Notes in Computer
Science, S. K. Lahiri and C. Wang, Eds. Springer, 2020, vol. 12225,
pp. 151-164.

N. Kobayashi, T. Sekiyama, I. Sato, and H. Unno, “Toward neural-
network-guided program synthesis and verification,” 2021. [Online].
Auvailable: https://arxiv.org/abs/2103.094 14

K. Pei, D. Bieber, K. Shi, C. Sutton, and P. Yin, “Can large language
models reason about program invariants?” in Proceedings of the 40th In-
ternational Conference on Machine Learning, ser. ICML'23. JMLR.org,
2023.

R. W. Floyd, “Assigning meanings to programs,” Mathematical aspects
of computer science, vol. 19, no. 19-32, p. 1, 1967.

A. Kamath, A. Senthilnathan, S. Chakraborty, P. Deligiannis, S. K.
Lahiri, A. Lal, A. Rastogi, S. Roy, and R. Sharma, “Finding inductive
loop invariants using large language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2311.07948

H. Wu, C. Barrett, and N. Narodytska, “Lemur: Integrating large
language models in automated program verification,” 2024. [Online].
Available: https://openreview.net/forum?id=Q3 YaCghZNt

M. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer,
and D. A. Nicole, “Esbmc 5.0: an industrial-strength ¢ model checker,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE "18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 888-891. [Online].
Available: https://doi.org/10.1145/3238147.3240481

C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant
for esc/java,” in Proceedings of the International Symposium of Formal
Methods Europe on Formal Methods for Increasing Software Produc-
tivity, ser. FME °01. Berlin, Heidelberg: Springer-Verlag, 2001, p.
500-517.

M. Endres, S. Fakhoury, S. Chakraborty, and S. K. Lahiri, “Can
large language models transform natural language intent into formal
method postconditions?”” Proc. ACM Softw. Eng., vol. 1, no. FSE, 2024.
[Online]. Available: https://doi.org/10.1145/3660791

E. Mugnier, E. A. Gonzalez, R. Jhala, N. Polikarpova, and Y. Zhou,
“Laurel: Generating dafny assertions using large language models,”
2024. [Online]. Available: https://arxiv.org/abs/2405.16792

M. R. H. Misu, C. V. Lopes, I. Ma, and J. Noble, “Towards ai-assisted
synthesis of verified dafny methods,” Proceedings of the ACM on
Software Engineering, vol. 1, no. FSE, p. 812-835, Jul. 2024. [Online].
Available: http://dx.doi.org/10.1145/3643763

C. Sun, Y. Sheng, O. Padon, and C. Barrett, “Clover: Closed-
loop verifiable code generation,” 2024. [Online]. Available: https:
/larxiv.org/abs/2310.17807

A. Sanchez-Stern, Y. Alhessi, L. Saul, and S. Lerner, “Generating
correctness proofs with neural networks,” in Proceedings of the
4th ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages, ser. MAPL 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1-10. [Online].
Available: https://doi.org/10.1145/3394450.3397466

E. First, M. N. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof
generation and repair with large language models,” in Proceedings
of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2023. New York, NY, USA: Association for
Computing Machinery, 2023, p. 1229-1241. [Online]. Available:
https://doi.org/10.1145/3611643.3616243

K. Yang, A. M. Swope, A. Gu, R. Chalamala, P. Song, S. Yu,
S. Godil, R. Prenger, and A. Anandkumar, “Leandojo: Theorem proving
with retrieval-augmented language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2306.15626

Y. Wu, A. Q. Jiang, W. Li, M. N. Rabe, C. Staats, M. Jamnik, and
C. Szegedy, “Autoformalization with large language models,” 2022.
[Online]. Available: https://arxiv.org/abs/2205.12615

J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What
makes good in-context examples for gpt-3?” 2021. [Online]. Available:
https://arxiv.org/abs/2101.06804

(48]

[49]

[50]

H. Su, J. Kasai, C. H. Wu, W. Shi, T. Wang, J. Xin, R. Zhang,
M. Ostendorf, L. Zettlemoyer, N. A. Smith, and T. Yu, “Selective
annotation makes language models better few-shot learners,” 2022.
[Online]. Available: https://arxiv.org/abs/2209.01975

Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp,
“Fantastically ordered prompts and where to find them: Overcoming
few-shot prompt order sensitivity,” 2022. [Online]. Available: https:
//arxiv.org/abs/2104.08786

T. Sorensen, J. Robinson, C. Rytting, A. Shaw, K. Rogers, A. Delorey,
M. Khalil, N. Fulda, and D. Wingate, “An information-theoretic
approach to prompt engineering without ground truth labels,” in
Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2022. [Online]. Available: http:
//dx.doi.org/10.18653/v1/2022.acl-long.60

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2103.09414
https://arxiv.org/abs/2311.07948
https://openreview.net/forum?id=Q3YaCghZNt
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3660791
https://arxiv.org/abs/2405.16792
http://dx.doi.org/10.1145/3643763
https://arxiv.org/abs/2310.17807
https://arxiv.org/abs/2310.17807
https://doi.org/10.1145/3394450.3397466
https://doi.org/10.1145/3611643.3616243
https://arxiv.org/abs/2306.15626
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2209.01975
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
http://dx.doi.org/10.18653/v1/2022.acl-long.60
http://dx.doi.org/10.18653/v1/2022.acl-long.60

	Introduction
	Background
	Refinement Type Checking with LiquidHaskell
	Neural Type Inference with LLMs

	Overview
	Initialization
	Building the LLM prompt
	Generating type predictions
	Verifying types
	Updating the working list
	Back-jumping to a dependency when predictions fail
	Asking the user for a type

	Algorithm
	Generating type predictions
	Trying type predictions
	Back-jumping to the least tested dependency

	Evaluation
	RQ1: Single type prediction accuracy
	RQ2: Whole codebase precision
	RQ3: Efficiency
	Threats to Validity

	Related Work
	References

