
Lazy Abstraction

by

Ranjit Jhala

B.Tech. Hons. (Indian Institute of Technology, New Delhi) 1999

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Thomas A. Henzinger, Chair
Professor George C. Necula
Professor Leo Harrington

Fall 2004

The dissertation of Ranjit Jhala is approved:

Chair
Date

Date

Date

University of California, Berkeley

Fall 2004

Lazy Abstraction

Copyright 2004

by

Ranjit Jhala

Abstract

Lazy Abstraction

by

Ranjit Jhala

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Thomas A. Henzinger, Chair

The enormous cost and ubiquity of software errors necessitates the need for techniques

and tools that can precisely analyze large systems and prove that they meet given speci-

fications, or if they don’t, return counterexample behaviors showing how the system fails.

Recent advances in model checking, decision procedures, program analysis and type sys-

tems, and a shift of focus to partial specifications common to several systems (e.g. memory

safety and race freedom) have resulted in several practical verification methods. However,

these methods are either precise or they are scalable, depending on whether they track the

values of variables or only a fixed small set of dataflow facts (e.g. types), and are usually

insufficient for precisely verifying large programs.

We describe a new technique called Lazy Abstraction (LA) which achieves both preci-

sion and scalability by localizing the use of precise information. LA automatically builds,

explores and refines a single abstract model of the program in a way that different parts of

the model exhibit different degrees of precision, namely just enough to verify the desired

property. The algorithm automatically mines the information required by partitioning me-

chanical proofs of unsatisfiability of spurious counterexamples into Craig Interpolants. For

multithreaded systems, we give a new technique based on analyzing the behavior of a sin-

gle thread executing in a context which is an abstraction of the other (arbitrarily many)

threads. We define novel context models and show how to automatically infer them and

analyze the full system (thread + context) using LA.

LA is implemented in BLAST. We have run BLAST on Windows and Linux Device

Drivers to verify API conformance properties, and have used it to find (or guarantee the

1

absence of) data races in multithreaded Networked Embedded Systems (NESC) applica-

tions. BLAST is able to prove the absence of races in several cases where earlier methods,

which depend on lock-based synchronization, fail.

2

Acknowledgements

I will always be in the debt of my advisor, Tom Henzinger, for the support and guidance

I have received over the last five years. He initiated me into the world of research by

turning my attention towards various interesting problems including the one studied in this

dissertation. He then listened, with unwavering enthusiasm and patience, to all all my ill-

conceived and nebulous ideas and deftly steered me towards solutions. I can only hope that

in addition to his brilliance, some of his taste in research questions, his ability to crystallize

a tangled mess of ideas into a precise solution, and his unshakeable calm has rubbed off on

me over the last five years.

I am absurdly lucky to also have had the chance to work with and see first hand the

ingenuity of Ken McMillan. Ken’s insights into various problems and techniques made

every conversation with him an exhilarating learning experience, even though they left me

mentally exhausted from trying, in vain, to keep up! His work has been the inspiration for

many of the ideas in this dissertation, and will, I expect, continue to provide fuel for my

investigations over the next few years. When I grow up, I want to be like Tom and Ken.

This work crosses the traditional boundaries drawn between the areas of Model Check-

ing, and Deductive methods for program verification. Most of the credit for this goes to

George Necula from whom I have learnt what I know of Programming Languages and Au-

tomated Deduction. George, together with Alex Aiken and Ras Bodik, has been a font of

helpful advice about various aspects of life within and without academia. I am grateful to

Leo Harrington for teaching me about Mathematical Logic, and surrendering some of his

time to serve on my committee. While I took his class several years ago, I find results from

it popping up everywhere in my present work.

I could not have asked for a better partner in crime than Rupak Majumdar, who must

get a lion’s share of the credit for this work. On countless occasions we have worked

through solutions by bouncing ideas off each other and by solving questions that the other

raised but was unable to answer. Working in a team with him was, without question, the

best part about graduate school for me, which, if you went to grad school at Berkeley, is

saying a lot. I also thank Gregoire Sutre for stoically working with us even as we trampled

i

upon all his sensibilities when building Blast , leaving him to clean up the code after

us. Luca de Alfaro and Shaz Qadeer have also, by way of discussions on matters technical

and otherwise, greatly contributed to my maturing as a researcher. Tom Ball and Sriram

Rajamani’s pioneering work on SLAM led to this dissertation – I am very grateful to them

for generously sharing their ideas and insights with me.

None of this work would have been possible if I hadn’t been immersed in an community

peopled by an unparalleled group of students – both within Tom’s group as well as in

the larger OSQ group. I am especially grateful to Wes Weimer, not only for the delicious

flank steak and stuffed mushroom dinners, but also for his contructive feedback and advice

that greatly informs much of this work, and the patience with which he taught me about

the inner workings of various tools. Thanks are also due to Wes and Rupak for serving

as supremely informed oracles about various research areas about which I, to my undying

shame, found myself completely ignorant.

Living in Berkeley over the last five years has been one of the best things to have

happened to me; the combination of the glorious weather and cosy cafes (especially Brewed

Awakenings and Caffe Strada, where much of this work was done) has been a great source of

motivation. The greatest appeal of Berkeley lies in the friends I’ve made here, of which there

are far too many to name! I shall single out my two roommates Anupam Gupta and Kunal

Talwar for putting up most sportingly with the mess that surrounds me, Iordanis Kerenidis,

Kevin Chen, for participating in frivolous debates that (doubtless) kept my faculties sharp,

Hoeteck Wee, Andrej Bogdanov, Sam Riesenfeld and Ashwin Nayak for participating in

various culinary adventures and Chris Harrelson and Sara Rahimian for putting up (quite

literally) with my foibles and tutoring me about the finer points of Americana.

I have been lucky to have been blessed with parents who have suffered my every whim

without complaint, have been an endless source of love, support, and (mostly) good advice.

One day, I hope to be able to tell them exactly what it is that I do. Finally, to Kamalika.

I don’t know how to thank her enough. She makes it all seem worthwhile.

ii

For Mr. and Mrs. Zed...

iii

Life can only be understood going backwards,

but it must be lived going forwards.

iv

Contents

1 Introduction 1

2 Programs and Abstractions 15

2.1 Labeled Transition Systems . 15

2.1.1 Symbolic Region Structures . 16

2.1.2 Symbolic Abstraction Structures . 17

2.1.3 Predicate Abstraction . 18

2.2 Imperative Programs . 19

2.2.1 From Imperative Programs to LTSs 19

2.2.2 Predicate Abstraction for Imperative Programs 23

2.3 The Safety Verification Problem . 28

3 Lazy Abstraction 31

3.1 A Locking Example . 35

3.1.1 Verification . 36

3.2 Symbolic Reachability with Refinement . 42

3.2.1 Reachability with refinement . 43

3.2.2 Counterexample-driven refinement 46

3.3 A Refine operator for Imperative Programs 51

3.3.1 Overview . 52

3.3.2 Interpolants from Proofs . 54

3.3.3 The Algorithm Refine . 56

3.4 Theoretical Issues . 64

3.4.1 Termination . 64

v

3.4.2 Finite predicate abstraction is undecidable 65

3.5 Related work . 67

4 Applications 69

4.1 Device Driver Verification . 71

4.2 Temporal-safety proofs from Reachability Trees 75

4.2.1 Overview . 76

4.2.2 Verification Conditions . 78

4.2.3 VCs and Proofs via Lazy Abstraction 79

4.2.4 Experiments . 83

4.3 Tests from Counterexample Traces . 84

4.3.1 Overview . 86

4.3.2 Testing Framework . 90

4.3.3 Test Suite Generation . 92

4.3.4 Experiments . 97

5 Multithreaded Programs: Context Inference 100

5.1 An Example . 103

5.1.1 Threads . 104

5.1.2 Thread-Context Programs . 105

5.1.3 Verification by Abstraction . 106

5.1.4 The Algorithm CIRC . 108

5.2 Safety Verification of Multithreaded Programs 112

5.2.1 Multithreaded Labeled Transition Systems 113

5.2.2 Thread-Context Verification . 113

5.3 Abstractions . 115

5.3.1 Main Thread: Data Abstraction . 116

5.3.2 Environment Thread: Control Abstraction 117

5.3.3 Context: Counter Abstraction . 119

5.3.4 Abstracting Thread-Context Programs 119

5.4 Verification by Thread-Context Abstraction-Refinement 120

vi

5.4.1 Checking . 121

5.4.2 Inference . 125

5.5 Race Detection for Multithreaded Imperative Programs 128

5.5.1 MLTSs from Imperative Programs 128

5.5.2 Predicate Abstraction . 129

5.5.3 The Race Detection Problem . 129

5.5.4 Procedure Refine . 130

5.6 Experiences . 131

5.7 Completeness of Counter Abstractions . 134

5.8 Related Work . 139

vii

Chapter 1

Introduction

This dissertation proposes new methods for the Safety Verification problem, which is, given

a program, an initial state1 from which the program begins execution, and a set of error

states, to decide whether there is an execution of the program that leads it from the initial

state to an error state.

A brief history of Program Verification

The Safety Verification problem can be said to have been born at the same time as Com-

puter Science itself, in Turing’s work on the Halting problem[Tur36]. Therefore, that paper

was, in a way, the death of the problem, since it was shown that the task is theoretically un-

mechanizable. However, just as mathematicians did not stop proving theorems as a result of

Godel’s theorem, leading computer scientists in the last four decades, remained undaunted,

and recognizing verification to be a fundamental problem of their subject, made significant

advances by developing methods of showing that a program met its specifications.

Safety and Liveness Verification are the two main problems in the area of Program

Verification, which, as the name suggests, is concerned with guaranteeing that programs

had certain desirable properties (i.e., they met certain specifications). The former deals with

safety properties which stipulate that the program never performs an undesirable operation

(e.g. never divides by zero). The latter pertains to liveness properties which stipulate that

the program eventually performs desirable operations (e.g. eventually terminates).

The history of Program Verification dates back to the mid-sixties, when several of

1Configuration, i.e., values of all variables, initial program counter, stack

1

the founding fathers of Computer Science such as Robert Floyd, Tony Hoare and Edsger

Dijkstra realized that one of the most important challenges that Computing faced was the

need to tame complexity by way of devising ways of devising methodologies that enabled

engineers to build systems such that rigorous claims could be made about their properties.

One way to study the properties of a program is to treat it as a black-box and execute it.

While this approach has many merits, foremost amongst them being ease of implementation,

its chief drawback is that it only reveals how the program behaves for a particular input

value, and reveals little about the outcome of executing the program on a different input.

In order to guarantee that some property held regardless of the input, one would have to

execute the program over every possible input, which was clearly undesirable.

Hence, the most basic requirement was to be able to open up the black-box, and devise

ways of being able to characterize the behaviour of the program given its text. This led to

the development of higher-level programming languages with precise semantics, using which

programs could be treated as mathematical objects, thus allowing calculational methods to

be applied in order to reason about their properties. Once the foundations for precisely de-

scribing program semantics[Win93] were laid down, researchers began to follow two distinct

but overlapping paths.

The first was designing programming languages of increasing sophistication, which pro-

moted various styles of programming while subtly restricting the programmer’s ability to

shoot herself in the foot. The second was the development of techniques of reasoning about

the properties of programs, in a manner that was largely independent of the underlying

language. These techniques were both methodological and algorithmic, and in many cases

started off as the former, but ended in the latter category.

Over the years the techniques organized themselves into distinct sub-areas, namely Type

Systems, Flow-based Analysis, Theorem Proving and Model Checking, each with its own

community, philosophy, conferences and jargon. It is only over the last few years that lines

of communication have opened up between these areas. Researchers have realized that by

taking a few steps back, one can view enormous similarities between the sub-areas, and more

importantly, exploit their complementary strengths to devise more powerful and efficient

analyses.

2

The simple insight that unifies all these sub-areas is that to prove that the program never

enters an undesirable state, one has to effectively compute from the program’s description,

the set of possible states that the program may ever enter. As this set is not computable

in general, what needs to be done is to demonstrate (by construction) the existence of

a safe set that contains all the states the program may enter, but does not contain an

undesirable(unsafe) state. From this point on, the sub-areas diverge, owing mainly to

differences in the kinds of error states and the programs being analyzed. While each has a

rich literature of its own, it is important to remember that at their core sub-area approach

is attempting to effectively demonstrate the existence of this intermediate set. To do so,

each sub-area begins with a language for describing such sets, armed with which researchers

begin to describe ways to compute the set.

1. Type Systems.

A program manipulates data of different types,e.g. integers, strings, lists, functions etc..

Perhaps the most basic correctness requirement of a program is that it only performs op-

erations on data for which the operation is valid. For example, addition should only be

performed on two integers, only strings or lists can be concatenated, only an integer can

have value greater than zero and so on. In this setting, the undesirable states are those

where a type-error occurs. To ensure that such a state is not reached, instead of finding the

the exact set of states that the program may be in, the methods focus on the only relevant

aspect about the program’s states, namely the type of the value of the variable at each point

during the execution. The problem of then computing the safe set reduces to inferring the

type of the run-time values of the program’s variables. The description of the safe set is

a type assignment for the program’s variables, and this leads to an algorithm to infer the

types by setting up a system of constraints the solution of which is an appropriate type

assignment. A program is type safe iff the type assignment found for it corresponds to a

safe set, i.e., one not containing error states. The precision with which the safe set can be

described depends on how precisely one can state the type of a variable i.e., the precision

of the type system.

The groundbreaking work in this area was Milner’s invention of the programming lan-

guage ML [Mil78], and the subsequent type inference algorithm for ML[DM82]. Taking the

3

broader view that the type of a value is simply a predicate describing the value (and hence

corresponding to a subset of values), has led to more sophisticated type systems capable

of expressing richer properties about programs. Two examples are Linear Types[Wad90],

which allow one to stipulate that an object has a unique pointer to it, and the notion of

Typestates[SY86; FD04], using which one can express properties that an object may exist

in different configurations or typestates at different points in the program, and certain op-

erations change the configurations. Other interesting applications of this generalized view

of types are found in [Eva96] where the author uses types to capture whether a pointer

is NULL or not, and [OJ97] where the authors cleverly adapt the ML type inference algo-

rithm to “reconstruct” the most general types for variables in C programs, which among

other things, enables a user to know when the data corresponding to two variables with

the same C type (e.g. integers) can have different representations, (e.g. one integer variable

actually corresponds to a file handle while another corresponds to a socket). A generaliza-

tion of this approach is [FFA99] where a user can add arbitrary predicates or qualifiers on

top of the C type system, and specify properties of the qualifiers. This method has been

used to find subtle security flaws in Linux code, where a variable whose value may have

been controlled by a malicious adversary was used to perform a critical operation [USW01;

JW04].

2. Flow-based Analysis. A class of program properties that is especially useful when

compiling code pertains to what data values are available at any point in the program.

A expression may be computed at one point and its constituent variables not modified

for several instructions. If that expression is needed again, it need not be recomputed.

More broadly, one can view the expression as being a fact generated at the point of first

evaluation, killed at any point when a constituent variable is modified and otherwise flowing

untouched across the operation. Hence, one can view the program as a graph whose vertices

correspond to operations and edges exist between successive operations. For each operation

(vertex), we wish to compute the set of facts that hold when before the program executes

the operation. For each operation, the semantics of the program describe which facts are

killed by an operation and which are generated by the operation, and hence the facts that

hold after an operation are those that held before minus those that were killed plus those

4

that were generated. The facts that hold before an operation with multiple predecessor is

specified by the combination of the facts that held after the individual predecessors. In a

seminal paper [Kil73], Kildall showed how a variety of hitherto ad-hoc program analyses

could be phrased be describing 1) the set of dataflow facts, 2) how a fact was generated

or killed by an operation and 3) how to combine facts. Once the above were supplied,

Kildall showed how computing the set of facts that held at each point reduced to solving

a system of constraints called data flow equations. In another highly influential paper

[CC77], Cousot and Cousot showed how Kildall’s approach could be connected rigorously

with the semantics of the program by demonstrating that the dataflow facts at each point

corresponded to states the program could be in at that point, called the concretization

of the dataflow facts. Thus, instead of viewing operations as generating or killing facts,

one could view them as transferring the set of facts that held upon input to some set

of facts that held upon output. Two other significant papers in this area were [SP81;

RHS95] which showed how to perform the above analyses on programs with procedures via

a technique called summarization, namely the caching of the analysis done at one call site

when analyzing another.

Over the last few years researchers have begun applying these methods for verification.

The safe set computed by these analyses is expressed via the dataflow facts that hold at

each program point. Thus, to get an appropriate safe set, one must choose an appropriate

set of dataflow facts. A rich set of facts leads to a more precise safe set, but comes at a

higher computational cost than a smaller set of facts. Some examples are [DC94; ECCH00;

DLS02], where there is a finite set of facts that correspond directly to the property to be

verified, and [LAS00; BCC+02], where additional facts which are effectively rich predicates

describing program states are used in order to gain greater precision.

3. Theorem Proving. The most general techniques for Program Verification are those

classified as Theorem Proving or Deductive Methods. Here, the language used to describe

the program states are first-order formulas over program variables. Hence, one can prove

properties where the undesirable or error set of states can be described using such formulas

called the error condition. Floyd [Flo67] and Hoare[Hoa69] showed how to describe the

semantics of programs using such formulas. Given a set of states as a formula, they showed

5

how to compute formula corresponding to the set that results from an individual operation

using predicate transformers. Hence, to show that an arbitrary property, expressible in the

logic, held at a program point, one had to compute the safe set for that program point,

namely a formula that described an overapproximation of the states the program could be

in at that point. The difficulty arises when the program has loops as iterating the predicate

transformer around the loop may not terminate. Hence, one must manually supply a loop

invariant, a formula describing all the states the program could be in regardless of the

number of times it went around the loop. Once such invariants are supplied for every loop,

one can mechanically compute formulas describing (overapproximations of) the set of states

the program can ever be in at every point. Checking that the set was safe reduces to checking

that the formula implies the negation of the error condition. In his dissertation [Nel81],

Nelson describes efficient decision procedures that can mechanically prove the validity of

such implications for formulas that straddle several interesting theories.

Since then, owing to the high cost of the technique, it has been used in situations

where the system is small but the correctness criterion is very complex, e.g. the verification

of microprocessors (where the microprocessor is described as a LISP program)[KMM00]

and numerous other examples of hardware systems. There are systems like ESC [FLL+02]

which allow users to supply loop invariants and uses them to verify user defined assertions.

Other tools such as Prefix[BPS00] use theorem proving technology for bug-hunting. Necula

[Nec97a] showed how a formal proof of the above implication could be used as a certificate

that the program satisfied some property and hence was safe to execute.

4. Model Checking. Every program, at its lowest level, can be described as a set of states

and a binary transition relation. The set of states corresponds to the states the program can

be in, and two states are in the transition relation if the first can transition to the second in

one step during the execution of the program. Equivalently, one can view the program as

a directed graph with vertices representing states, and directed edges between states in the

transition relation. Checking if a error state cannot be reached can be done by enumerating

the states reachable from the initial state, which is feasible if the graph is finite. The papers

of Clarke and Emerson [CE81] and Queille and Sifakis[QS81], showed how to algorithmically

decide if programs represented via such finite graphs satisfied a richer class of temporal logic

6

specifications like those of Manna [Man69] and Pnueli [Pnu77], which stipulate restrictions

on the order in which various states are visited. These algorithms worked on this graph

representation and essentially enumerated the states of the program. Hence, they worked

only for relatively small finite state systems. In his dissertation, McMillan [McM93] showed

how to expand the scope of those algorithms by using propositional formulas to represent

sets of states, and using Binary Decision Diagrams [Bry86] to efficiently manipulate the

boolean formulas, in a technique called “Symbolic Model Checking”. Following that model

checking made significant inroads in hardware verification, as the complex concurrent nature

of circuits, the high cost of bugs and their boolean nature made them perfect for this

approach.

While software is not finite-state, several software model checkers[God97; HP00; MPC+02;

Hol00; CDH+00] have been used used as systematic testing engines that explore the states

of the system until they run out of memory (or time). Such have been used to find subtle

errors in several complex systems.

Recent years have seen a marked increase in activity in the area of Program Verification

owing to two reasons. First, increasing dependence on software systems has ensured that

their reliability is no longer a luxury but an urgent neccessity. Additionally, the increasing

size of programs renders traditional methods like code inspection and testing increasingly

insufficient, as both methods are swamped by the proliferation of “corner cases”. This,

coupled with the impossibility of specifying what it means for an large software system,

e.g. an operating system, is “correct”, motivates the neccessity for, to quote Tony Hoare,

“proving little theorems about big programs”, i.e., proving that large software systems meet

a set of partial specifications, the proof serving to give some confidence about the reliability

of the system. For example, instead of showing a device driver behaves correctly (indeed it

is not even clear how to precisely and completely specify what a device driver should do in a

manner significantly smaller than the driver itself), we wish to prove that it calls certain OS

functions in a certain order, or that it relinquishes shared resources after acquiring them.

Second, the toil of several decades, and ingenuity of researchers working in the area, on

7

the shoulders of which our work stands, has led to the discovery of powerful and efficient

techniques for program analysis and verification. These, combined with the raw computing

horsepower available today, have enabled researchers to devise analyses for large programs.

Counterexample-Guided Abstraction-Refinement

For verification, the analysis of the program must be precise and scalable. Precision is

required so that the analysis is neither fooled by spurious errors nor overlooks genuine

errors. Scalability is a must so that the method works for large software systems where the

need for analysis is most acute. The trouble is that these two features are often mutually

exclusive: flow based analyses [FTA02; DLS02] achieve scalability by fixing a small domain

of dataflow facts to be tracked, and compute flow functions over the abstract semantics of

the program on this fixed set. For complicated properties, the set of facts that are tracked is

too small, leading to a high rate of false positives,i.e., a large number of the bugs reported,

turn out to be behaviors that never arise when the program executes. Model checking based

approaches on the other hand while precise and path-sensitive, often end up tracking too

many facts, so state explosion comes in the way of scalability.

To avoid the pitfalls arising from from using a fixed set of facts, much recent interest

has focused on analyses that automatically tune the precision of the analysis using false

positives i.e., in a counterexample-guided manner using the following loop [AIKY95; BR01;

CGJ+00; Sai00]:

Step 1 (“abstraction”) A finite set of predicates is chosen, and an abstract model of the

given program is built automatically as a finite or push-down automaton whose states

represent truth assignments for the chosen predicates.

Step 2 (“verification”) The abstract model is checked automatically for the desired prop-

erty. If the abstract model is error-free, then so is the original program (return

“program correct”); otherwise, an abstract counterexample is produced automatically

which demonstrates how the model violates the property.

Step 3 (“counterexample-driven refinement”) It is checked automatically if the abstract

counterexample corresponds to a concrete counterexample in the original program. If

8

so, then a program error has been found (return “program incorrect”); otherwise,

the chosen set of predicates does not contain enough information for proving program

correctness and new predicates must be added. The selection of such predicates is

automated, or at least guided, by the failure to concretize the abstract counterexample

[CGJ+00].

Goto Step 1.

In our thesis we will study ways to scale this basic paradigm to obtain techniques for

solving the safety verification problem for large programs. We first propose a new method

for the analysis of sequential programs, and then show how to extend it to multithreaded

programs, which are the composition of several, possibly unboundedly many, sequential

programs running concurrently and communicating via shared variables.

Sequential Programs

The main problem with the approach outlined above is that both Step 1 and Step 2 are

computationally hard problems, and without additional optimizations, the method does not

scale because of the following reasons:

1. Different parts of a program’s state space are safe for different reasons. A monolithic

abstraction must contain all the predicates for the different parts of the state space

and thus is too detailed as the number of predicates grows with the size of the program

text and state explosion gets in the way of scalability.

2. The method constructs an abstraction of the entire state space which is very expensive

(more so when a monolithic set of predicates is used) since one must know for every

possible abstract state and operation all the successor abstract states. Typically the

set of reachable abstract states is very sparse and so building the transition relation

on-the-fly offers considerable savings.

3. A coarser abstraction may suffice to show a large part of the state space is safe, yet

upon finding a spurious counterexample, the method outlined above, fails to exploit

this fact and repeats the work of exploring that part of the state space.

9

Hence, for scalability our analysis must: (1) localize the abstraction – i.e., instead of a

single monolithic abstraction we must be able to partition the state space appropriately and

use different sets of predicates everywhere, (2) restrict itself to the small set of reachable

states and (3) avoid re-exploring safe parts of the state space. We first present an algorithm

called Lazy Abstraction which achieves the above goals.

Intuitively, lazy abstraction proceeds as follows. In Step 3, call the abstract state in

which the abstract counterexample fails to have a concrete counterpart, the pivot state. The

pivot state suggests which predicates should be used to refine the abstract model. However,

instead of building an entire new abstract model, we refine the current abstract model “from

the pivot state on.” Since the abstract model may contain loops, such refinement on demand

may, of course, refine parts of the abstract model that have already been constructed, but

it will do so only if necessary; that is, if the desired property can be verified without

revisiting some parts of the abstract model, then our algorithm succeeds in doing so. The

algorithm integrates all three steps by constructing and verifying and refining on-the-fly

an abstract model of the program, until either the desired property is established or a

concrete counterexample is found. Upon termination with the outcome “program correct,”

the proof is not an abstract model on a global set of predicates, but an abstract model

whose predicates change from state to state.

Lazy abstraction adds demand-driven path sensitivity to traditional dataflow analysis

of programs. It is sound , in that if the algorithm reports that a program satisfies a safety

property, then that is in fact the case. It goes beyond traditional dataflow analysis, as

the counterexample refinement phase rules out false positives. In case an error is found,

the model checker also provides a counterexample trace in the program showing how the

property is violated. A key problem that we solve is how to use false positives to refine the

abstraction – this requires that we learn not just a (small) set of predicates that rule out

the counterexample, but also where we must track those predicates.

We solve both problems using the following observation: the reason why a trace is

infeasible is succintly encoded in a proof that the trace is infeasible, and so the appropriate

abstraction can be culled from the proof. The difficulty in extracting the facts from the

proof is that the proof uses the entire history of the trace, while our analysis, and hence

10

our facts must be over “current” relationships between variables at the various time slices

in the trace. We introduce a method by which the proof can be sliced appropriately, to

yield the relevant facts at each point in the execution of the trace. First, given a spurious

trace, we build a trace formula (TF), which is the conjunction of several constraints, one per

instruction in the infeasible trace, such that the TF is is satisfiable iff the trace is feasible.

We then use Craig’s interpolation theorem [Cra57] to extract, for each point in the trace,

the relevant facts from the proof of unsatisfiability of the TF. Given two formulas ϕ−, ϕ+,

whose conjunction is unsatisfiable, the Craig interpolant of (ϕ−, ϕ+) is a formula ψ, such

that: (i) ϕ− ⇒ ψ, (ii) ψ∧ϕ+ is unsatisfiable, and (iii) ψ is made up of the symbols common

to ϕ− and ϕ+. If ϕ+ is the part of the TF that represents a prefix of an infeasible trace, and

ϕ− encodes the remainder of the trace, then the Craig interpolant ψ represents precisely

the facts, as relations between current values of the variables, which need to be known at

the cut-point of the trace in order to prove infeasibility. This work is inspired by [McM03]

where it is shown how interpolation can be used for image computation thus yielding a

totally SAT based approach for model checking systems with only boolean variables.

BLAST

We have implemented the above algorithms in a software verification tool called Blast , the

Berkeley Lazy Abstraction Software Verification Tool, available at http://www.eecs.berkeley.edu/~blast.

We report on several applications of Blast .

1. Verification. We have applied Blast to verify complex temporal safety properties of

device drivers. Device drivers are written at a fairly low level, but must meet high-level

specifications, such as locking disciplines, which are difficult to verify without path-sensitive

analysis. They are critical for the correct functioning of modern computer systems, but are

written by untrusted third-party vendors. Some studies show that device drivers typically

contain 7 times as many bugs as the rest of the OS code [CYC+01]. Using Blast, we

have run 10 examples of Linux and Windows device drivers, of up to 60K lines of C code.

We have been able to discover several errors, as well as show that some drivers satisfy

the given specifications. Owing to the fact that Blast only looks at the reachable states,

avoids repeating work and tracks just a few predicates at every point, we have been able

11

http://www.eecs.berkeley.edu/~blast

to precisely model check programs considerably larger than have been reported before,

including a driver which has 138,000 lines of C code, after pre-processing, i.e., including

kernel stubs, libraries etc.2 We found several behaviors that violate the specification. Even

though 382 predicates are required in all to show correctness, at each program point, the

number of interesting predicates is on average at most 8.

2. Certification. Traditionally, in the case that a program met the specification, the user

has had to take the tool’s word. The size and complexity of the verification engine, makes

the trusted computing base much larger than desirable, and hence, previous approaches fail

to meet the goal of enabling the construction of trusted software. Trust is especially im-

portant for low-level systems code, which usually cannot be shielded from causing mischief

by runtime protection mechanisms. Trust requires technologies for the certification of soft-

ware, which assure users that the programs meet their specifications, e.g. that the code

will not crash, or leak vital secrets. Like verification, certification is most effective when

performed for actual code, not for separately constructed abstract models. Proof-carrying

code(PCC) [Nec97b] has been proposed as a mechanism for witnessing the correct be-

haviour of untrusted code. Here, the code producer sends, along with the code, a proof that

the code adheres to some safety policy. The code consumer has merely to run a small and

trustable proof checker to check that the proof is consistent with the program. We show

how to extract from Blast ’s data structures, a machine checkable proof of correctness

in the case when the checker reports the system to be safe, and thus for the first time,

show how to automatically construct certificates of correctness for complex temporal safety

specifications.

3. Test Generation. The most popular approach to analyzing programs is to execute

them on a set of test inputs. The biggest problem with this approach is constructing

test vectors with desirable properties, i.e., that cause the program to execute in certain

ways. For example, the programmer may wish to devise a test that causes the function

f to be called with the first formal parameter being −1. We show how to use Blast to

generate a test vectors that cause the program to execute thus, by treating the negation

of the condition as a safety property, running Blast to find a counterexample behaviour

2Just the driver is typically a factor of 4–5 less than the preprocessed size.

12

of the program i.e., one where f is called with parameter −1, and then extracting a test

vector from the counterexample. Hence, via Blast ’s static analysis, we can automatically

construct designer test suites which can then be used for various dynamic analyses, instead

of the random tests that have traditionally been used.

Concurrent Programs

The traditional strength of model checking lies in the analysis of concurrent systems, such

as multithreaded programs, in which errors are notoriously difficult to reproduce. Con-

currency, however, is a major practical obstacle to model checking: the interleaving of

concurrent threads causes an exponential explosion of the control state, and if threads can

be dynamically created, the number of control states is unbounded.

One approach [Jon83] is to consider the system as comprising a “main” thread and a

context which is an abstraction of all the other “environment” threads in the system, and

then verifying (a) that this composed system is safe (“assume”), and, (b) that the context is

indeed a sound abstraction (“guarantee”). Once the appropriate context has been divined,

the above checks can be discharged by existing methods [God97; CDH+00; Hol00; HP00;

FQS02]. Additionally, the remaining data abstraction can be performed automatically

using counterexamples [BR00; HJMS02; COYC03]. Note that either check may fail due to

imprecision in the context, leaving us with no information about whether the system is safe

or not.

Consequently, the main issues are: (a) what is a model for the context that is simulta-

neously (i) abstract enough to permit efficient checking and (ii) precise enough to preclude

false positives as well as yield real error traces when the checks fail, and (b) how can we

infer such a context automatically. It turns out, that for many multithreaded programs of

interest, the context must allow the environment threads to have private state, which leaves

us with the problem of tracking the private state of possibly arbitrarily many environment

threads.

We give a novel way to construct stateful contexts, by representing individual envi-

ronment threads as abstract finite state machines, and tracking arbitrarily many threads

by counting the number of threads at each abstract state. We present a new way to in-

13

fer stateful contexts, by embedding the abstract reachability analysis used for sequential

programs, inside an outer loop that iteratively constructs an appropriate context, by using

the reachability information computed by the inner loop, using spurious counterexamples

as before, to refine the abstraction of the system.

To demonstrate the practicality of the method, we have implemented this algorithm,

called CIRC, in our C model checker Blast . We ran CIRC to look for race conditions

on several networked embedded systems applications written in nesC [GLvB+03], which

use non-trivial synchronization idioms, that cause previous, imprecise analyses to race false

alarms. We were able to find potential races in some cases and prove the absence of races

in others.

Organization

In Chapter 2 we formally define programs, abstractions and the safety verification problem.

In Chapter 3 we present the Lazy Abstraction algorithm for sequential programs, and in

Chapter 4 we discuss the implementation in Blast and several applications of Blast ,

namely driver verification, constructing proofs of correctness, and generating test inputs.

In Chapter 5 we present the generalization of Lazy Abstraction to the verification of mul-

tithreaded programs using Thread-Context Reasoning.

Bibliography

Chapter 2 and parts of chapter 3 is based on work that was first presented at the 29th

Annual ACM Symposium on the Principles of Programming Languages, 2002 [HJMS02].

The remainder of chapter 3 first appeared in a paper presented at the 31st Annual ACM

Symposium on the Principles of Programming Languages, 2004 [HJMM04], which also con-

tains a part of chapter 4. The work on certification, in chapter 3, appeared at the 15th

International Conference on Computer-Aided Verification, 2002 [HJM+02], and the work on

test generation was presented at the Xth ACM/IEEE International Conference on Software

Engineering, 2004 [BCH+04b]. The work in Chapter 5 was presented at the 2004 ACM Sym-

posium on Programming Language Design and Implementation, [HJM04] and builds upon

ideas presented at the 16th International Conference on Computer-Aided Verification, 2003

14

[HJMQ03] .

15

Chapter 2

Programs and Abstractions

We begin by formally defining our model of programs, and defining the structures that we

shall use to analyze the semantics of the programs.

We use italics for predicates, variables in our algorithms, typewriter font for code, and

serif for functions, maps, and algorithms that we define. We use maps quite heavily: for a

map F , we denote function application as F.x where x is the argument for F , we assume

“.” is left associative, i.e., F.x.y is (F.x).y, and we denote F [a 7→ b] for the new map which

equals F everywhere except at a where its value is b, i.e., F [a 7→ b] is an abbreviation for

the map (λx. if x = a then b else M.x).

2.1 Labeled Transition Systems

For a set X of variables, V.X denotes the set of valuations to X. We call the set V.X, the

set of X-states. A labeled transition system (LTS) S = (X,Σ,;, S0) consists of:

1. A set of variables X,

2. A set Σ of labels,

3. A labeled transition relation, ; ⊆ V.X×Σ×V.X; a transition (s, l, s′) ∈ ; is written

s
l

;s′, and,

4. A set of initial states S0 ⊆ V.X.

We call Σ∗, i.e., finite sequences of elements of Σ, the set of Σ-traces. For a trace σ, we

denote by σ.i the ith label of the trace. The relation ; is extended to traces as follows:

s
ε

;s′ iff s = s′, and s
lσ
;s′ iff there exists a state s′′ such that s

l
;s′′ and s′′

σ
;s′.

16

2.1.1 Symbolic Region Structures

Symbolic algorithms[McM93] on labeled transition systems manipulate regions, where each

region represents a set of states. Following the framework of symbolic transition systems

[FIS00; HM00], we define a (symbolic) region structure (R,⊥,t,u, post, [[·]]) for the labeled

transition system S to consist of a set R of regions, an element ⊥ of R, two total functions

t,u: R × R → R, one function post: R → Σ → R, and a total extension function [[·]]:

R→ 2V.X , such that for all regions r, r′ ∈ R and every label l ∈ Σ, we have:

[[⊥]] = ∅ (2.1)

[[r t r′]] = [[r]] ∪ [[r′]] (2.2)

[[r u r′]] = [[r]] ∩ [[r′]] (2.3)

[[post.r.l]] = {s′ | ∃ s ∈ [[r]]. s
l

;s′} (2.4)

The intention is that the region r represents the set [[r]] of states. A region structure carries

with it a natural preorder (i.e., a reflexive and transitive relation) v defined by r v r ′

if [[r]] ⊆ [[r′]], and a natural equivalence ≡ defined by r ≡ r ′ iff [[r]] = [[r′]]. The region

structure is computable if the functions t, u, post, and v are computable. The function

post is extended to traces as: post.r.ε = r and post.r.lσ = post.(post.r.l).σ.

Example 1 The lattices used in dataflow analysis [ASU86] defines a region structure with

R corresponding to the carrier set, ⊥ the bottom element of the lattice, t and u the join

and meet of the lattice respectively, and [[r]] the set of program states mapped to an element

in the lattice. Region structures for models of computation such as counter automata (resp.

FIFO automata, timed automata) can be designed based on Presburger formulas [BW94]

(resp. various classes of regular expressions [BG96; BH99; FIS00], clock zones [AD94]). 2

We do not require the preorder v to be a partial order (i.e., to be antisymmetric).

Indeed, in predicate abstraction, we will design region structures with many distinct equiv-

alent regions. Similarly, we do not require that the functions t and u be associative or

commutative. This more general setting allows us to accommodate abstraction within the

framework of region structures. However, for any finite set R′ of regions, the operations tR′

17

and uR′ under any order of evaluation produce regions that are equivalent with respect to

≡, and so there is no ambiguity.

2.1.2 Symbolic Abstraction Structures

A (symbolic) abstraction structure A = (R, p̂ost,�) for a labeled transition system S con-

sists of a computable region structure R = (R,⊥,t,u, post, [[·]]) for S along with a precision

preorder � ⊆ R ×R, and a computable total function p̂ost : R → Σ→ R such that for all

regions r ∈ R and every label l ∈ Σ, we have:

post.r.l v p̂ost.r.l

and p̂ost is monotonic with respect to the preorder (� ∩ v); that is, if r � r ′ and r v r′,

then

p̂ost.r.l � p̂ost.r′.l

p̂ost.r.l v p̂ost.r′.l

Hence, p̂ost is an overapproximation of the exact successor operator post on regions.

The novelty of this definition lies in the fact that regions carry precision information,

which indicates how close the overapproximate operator p̂ost is to the exact operator post.

In particular, for two ≡-equivalent regions r and r ′, if r � r′, then

post.r.l ≡ post.r′.l v p̂ost.r.l v p̂ost.r′.l

that is, p̂ost.r.l is a more precise overapproximation of the successor set than p̂ost.r′.l. The

precision preorder permits us to perform both the concrete operations of a labeled transition

system S and abstract interpretation of S within a single region structure. A region r is

no longer interpreted as simply a description of the concrete state set [[r]] of S, but as a

description of an abstract state set, for some abstract state space, whose concretization

is [[r]]. If r� r′, then the abstract state space in which r is interpreted is more precise than

the abstract state space of r′. The function p̂ost is extended to traces as: p̂ost.r.ε = r and

p̂ost.r.lσ) = p̂ost.(p̂ost.r.l).σ.

18

2.1.3 Predicate Abstraction

Consider a labeled transition system S = (X,Σ,;, S0). A predicate language L for S is

a set of predicates that are interpreted over the states in V.X (i.e., each predicate p ∈ L

denotes a set [[p]] ⊆ V.X of states), such that the following two conditions are satisfied.

1. The boolean closure of L is a decidable theory (i.e., satisfiability is decidable).

2. The boolean closure of L is effectively closed under the (exact) successor operation

in S; that is, for every formula ϕ in the boolean closure of L and every label l ∈ Σ, we

can compute the boolean combination ϕpost
l of predicates from L such that: [[ϕpost

l]] =

{s′ | ∃ s ∈ [[ϕ]]. s
l

;s′}

For a formula ϕ in the boolean closure of L, and a set of predicates Λ, we define the

predicate abstraction[GS97a] of ϕ w.r.t. Λ, written Abs.Λ.ϕ to be the strongest formula ψ

(w.r.t. the implication order), in the boolean closure of Λ such that ϕ ⇒ ψ. Algorithms

to compute Abs.Λ.ϕ are extensively studied in [GS97a] and then later in [DDP99; BPR01;

FQ02; RSY04].

We define the abstraction structure AL for an S and L as follows:

A. Symbolic Region Structure. Let RL = (R,⊥,t,u, post, [[·]]). The regions in R are

the pairs (ϕ,Π), where Π : Σ→ 2L is a map from labels in Σ to finite sets of predicates

called support predicates, and ϕ is a boolean formula over the predicates in the range

of Π. The region (false , λl.∅), represents ⊥. The operators t and u are defined:

(ϕ,Π) t (ϕ′,Π′) = (ϕ ∨ ϕ′,Π ∪Π′)

(ϕ,Π) u (ϕ′,Π′) = (ϕ ∧ ϕ′,Π ∪Π′)

where Π ∪Π′ is an abbreviation for λl.(Π.l ∪Π′.l).

Let post.(ϕ,Π).l = (ϕpost

l ,Π′), where Π′ is the least superset of Π that contains all

predicates in ϕpost
l . Finally, [[(ϕ,Π)]] = [[ϕ]] straightforwardly interprets the boolean

formula ϕ as a subset of V.X; that is, [[(ϕ,Π)]] consists of all states in V.X that satisfy

the constraint ϕ.

19

B. Parsimonious Predicate Abstraction Structure. We define the symbolic abstrac-

tion structure AL as (RL, p̂ost,�) where p̂ost and � are defined as follows. For a

region (ϕ,Π) and a label l ∈ Σ, we define:

p̂ost.(ϕ,Π).l = (Abs.(Π.l).ϕpost
l ,Π)

It is easy to check that p̂ost.(ϕ,Π).l is an overapproximation of post.(ϕ,Π).l. For two

regions (ϕ,Π) and (ϕ′,Π′), we say (ϕ,Π) � (ϕ′,Π′) iff for each l ∈ Σ, Π.l ⊇ Π′.l.

Since L is a predicate language for S, the preorder v on regions is computable. More-

over, from the definition of p̂ost it is clear that it can be computed effectively(as Abs can

be computed effectively), that it is an overapproximation of post, and that it is monotonic

with respect to the preorder (� ∩ v).

Intuitively, support predicates determine the current abstract state space, and the for-

mula over the support predicates represents an abstract set of states. The support predicates

indicate which predicates are important, i.e., which predicates can be tracked by the ab-

stract operation p̂ost. Unlike traditional predicate abstraction, in parsimonious predicate

abstraction we use different sets of predicates depending on the operation.

2.2 Imperative Programs

We first consider the analysis of imperative programs, written, e.g. in languages such as

C. Our syntactic representation of such programs are Control Flow Automata(CFA), which

are essentially control flow graphs[ASU86], with instructions labelling the edges instead of

the vertices. In this work, we focus on C programs, but note that our methods can work on

programs written in any language, so long as one can transform such programs into CFAs.

2.2.1 From Imperative Programs to LTSs

We first consider non-recursive imperative programs: we describe the syntax of such pro-

grams using CFAs, and then describe their semantics using LTSs.

Syntax

We consider a language with integer variables and pointers. Lvalues (memory locations) in

the language are declared variables or dereferences of pointer typed expressions. The set

20

Types τ ∈ Types ::= Int | ref τ
Lvalues l ∈ Lvals.X ::= x | ∗l

x ∈ X
Expressions e ∈ Exp.X ::= c | l | e1 ⊕ e2

c is an integer constant
⊕ is a binary operator

Predicates p ∈ Pred.X ::= e1 = e2 | e1 ≤ e2 | ¬p | p1 ∧ p2 | p1 ∨ p2

Operations op ∈ Op.X ::= l:=e | assume[p] | f() | return

Figure 2.1: Program Syntax

Types is a set of non-recursive types for variables. For a set X of statically typed variables:

Lvals.X is the set of Lvalues corresponding to memory locations accessible from X.

Exp.X is the set of arithmetic expressions over the variables X,

Pred.X is the set of boolean expressions (boolean closure of arithmetic and pointer com-

parisons) over X, and,

Op.X is the set of operations over X comprising:

• Assignments l := e, where l ∈ Lvals.X and e ∈ Exp.X,

• Assumes predicates assume[p], where p ∈ Pred.X, representing a condition that

must be true for the edge to be taken,

• Function calls f(), where f is a function, and,

• Return statements return.

The above are summarized in Figure 2.1. In the non-recursive setting, there is no need

for functions to have local variables, so we omit them from the exposition for clarity.

A control flow automaton C = (X,PC , pc0,−→) comprises: (1) a set of variables X, (2) a

set of control locations PC , with an initial control location pc 0 ∈ PC , (3) a finite set of

directed edges labeled with operations −→ ⊆ PC ×Op.X × PC . An edge (pc, op, pc ′) ∈ −→

is written pc
op
−→pc ′.

A Program P = (F, fmain, typ) comprises (1) a set of functions F , where each function

f ∈ F is denoted by its CFA Cf , (2) a special initial function fmain, and, (3) a map typ

from P.X to Types where P.X are the (data) variables of P , i.e., the union the variables of

21

Example() {
1: if (*){
7: do {

got lock = 0;

8: if (*){
9: lock();

got lock++;

}
10: if (got lock){
11: unlock();

}
12: } while (*)

}
2: do {

lock();

old = new;

3: if (*){
4: unlock();

new++;

}
5: } while (new != old);

6: unlock();

return;

}

lock(){
13:if (LOCK == 0){
14: LOCK = 1;

} else {
15: err()

}
}

unlock(){
16:if (LOCK == 1){
17: LOCK = 0;

} else {
18: err()

}
}

err(){
ERR:

}

Figure 2.2: C program

the CFAs of the functions of prog, i.e., P.X =
⋃
f∈F Cf .X. The locations of a program P

written P .PC are the set
⋃
f∈P .F Cf .PC . The commands of a program P written P .Cmd

are the pairs (op, pc) such that P has a function f such that Cf has an edge ·
op
−→pc.

We extend the map typ to lvalues by letting typ.∗l1 equal τ if typ.l1 is ref τ , otherwise

l is not well typed w.r.t. P . We extend the map typ to expressions by letting typ.e equal

(1) Int if e is either an integer constant c or of the form e1 ⊕ e2 and typ.e1, and typ.e2 are

Int , (2) typ.l if e is the lvalue l, and, (3) otherwise e is not well typed w.r.t. P . A formula

p in Pred.X is well typed w.r.t. P if for each occurrence of e1 = e2 inside the formula, we

have typ.e1 = typ.e2, for each occurrence of e1 ≤ e2 we have typ.e1 = typ.e2 = Int .

Example 2 [Programs and CFAs] Consider the program given in Figure 2.2. The initial

function is example(). The functions lock() and unlock() control a variable called LOCK,

which is 1 when the lock is held by the function Example, and 0 otherwise. The CFA for

the function Example is shown in Figure 2.3. The labels in the C program correspond to

the automaton vertices with the same label. The edges labeled with boxes are basic blocks.

With slight abuse of notation, we combine the operations lock() and the assignment old

22

ret

3

[T]

[T]

4

5

unlock()

unlock()

new++
unlock()

lock()
old=new

[T]

[new = old]

ERR

lock()

err()

unlock()

err()

[LOCK!=0] [LOCK=0]

LOCK := 0

16

17 18

ret

1

2

[T]

[T]

[T]

 6

7

8

9

11

12

10
[new != old]

[T][T]

[get_lock=0]

lock()
got_lock++

[got_lock != 0]

got_lock=0

[LOCK=0] [LOCK!=0]

err()LOCK := 1

13

14 15

ret

Example()

Figure 2.3: Control flow automaton

:= new in a single command (edge 2−→3), indicating two successive edges: the first from

2 to a vertex 2′ (not shown for clarity), corresponding to the call, and the second from 2′

to 3, corresponding to the assignment. The edges labeled with [·] correspond to assume

predicates. The if (*) represents branches that are taken due to predicates that are not

modeled; we assume that either direction can be taken, hence both outgoing edges are

labeled with [T], which stands for the assume predicate true. 2

Semantics

We define an LTS corresponding to a program P , written SP as follows. For clarity, we

shall first consider the class (PI) of programs that are pointer-free, i.e., where all variables

are of type Int , and then generalize to programs with pointers (PII).

Variables. The set of variables of SP are: (1) a “program counter” whose value is an

element of P .PC , (2) a “store” variable whose value is a map from P .X to integers,

and, (3) a “call stack” whose value is an element of P .PC ∗. We write a state of SP as

a triple (pc,m, cs), where: (1) pc is the value of the program counter, (2) m is a map

23

from P .X to integers, i.e., a valuation for the data variables of P , and, (3) cs is the

value of the call stack. The (integer) value of a program variable x ∈ P .X in the store

m is written m.x. This is extended naturally to (integer) expressions e ∈ Exp.(P .X),

and (boolean) predicates p ∈ Pred.(P .X).

Labels. The set of labels of SP are the set of all commands of P .

Transitions. We say that (pc,m, cs)
l

;(pc ′,m′, cs ′) where:

(pc ′,m′, cs ′) =





(Cf .pc0,m, pc l · cs) if l is a function call (f() :pc l),

(pc ′′,m, cs ′′) if l is (return : ·) and cs = pc ′′ · cs ′′,

(pcl,m, cs) if l is (assume[p] :pc l) and m.p is true,

(pcl,m[x 7→ m.e], cs) if l is (x:=e :pc l).

Initial State. The initial states are S0 = {s0} where

s0 = ((P .fmain).pc0,m0, ε)

, where m0 is a map that sets all integer variables to 0.

LTSs for PII. To generalize the above to programs with pointer variables, we generalize the

definition of stores as follows. Define Addr to be an infinite set of addresses, that contains as

a subset all the variables, i.e., for every variable x there is an address in Addr , that by abuse

of notation, we call x. A store is generalized to be a map from Addr to Addr ∪ Int . The

value of an lvalue l in a store m, written m.l, is m.(m.l ′) if l is the dereference ∗l′, and m.x

if l is the variable x. As before we can naturally extend stores to expressions in Exp.(P .X)

and predicates in Pred.(P .X). The definition of SP is the same as for PI programs with the

new definition of stores, only for assignments ∗l := e, the store m′ equals m[m.l 7→ m.e].

2.2.2 Predicate Abstraction for Imperative Programs

We use the predicate-abstraction framework described in Section 2.1.3. As before, we first

discuss PI programs, and then generalize to PII programs.

Predicate Language

Let FOL be the set of formulas in the first-order logic of linear equality and uninterpreted

functions, shown in Figure 2.4. An atomic predicate is an inequality of the form 0 ≤ x, where

24

Terms t ∈ TERMS ::= cx | t1 + t2 | f
k(t1, . . . , tk)

c is an integer constant,
x is a variable,
fk is a k−ary uninterpreted function

Atomic Predicate p ∈ ATOMS ::= 0 ≤ t
Predicate Language ϕ ∈ FOL ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

Figure 2.4: Predicate Language FOL

x is a term. We can model propositional variables using integers and comparison. A literal

is either an atomic predicate or its negation. A clause is a disjunction of literals. A cube is

a conjunction of literals. For three terms t, t1, t2 and a boolean formula ϕ in FOL, we write

t = ite.ϕ.t1.t2 as an abbreviation for (ϕ∧t = t1)∨(¬ϕ∧t = t2). For three formulas ϕ,ϕ1, ϕ2

in FOL we write ite.ϕ.ϕ1.ϕ2 as an abbreviation for (ϕ∧ϕ1)∨ (¬ϕ∧ϕ2). For a store m that

is a map from X to Int , and predicate ϕ ∈ FOL, we say m |= ϕ if ϕ ∧
(∧

x∈X x = m.x
)

is

satisfiable in FOL. Our predicate language L is FOL. Notice that FOL (even when enriched

with the theory of arrays) is decidable, and efficient decision procedures are available [Nel81;

BHJ+].

Symbolic Abstraction Structure

We now define the Symbolic Abstraction Structure corresponding to predicate abstraction

for imperative programs. First, we define the Symbolic Region Structure, and then the

corresponding Abstraction Structure.

A. Symbolic Region Structure.

Data Regions. A data region is a pair (ϕ,Π), where Π is a map from the commands of

P , to finite subsets of L and ϕ is a boolean formula over predicates in the range of Π. We

write D for the set of all data regions. Data regions model the data components (i.e., the

valuations of the variables) of states; the other components i.e., the program counter and

the call stack are modeled explicitly.

Atomic Regions. An atomic region is a triple consisting of a control location, a data

region, and a call stack. We write A = PC ×D × PC ∗ for the set of atomic regions. For

every atomic region (pc, (ϕ,Π), cs) ∈ A, we define

[[(pc, (ϕ,Π), cs)]] = {(pc,m, cs) | m |= ϕ}

25

For two atomic regions a = (pc, (ϕ,Π), cs) and a′ = (pc ′, (ϕ′,Π′), cs ′), we define:

1. a t a′ as (pc, (ϕ ∨ ϕ′,Π ∪Π′), cs) if pc = pc ′ and cs = cs ′ and ⊥ otherwise,

2. a u a′ as (pc, (ϕ ∧ ϕ′,Π ∪Π′), cs) if pc = pc ′ and cs = cs ′ and ⊥ otherwise, and,

3. a v a′ if pc = pc′ and cs = cs ′ and ϕ⇒ ϕ′ (i.e., ϕ ∧ ¬ϕ′ is not satisfiable).

Regions. A region r is a finite set of atomic regions. We write R ⊂ 2A for the set of

regions. For every region r, we define [[r]] = ∪a∈r[[a]]. For two regions r, r′, we define:

1. r t r′ as the set r ∪ r′ ∪ {a t a′ | (a, a′) ∈ r × r′},

2. r u r′ as the set {a u a′ | (a, a′) ∈ r × r′}, and,

3. r v r′ if for every a ∈ r there exist some a′1, . . . , a
′
k ∈ r

′ such that a v a′1 t . . . t a
′
k.

Strongest Postconditions. For a formula ϕ and a command l, the formula SP.ϕ.l denotes

the strongest postcondition [Dij76; Gri81] of ϕ w.r.t l; that is, SP.ϕ.l is the strongest formula

whose truth holds after l terminates, given that ϕ was true before l was executed.

SP.ϕ.l =





ϕ if l is a function call or a return,

ϕ ∧ p if l is (assume[p] : ·),

∃x′.ϕ[x′/x] ∧ x = e[x′/x] if l is the assignment (x:=e : ·).

We generalize the strongest postcondition to data regions, by defining the operator SPD :

D → Σ→ D as:

SPD.(ϕ,Π).l = (SP.ϕ.l,Π′)

where Π′.l is the least superset of Π.l that contains all predicates in SP.ϕ.l.

Post. We define the operator post : A → Σ → A as post.(pc, d, cs).l = (pc ′, d′, cs ′) where

d′ = SPD.d.l and:

(pc ′, cs ′) =





(Cf .pc0, pcl · cs) if l is a function call (f() :pc l),

(pc ′′, cs ′′) if l is (return : ·) and cs = pc ′′ · cs ′′,

(pcl, cs) otherwise l is (· :pc l).

We generalize post to regions by defining: post.r.l = {post.a.l | a ∈ r}.

Example 3 [Regions,Post] Consider the program from Example 2. Let Π be any set of

support predicates, let ϕ = LOCK = 0∧new = old , let the region r = (2, (ϕ,Π), ε), and let

26

l1 = (unlock() : 2′), l2 = (assume[LOCK ! = 0] : 17), l3 = (LOCK := 0 : ret), l4 = (return : ·),

and, l5 = (new := new+ 1 :3).

We have SP.ϕ.l2 = ϕ ∧ LOCK = 0, which is just ϕ.

Next, SP.ϕ.l3 = ∃LOCK ′.LOCK ′ 6= 0 ∧ new = old ∧ LOCK = 0

which we shall call ϕ′.

Finally, as l1 is a call and l4 its matching return,

SP.ϕ.(l1; l2; l3; l4; l5) = SP.ϕ.(l2; l3; l5)

= SP.(SP.ϕ.(l2; l3)).l5 = SP.ϕ′.l5

= ∃new ′,LOCK ′.

LOCK ′ 6= 0 ∧ new = old ∧ LOCK = 0 ∧ new = new ′ + 1

which we shall call ϕ′′.

Hence, post.r.(l1l2l3l4) = (3, (ϕ′′,Π′), ε) where Π′ has the updated support predicates.

2

B. Predicate Abstraction Structure. We now define the precision preorder � and the

abstract post operator p̂ost.

Precision Preorder. For a region r ∈ R we define r.Π =
⋃

(·,(·,Π),·)∈r Π. We say that

r1 � r2 if for each command l of P , r1.Π.l ⊇ r2.Π.l.

Abstract Postcondition. For a predicate map Π a formula ϕ and a command l, SPΠ.ϕ.l

is the Π-abstract postcondition of ϕ w.r.t. l, defined as:

SPΠ.ϕ.l = Abs.(Π.l).(SP.ϕ.l)

We generalize this to data regions by defining the operator ŜPD : D → Σ→ D as:

ŜPD.(ϕ,Π).l = (SPΠ.ϕ.l,Π)

Note that we do not add all the predicates in SPΠ.ϕ.l. We define p̂ost exactly as we define

post, using ŜPD in the place of SPD. We define the operator p̂ost operator exactly the

same way as we defined post, but using an abstract postcondition operator instead of the

strongest postcondition.

27

Example 4 [Abstract Post] Consider the program, ϕ, σ, r from Example 3. Let the set

of support predicates Π of r be LOCK = 0, LOCK = 1, and new = old . We have:

We have SPΠ.ϕ.l2 = Abs.(Π.l2).(SP.ϕ.l2) = Abs.(Π.l2).ϕ = ϕ

Next, notice SPΠ.ϕ.l3 = Abs.(Π.l3).(SP.ϕ.l3)

= Abs.(Π.l3).(∃LOCK ′.lockb′ 6= 0 ∧ new = old ∧ LOCK = 0)

= new = old ∧ LOCK = 0, which we call ϕ′.

Again, SPΠ.ϕ
′.l5 = Abs.(Π.l5).(SP.ϕ′.l5)

= Abs.(Π.l5).(∃new ′.new ′ = old ∧ LOCK = 0 ∧ new = new ′ + 1)

= ¬(new = old) ∧ (LOCK = 0), which we call ϕ′′.

As before SPΠ.ϕ.(l1; l2; l3; l4; l5) = SPΠ.ϕ.(l2; l3; l5) = ϕ′′

Hence, p̂ost.r. = (3, (ϕ′′,Π), ε).

2

Programs with Pointers

To generalize the above to PII programs it suffices to generalize the predicate language FOL

to model stores and to generalize the strongest postcondition.

Stores. The classical way to model the store is to use memory expressions and the theory

of arrays [MP67; Nel81; Nec97b; FLL+02], which comes equipped with memory variables

and two special functions, sel and upd. The function sel takes a memory M and an address

a and returns the contents of the address a; the function upd takes a memory M , an address

a, and a value v, and returns a new memory that agrees with M except that the address a

now has value v. The relationship between sel and upd is succinctly stated by McCarthy’s

axiom [MP67]:

sel(upd(M,a, v), b) = ite.(a = b).v.sel(M, b)

In the sequel, we assume that FOL contains this axiom in addition to the axioms for equality,

uninterpreted functions and linear arithmetic.

The formulas of FOL that we use to denote regions, contain the special memory variable

M . For a store m, i.e., a map from Addr to Addr ∪ Int , and predicate ϕ ∈ FOL, we say

28

m |= ϕ if ϕ ∧
(∧

l∈Addr sel(M, l) = m.l
)

is satisfiable in FOL, where each l is a variable

denoting an address in Addr .

Strongest Postconditions. For a memory variable M and a variable x ∈ X, define

M.x = sel(M,x), and for an lvalue ∗l, define M.(∗l) = sel(M,M.l). With some slight abuse

of notation, we use M in this way to denote a map from lvalues to memory expressions

over M . We can extend this map to expressions in Exp.X and predicates in Pred.X. In our

predicate language every lvalue l is an abbreviation for the memory expression M.l. The

new definition of the strongest postcondition is:

SP.ϕ.l =





ϕ if l is a call or a return,

ϕ ∧M.p if l is (assume[p] : ·),

∃M ′.ϕ[M ′/M] ∧M = upd(M ′,M ′.l,M ′.e) if l is an assignment (l:=e : ·).

It is easy to check that the Region Structure and Predicate Abstraction Structure sat-

isfy the requirements of the previous Section 2.1, with the following caveat: our choice of

predicate language means that we can analyze exactly only C programs whose basic data

types are integers and pointers, with the operations integer addition, arithmetic comparison,

and pointer equality. In the sequel, we assume that the given C program has been modi-

fied so that any C data type or operation that we cannot model in our predicate language

(e.g. multiplication) has been replaced by an uninterpreted function. This modification is

conservative: a behavior of the original program is still a behavior in the modified program

(but there may be more behaviors in the modified program, e.g. behaviors arising due to

branches that are satisfiable as the multiplication operator is uninterpreted). For the code

we have analyzed (see Chapter 4.1), the properties of interest can all be proved in this way.

For other programs or properties, of course, one may have to use richer predicate languages.

2.3 The Safety Verification Problem

We define the reachable states of an LTS S as: For a subset S of the X-states, we define

the reachable set as:

Reach.S.S = {s′ | s
σ
;s′ for some s ∈ S, σ ∈ Σ∗}

Given an LTS S, with initial states S0, and a set of error states E , we say S is safe w.r.t. E

iff Reach.S.S0 ∩ E = ∅. The Safety Verification Problem is to decide if S is safe w.r.t. E .

29

Counterexamples

For a region r0, a trace σ is: (1) feasible from r0 if post.r0.σ 6≡ ⊥, and, (2) abstractly feasible

from S0 if p̂ost.r0.σ 6≡ ⊥. For a region E , the trace σ is a: (1) counterexample to E from r0

if post.r0.σ u E 6≡ ⊥, and, (2) abstract counterexample to E from r0 if p̂ost.r0.σ u E 6≡ ⊥.

If post.r0.σ uE is not ⊥ i.e., not empty, then there exist s0 ∈ [[r0]] and sE ∈ E such that

s0
σ
;sE , and hence:

Proposition 1 For an LTS S and a region structure R for it, if a trace σ is a counterex-

ample to E from r0, where [[r0]] = S.S0, then S is not safe w.r.t E.

A trace σ that is an abstract counterexample to E from r0 is called genuine if it is also

a counterexample to E from r0, otherwise it is called bogus.

Imperative Programs

When verifying an imperative program, the set of initial states [[r0]] is given by the region,

r0 = (pc0, (ϕ, ∅), ε) where pc0 is the start location of the function fmain at which execution

begins, ϕ is a precondition that holds before execution begins, and ε is the empty call stack.

The set of error states [[E]] is given by a special error location in the program pc E . Hence

the error states are, given by the region, E = (pcE , (true , ·), ·), where · denotes that those

values can be anything.

Example 5 [Safety Verification] Consider the C program from Figure 2.2. The property

we wish to check is that (1) the function Example never calls lock when it holds the lock,

and (2) it never calls unlock when it does not hold the lock. We assume the precondition

that when the function Example starts, it does not hold the lock, i.e., LOCK is 0. We have

instrumented the functions lock() and unlock() so that checking this property amounts to

checking that the ERR label is never reached in the code, when the precondition LOCK = 0

holds before the program begins. Hence, the safety verification problem is to check whether

Example is safe w.r.t. (pcE , (true , ·), ·) (from the initial states r0 = (pc1, (LOCK = 0, ∅), ε)).

2

Traces correspond to paths through the CFAs. Let the region r0 = (pc0, (ϕ,Π), ε). A

trace σ is feasible (resp. abstractly feasible) from r0 if SP.ϕ.σ (resp. SPΠ.ϕ.σ) is satisfiable.

30

(assume[T] : 2);
(lock(); old := new : 3);
(assume[T] : 4);
(unlock(); new := new + 1 : 5);
(assume[new = old] : 6);
(unlock() : ·);
(assume[LOCK = 0] : 18);
(err() : ·)

Figure 2.5: Trace

For imperative programs, the set E is (pcE , (true , ·), ·). Hence counterexamples correspond

to traces starting at pc0 and ending at pcE . Such traces are counterexamples (resp. abstract

counterexamples) to E from r, if they are feasible (resp. abstractly feasible), from r0, and

they are bogus counterexamples if they are abstractly feasible but not feasible from r0.

Example 6 [Bogus Counterexample] Consider the trace in Figure 2.5: This trace is

infeasible, and hence not a counterexample, as after the second and fourth commands, the

value of new is different from the value of old, and so the fifth command cannot execute.

This trace is abstractly feasible from the region r0, as SP∅.r.l is true for all r, l. Hence, this

trace is a bogus counterexample. 2

31

Chapter 3

Lazy Abstraction

Given a program, an initial state from which the program begins execution, a set of error

states, the safety verification problem is to decide whether there is an execution of the

program that leads it from the initial state to an error state.

When the program is given as a finite directed graph, where the initial and error states

are vertices, and steps of the program’s execution edges, the problem can be solved sim-

ply by traversing the graph to find whether an error vertex is reachable from the initial

vertex. Unfortunately, the difficulty of writing interesting programs in this manner greatly

outweighs the ease by which they may be analyzed. Thus, most programs are written in

languages like C or Java, and, as they are written using variables, pointers, procedures and

threads, they do not correspond to graphs small enough to be traversed.

The Counterexample-Guided Abstraction Refinement (CEGAR) approach to the safety

verification problem is to iterate the following three steps [Kur94; CGJ+00; BR02b].

First, an abstract, finite-state model, an abstraction, of the program is constructed using

an appropriate abstract domain. For hardware circuits one may construct an abstrac-

tion by picking a small subset of the variables considered relevant to the property

being checked, and treating the other variables as unknown or “don’t care” [Kur94;

CGJ+00]. For C programs one may construct an abstraction by picking a finite set

of predicates that capture relationships between program variables, and then con-

structing a boolean program(BP) made up of boolean variables corresponding to the

predicates. For each statement of the program, the BP boolean program updates

its variables by finding how executing the statement would affect the truth of the

32

predicates [BMMR01].

Second, we model check the finite-state abstraction, by exhaustively exploring its state

space, to see if an error state is reached. As the abstraction overapproximates the

behaviours of the real or concrete program, the fact that the abstraction never visits

an error state implies that the program never visits one either, and so is safe. If, on the

other hand, the abstraction hits an error, then we have an abstract counterexample,

i.e., a path in the abstraction from the abstract initial state to an abstract error state.

Third, we check if the abstract counterexample corresponds to a path in the real coun-

terexample i.e., a path to an error state from an initial state in the real program. If

so, the program is reported to be unsafe. If not, the abstract domain used in the first

step, e.g. the set of relevant variables, or relevant predicates is refined, e.g. by adding

variables or predicates to the set, and we repeat the loop from the first step.

The main hurdle to making this scale to large programs is the state explosion problem:

the number of abstract states is exponential in the number of predicates or boolean variables.

Hence, both constructing and analyzing the abstract program are very computationally

expensive.

Our approach, Lazy Abstraction, to circumvent the state-explosion problem, is to never

construct an abstract program, by to tightly integrate the three steps of the loop in a way

that:

1. The abstraction is built on-the-fly, so that only reachable states, which are often a

tiny fraction of the entire, exponentially large, state space, are abstracted.

2. The refinement is local, so that only the small part of the abstraction through which

the abstract counterexample path passes is refined, and re-analyzed, while other parts

that have little to do with the counterexample and which are known to be safe using

a coarse abstraction, are left untouched.

3. The abstraction is parsimonious, in that different parts of the state space use different

abstractions, namely they are only as precise as is required to verify that part of the

system. Homogenous abstractions suffer as the number of states is exponential in the

33

total number of predicates used, instead of just in the number of predicates used per

location of the program.

Lazy Abstraction is made up of two ingredients which give it the above properties.

1. Reachability Trees. The first ingredient is the use of reachability trees to explore

the state space. A reachability tree has nodes labelled by formulas describing a set of

program states, and edges labelled by a program operations. A child node is labelled by an

overapproximation (with respect to a set of predicates) of the states the program can be in,

if it was in one of the states corresponding to the parent’s label, and executed the operation

labelling the edge. Such a tree can be thought of as an unrolling of the Control-flow Graph

of the program. The tree is finite as whenever we see a node whose label has been seen

before, we stop unrolling from that node, and as a finite set of predicates is tracked, the

number of distinct labels is finite. When we hit an error state, the path in the tree from

the root to the error state is a counterexample. We find the pivot node, which corresponds

to a node on the path from which the suffix to error has no concrete counterpart and we

refine the subtree of the pivot node. Reachability trees enable us to abstract the reachable

states, as the states corresponding to node labels are all abstractly reachable, and the allow

local refinement, as we only refine the subtree of the pivot node.

2. Parsimonious Abstractions. The second ingredient is the use of parsimonious ab-

stractions. The number of predicates that one needs to track grows with the size of the

program being analyzed. However, most predicates are only locally useful, i.e., only useful

when analyzing certain parts of the program, and irrelevant in others. If locality is not

exploited, then the sheer number of facts may render the abstract system too detailed to

be amenable to analysis, as the size of the abstract system grows exponentially with the

number of predicates. Consider the program fragment shown in Figure 3.1. The property

we wish to check is that locking and unlocking alternate, i.e., between any two calls of

lock() there must be a call of unlock(), and between any two calls of unlock() there

must be a call of lock().

A static analysis that tracks whether or not the lock is held returns false positives,

i.e., error traces that arise from the imprecision of the analysis. One such spurious error

34

while(*){
1: if (p1) lock (); assume[p1];

if (p1) unlock (); lock ();
· · · assume[¬p1];

2: if (p2) lock (); assume[p2];
if (p2) unlock (); lock ();
· · ·

n: if (pn) lock ();

if (pn) unlock ();

}

Figure 3.1: Program; spurious counterexample.

trace is shown on the right in Figure 3.1. The analysis is fooled because it does not track

the predicate p1 which correlates the first two if statements; either both happen or neither

happens, and either way the error cannot be reached. Similar counterexamples show that all

of the predicates p1, . . . , pn must be tracked, but as a result, the analysis blows up, because

it is not clear when we can “merge” states with different predicate values, and without

merging there are an exponential number of states. 1 Notice however that in this program,

each predicate is only locally useful, i.e., each pi is “live” only at the statements between

labels i and (not including) i + 1. Hence, we need a method that infers both the predicates

and where the predicates are useful. Our refinement algorithm infers the predicates pi and

also that pi is useful only between the labels i and i + 1; outside these labels, we can

forget the value of pi. Thus our analysis considers, in this example, only a linear number

of distinct states.

More generally, instead of tracking a monolithic set of predicates, we maintain a map

from program locations to predicates, and at each location, we use only the predicates

relevant at that location, and replace the values of the other predicates with “don’t cares”.

In our experience, many large software systems have the property that, while the number of

relevant predicates grows with the size of the system, each predicate is useful only in a small

part of the state space, i.e., the number of predicates that are relevant at any particular

program location is small. By exploiting this property one can make a precise analysis scale

to large programs.

1For this particular example certain state representation methods such as BDDs would implicitly merge
the states.

35

In the rest of this chapter, we first give, in Section 3.1, an overview of Lazy Abstraction

using the example from Figure 2.2; while Lazy Abstraction is a generic technique that

works on any modeling paradigm, we provide examples from the automatic verification

of C programs. Then we present the algorithm by presenting, in Section 3.2, the first

ingredient, abstract state exploration via reachability trees, followed by, in Section 3.3, the

second ingredient, our algorithm for refining abstractions, by enriching the set of predicates

tracked at each location. Then in Section 3.4 we present two theoretical results related to

Lazy Abstraction. The main question of interest is, of course, given a theory of predicates

(such as Presburger arithmetic), a C program, and a correctness property, if there is a finite

set of predicates that contains enough information for verifying the program (i.e., if there

is a predicate abstraction that is finite-state and witnesses the correctness property). We

show this question to be, not surprisingly, undecidable. It follows that Lazy Abstraction

(or any method) must be a semi-algorithm, which may or may not terminate. However, we

show that the Lazy Abstraction semi-algorithm terminates under a customary condition on

the predicate theory (no infinite ascending chains of predicates) and an abstract condition

on the program (finite trace equivalence), which has been established for many interesting

classes of infinite-state systems (such as timed automata [AD94]). The chapter concludes

with a discussion of related work.

3.1 A Locking Example

We begin by showing how lazy abstraction works on C programs, using the program from

Example 5. The algorithm works in two phases. The first is the forward-search phase,

where we build the reachability tree, that represents the reachable, abstract state space

of the program. Each edge of the tree is labeled by a program fragment, such as a basic

block of assignments or an assume predicate. We call the path from the root of the tree

to the node, the node’s path, and we call the sequence of commands labelling the node’s

path the node’s trace. Each node of the tree is labeled by: (1) a predicate map, called

the node’s map, that maps each command of the program to a (finite set of predicates),

which determines the precision of the abstraction, (2) a program location, called the node’s

location, corresponding to the location the program is in after executing the node’s trace,

36

(3) a boolean combination of the predicates, called the node’s region, which describes the

state of the program’s variables after executing the node’s trace.

If we find that an error state is reachable in the tree, then we go to the second phase,

which checks if the error is real or results from our abstraction being too imprecise (i.e., if

we lost too much information by restricting ourselves to a particular set of predicates). If

the latter is true, we ask a theorem prover for additional predicates, such that by using the

new predicates we can rule out that particular

spurious counterexample (and maybe others as well). However, we add the new predi-

cates only to those nodes in the search tree where they are required.

lock()
old=new

new++
unlock()

unlock()

2

1

3

4

5

6

ERR

[T]

[new = old]

LOCK=0

LOCK=0

[T]

LOCK=0

LOCK=1

LOCK=1

LOCK=0

LOCK=0

Figure 3.2: Forward Search

3.1.1 Verification

The model checking is done on the CFA shown in Figure 2.3. For simplicity, we assume

that the call to lock() and unlock() are atomic commands: if lock() is called properly

(i.e., , with the lock not held), then it sets the value of LOCK to 1, otherwise it goes

to ERROR; and similarly for unlock(). From the specification, we know it is important

whether or not the lock is held, hence we start by considering the two predicates LOCK = 1

and LOCK = 0. This is not necessary: even if we start with the empty set of predicates,

the algorithm discovers the above predicates via bogus counterexamples.

37

Build Reachability Tree

The first phase of the algorithm is the search phase shown in Figure 3.2. The algorithm

constructs in depth-first order the reachability tree. We omit the predicate maps from the

figure for clarity. The numbers labelling the nodes are the CFA locations corresponding to

the nodes’ location. The formulas labelling the nodes are the nodes’ regions, represent what

is known about the state of the program with respect to the set of predicates being tracked,

after executing the node trace, i.e., the commands from the root of the tree to the given

node. Each node’s region is obtained by computing the region corresponding to the states

the program is in (overapproximated to the predicates corresponding the edge command), if

from a state in the parent region, it executes the command labelling the parent-node edge.

Hence, each node’s region is an overapproximation of the set of states actually reachable by

executing the node’s trace. Furthermore, for each node we have a finite set of predicates

we consider (in our case, LOCK = 1 and LOCK = 0), and we require that the reachable

region be described as a boolean combination of these predicates.

We begin with the node that corresponds to location 1 in the CFA. The only information

we have at this point is the assumption (or precondition) that the lock is not held: LOCK =

0. The edge from 1 to 2 is a branch that can always be taken (labeled by [T]), hence at

2 also we know LOCK = 0. To go from 2 to 3, we call lock, and set old = new. As our

predicates contain no information about the variables new and old, all we can conclude is

that at 4, LOCK = 1. Similarly going from 4 to 5 we model only what happens to LOCK,

so due to the unlock, at 5 we know LOCK = 0. From 5 to 6 is a branch that can only be

taken if new == old. We know nothing about new and old, hence they could be equal, and

so we take the branch and again at 6, we have LOCK = 0, as nothing affects LOCK during

that transition. At 6 we see that we call unlock with the lock not held (as LOCK = 0),

and hence we reach an error node.

Counterexample Analysis

When we hit an error node in the search tree, we check if the error node’s trace is a genuine

counterexample trace, i.e., is a path that the program can actually follow and thus hit an

error state, or results from the abstraction being too imprecise. For each node along the

38

path, the node’s error trace is the sequence of commands labelling the suffix of the path

from the node to the error node. To check if the error node’s trace is genuine, we check if for

each node along the error node’s path, there is an actual state in the states corresponding

to the node’s region, that can execute the node’s error trace and go to an error state.

lock()
old=new

new++
unlock()

unlock()

2

1

3

4

5

6

ERR

[T]

[new = old]

LOCK=0

LOCK=0

LOCK=0 {LOCK=0}

[T]

LOCK=0 {new=old & LOCK=0}

LOCK=1 {new = new’+1 & new = old & LOCK=1}

LOCK=1 {new = new’+1 & new = old & LOCK=1}

LOCK=0 {old=new’ & new = new’+1 & new=old & LOCK=0}

Figure 3.3: Counterexample Analysis

Figure 3.3 shows the result of this phase. In the figure, for each tree node, the formula

in the curly braces, called the bad region, represents the set of states that the program can

end up in, if from a state in the node’s region (from the forward search phase), it executes

the node’s error trace. In other words, the formula is the strongest postcondition [Dij76]

of the node’s region with respect to node’s error trace. We go backwards from the error

node, trying to find the first node in the tree where the bad region (of the node) becomes

empty. Upon finding such a node, conclude that it is not possible to reach the error via the

given trace. That node becomes the pivot node, and we shall refine the abstraction from

that node onwards.

Consider the bad regions labeling the nodes in Figure 3.3. Upon executing σ6 =

unlock() from a state in location 6 where LOCK = 0, the program goes to location

ERROR and the variables satisfy LOCK = 0, which therefore, is the bad region of 6.

Similarly, the bad region of 5 is the strongest postcondition of LOCK = 0 w.r.t. the trace

39

σ5 = assume[new = old];σ6 which is new = old ∧ LOCK = 0. The former condition arises

as the branch corresponding to the assume was taken, the latter arises because the program

began in that state (at node 5), and the call unlock(), leaves LOCK unchanged when called

with LOCK = 0. The bad region of 4 is the strongest postcondition of LOCK = 1 w.r.t.

the trace σ4 = unlock(); new+ +;σ5, which is:

∃new ′.new = new ′ + 1 ∧ new = old ∧ LOCK = 0

The variable new ′ refers to the (stale) value of new at 4; the value of new after executing

σ4 is one greater than this stale value, and is equal to the value of old at the end (due

to the assume). The bad region of 3 is the strongest postcondition of LOCK = 0 w.r.t.

σ3 = assume[T];σ4, which is the same as the bad region of 4, as assume[T] doesn’t affect

the state. Finally the bad region of 2 is the strongest postcondition of LOCK = 0 w.r.t.

σ2 = lock(); old := new;σ3, which is:

∃new ′.old = new ′ ∧ new = new ′ + 1 ∧ new = old ∧ LOCK = 0

It is easy to check that this region is empty, i.e., if the program begins at location 2 in a

state satisfying LOCK = 0, there is no way that it can execute σ2 and thus go to ERROR.

In fact, the path from the node labeled 2 to the error node is the smallest infeasible suffix

of the counterexample (which is the entire path from the root to the error node). Thus the

node labeled 2 is the pivot node.

To do the emptiness check at each point we ask a theorem prover if the formula corre-

sponding to the bad region is satisfiable. By partitioning the proof of unsatisfiability of this

formula, we learn that the predicate new = old is important (see Section 3.3 for details).

The reason we hit an error node is that the abstraction is too imprecise, and tracking this

new predicate will enable us to rule out this particular infeasible counterexample path. We

add the new predicate new = old to the map for the commands labelling the edges from

2 to 3, 3 to 4, and 4 to 5 in the subtree of the pivot node, and thus refine the abstraction

from the pivot node onwards.

If our analysis had gone back all the way to the root without the theorem prover

reporting unsatisfiability at any point, then the path from the root to the error node would

40

infact be a real error, i.e., a counterexample demonstrating that the program violated the

specification.

Resume Search with new predicates

We continue the search phase, searching from the pivot node onwards. This time, we track

also the predicate new = old , and the resulting search tree can be seen in Figure 3.4.

5 5

[T]

6 62 2

[new != old] [new = old]

unlock()

2

1

3

4

[T]

False

 RET

LOCK=0

LOCK=0

 LOCK=0 < LOCK=0 False

LOCK=1 & new=old

LOCK=1 & new=old

LOCK=0 & !new=old LOCK=1 & new=old

& new=old

LOCK=0 & new=old

Figure 3.4: Search with new Predicate

Notice that we can stop the search at the leaf labeled 2, as the states satisfying that

node’s region LOCK = 0 ∧ new = old are a subset of those satisfying LOCK = 0, hence

any error found from this point on would have been found by exploring from the ancestor

labeled 2. We call such nodes, whose regions are contained in the regions of ancestor

nodes in the tree, covered. They correspond to fixpoints, and this is how loops are handled

automatically. Whenever we see a covered node, we backtrack and search along some other

branch in depth-first order.

Also, the region of the leaf labeled 6 is empty, as that node could be reached only if at

5 new equalled old, but in node 5, we know that new 6= old (as this time we are tracking

the relationship of new and old). Thus we do not search from that node any more, but

backtrack to the node labeled 3 and follow its other branch. The region of Leaf 2 is empty

as that branch is taken only when new is not equal to old. Moreover, the error node is not

41

reachable from the node labeled 6, as that node’s region stipulates that the lock is held,

and hence the call to unlock is safe. Thus we conclude that no error node is reachable in

the entire left subtree.

LOCK=0

new pred
got_lock=0

1

2 7

ERR

LOCK=0

1

2 7

2 2 2

COVERED !
lock=0 & ...

1

new pred

2

new pred

7

new=old got_lock=0

Figure 3.5: (a) Building Right Subtree (b) Leaves covered (c) Different abstractions

In Figure 3.5(a) we search the right subtree of the root in a similar fashion. We discover a

bogus counterexample that gives us the predicate got lock = 0. Considering this additional

predicate is enough to rule out all error traces in the right subtree. Note that in the right

subtree there are leaves with label 2, as control always flows to that point in the CFA.

However they are all covered by the root node of the left subtree (Figure 3.5(b)), as the

regions of each of these leaf nodes is contained in the region of the root of the left subtree

(at all those nodes, the lock is not held), and hence, these leaves are covered. Hence, we

need not continue to search any further, and conclude that no error node is reachable.

Savings

We have achieved two savings. First, each part of the state space is refined only as much as

required; in particular we have different abstractions for the two subtrees (see Figure 3.5(c)).

Second, we explore only the portion of the state space that is required in order to prove

correctness, and do not throw away the work done earlier. For example, when we hit an

error in the right subtree, we refine only that part of the search tree, keeping intact and

using in the proof the left subtree, as we already know there is no error in that part of the

42

state space. In the following sections, we make this intuitive algorithm precise.

3.2 Symbolic Reachability with Refinement

We present two algorithms for computing overapproximations of the reachable state space of

a labeled transition system. The first algorithm is nondeterministic. The second algorithm,

which is the Lazy Abstraction algorithm, resolves the nondeterminism in the first one to

ensure that the overapproximation does not contain any error states, if in fact no error state

is reachable in the system. These algorithms do not terminate in general (so we should

call them “semi-algorithms,” but we keep the term algorithm for simplicity). Sufficient

conditions ensuring termination will be discussed in Section 3.4. Our algorithms build

an overapproximation of the reachable states of the LTS, by constructing an appropriate

reachability tree.

Reachability Trees. Given an LTS S = (X,Σ,;, S0), and a symbolic region structure

R = (R,⊥,t,u, post, [[·]]) for S, a Reachability Tree for R is a rooted directed tree, T =

(V,E, n0) where V is a set of nodes labelled with regions from R, n0 ∈ V is the root node

of the tree, and, E is a set of edges labelled with elements of Σ. We write n :r for the node

n ∈ V labelled with region r ∈ R. We write n
l
−→n′ for the edge from n to n′ labelled l, and

call n′ the l-successor of n. A node is called a leaf if it has no successors, otherwise it is called

an internal node. A node n : r is covered if there exist internal nodes {n1 : r1, . . . , nk : rk}

such that r v t{r1, . . . , rk}. A reachability tree is complete if:

1. Every edge n :r
l
−→n′ :r′ in the tree, is such that post.r.l v r ′,

2. Every internal node, has an l-son for each l in Σ, and,

3. Every leaf node is covered.

A partial reachability tree is a pair (T, F) where F is a subset of the leaf nodes of T , and

we require in place of (3) above, the condition (3’) Every leaf node in T \ F is covered.

The next theorem states that the union of the regions labelling the nodes of a reachability

tree is an overaprroximation of the reachable states of the LTS.

43

Theorem 1 [Reachability Trees] If T = (V,E, n0) is a complete reachability tree for R,

where n0 :r0, then: Reach.S.([[r0]]) ⊆ [[t{r | n :r is an internal node of T}]].

Proof. Recall that Reach.S.([[r0]]) is the set {s | s0
σ
;s for some s0 ∈ S0, σ ∈ Σ∗}. We shall

show, by induction on the length of σ, that if s0
σ
;s for some s0 ∈ [[r0]], and σ ∈ Σ∗, then

there exists some internal n : r in T , such that s ∈ [[r]], and from this, the theorem follows.

For the base case, |σ| = 0, the node is n0 : r0. Suppose the induction hypothesis holds for

all traces of length n. Consider a trace σ ′ = σ · l of length n+ 1, and s that s0
σ′
;s′ for some

s0 ∈ [[r0]]. By the definition of ;, there exists some s such that s0
σ
;s

l
;s′, and by the IH

there exists an internal n : r such that s ∈ [[r]]. As the tree is complete, n : r must have a

l-son n′ :r′ such that post.r.l v r′. From s
l

;s′ and s ∈ [[r]], we know that s′ ∈ r′. If n′ is an

internal node we are done; if not, it is covered by a set of internal nodes {n1 :r1, . . . , nk :rk},

such that for some ni :ri we have s′ ∈ ri. 2

A reachability tree T = (V,E, n0) for R is safe w.r.t. E from r0 if T is a complete

reachability tree such that (1) the root node n0 : r0, and, (2) for every n : r in the tree, we

have r u E ≡ ⊥. From Theorem 1, the following is immediate:

Proposition 2 [Safe Reachability Trees] For a region structure R for LTS S, and two

regions r0, E, if S.S0 ⊆ [[r0]] and there exists a reachability tree T for R that is safe w.r.t.

E from r0, then S is safe w.r.t. [[E]].

3.2.1 Reachability with refinement

The first algorithm we present is the algorithm SymbReachRefine (Algorithm 1). This

is a standard symbolic forward-search algorithm, but with two extra features:

1. the ability to refine some path in the tree under construction (in order to compute a

more precise abstraction of some part of the system), and

2. the ability to drop a subtree of the tree under construction (in order to recompute

the subtree with more precision).

A classical symbolic forward-search algorithm computes a reachability tree, with nodes

partitioned into internal (Intl) and leaf (Leaf). starting from an initial region r0. The

44

Algorithm 1 SymbReachRefine(A, r0)

Input: a region structure R = (R,⊥,t,u, post, [[·]]), an abstraction structure A =
(R, p̂ost,�), and an initial region r0 ∈ R.

Output: A region r s.t. Reach.([[r0]]) ⊆ [[r]]
1: L := {n0 :r0}, Intl := ∅ {Initialize}
2: while L 6= ∅ do
3: Pick and remove n :r from L {process next worklist element}
4: if (r v t{r′ | n′ :r′ ∈ Intl }) then
5: Leaf := Leaf ∪ {n} {covered node}
6: else
7: if (∗) then
8: Pick some path n′ :r′

σ
−→n :r in the tree where σ ∈ Σ∗ {refine}

9: relabel n′ by a region w such that w � r′ and w ≡ r′

10: if (KeepSubtree.n′) then
11: L := L ∪ {n}
12: for each n′′ such that n′

σ′
−→n′′−→n do

13: relabel n′′ by p̂ost.w.σ′ {refine path}
14: else
15: L := L ∪ {n′}
16: remove subtree of n′ from tree,L,Intl ,Leaf {refine subtree}
17: for each n′′ ∈ Leaf labelled after n′ do
18: remove n′′ from Leaf , add it to L {to guarantee correctness}
19: else
20: Intl := Intl ∪ {n} {build reach tree}
21: for each label l ∈ Σ do
22: r′ := p̂ost.r.l
23: construct an l-son n′ :r′ of n
24: L := L ∪ {n′}
25: return the region t{r | n :r ∈ Intl }

45

algorithm maintains a worklist L of nodes to be explored, and iteratively processes nodes

until the worklist becomes empty. To process a node n from the worklist, we remove it

from the worklist and check whether the node’s reachable region is covered by the already

explored state space(line 4).

If the node is covered we add it to the set of leaf nodes, and repeat with the next

element of the worklist(line 5). If the node is not covered then we non-deterministically

choose (line 7) to either refine the states at the node (lines 8–18), or to construct the sons of

the node i.e., compute the states that are reachable in one step from that node (lines 20–24).

If we choose to refine, then we pick some ancestor node n′ of the node being pro-

cessed, and relabel it with a more precise version of its region (lines 8–9). We then non-

deterministically choose, via the function KeepSubtree, to either just refine the nodes along

the path from n′ to n, by computing the abstract post from the more precise region along

the path (lines 12–13), or to delete and recompute, and hence, refine, the entire subtree

rooted at n′ (lines 15–16). In either case, some leaves that were previously covered, may

become uncovered, as the internal nodes covering them have smaller regions due to refine-

ment, and so we add these leaves to the worklist for processing (lines 17–18). To find which

these leaves are, we attach with every node, a time stamp indicating the time when the

node was labelled last; these time stamps linearly order all the nodes in the tree. If a leaf

was labelled after some internal node, then refining the internal node may cause the leaf to

become uncovered.

If instead, we chose to construct the sons, then for each label l, the l-sons are constructed

using the p̂ost operation and added to the worklist.

When the worklist is empty, the algorithm returns the union of all the regions of the

internal nodes of the tree. It can be shown, that at this point, the tree is a complete

reachability tree, and so the returned region is an overapproximation of the states reachable

from the initial region r0. To see the above, notice that the following invariants hold of the

partially constructed tree, at the start of each iteration of the the main loop.

Invariant 1. Every edge n :r
l
−→n′ :r′ in the tree is such that: post.r.l v p̂ost.r.l = r′.

Invariant 2. The nodes of the tree are partitioned into the sets:

46

• Intl : The nodes in Intl are internal nodes of the partial reachability tree, with

an l-son, for each l in Σ.

• Leaf : The nodes in Leaf are covered leaf nodes.

• L: The nodes in L are the worklist nodes, i.e., leaf nodes that are not covered,

and which need to be processed so that either they are refined, and become

covered, or they become internal nodes.

From the above invariants, it follows that if the worklist is empty, then the the nodes in

Leaf ∪ Intl are a complete reachability tree.

The goal of this generic symbolic reachability algorithm is to point out sufficient condi-

tions for correctness. Indeed, once this algorithm is proved correct, any more detailed im-

plementation, e.g. replacing the nondeterministic ∗ and fixing a choice of the path to refine

must necessarily be correct. The correctness of the SymbReachRefine algorithm is expressed

by the following theorem, which follows from the fact that if SymbReachRefine.(A, r0) ter-

minates, then the tree rooted at n0 : r0 is a complete reachability tree. Note that the

correctness does not depend on the order in which the state space is explored (e.g. depth-

first or breadth-first).

Theorem 2 [Correctness] Let A be an abstraction structure for a labeled transition sys-

tem S. For every initial region r0, and every terminating execution of the algorithm

SymbReachRefine.(A, r0), the tree rooted at n0 is a complete reachability tree and hence:

Reach.S.([[r0]]) ⊆ [[SymbReachRefine.(A, r0)]].

3.2.2 Counterexample-driven refinement

We now present our algorithm LazyAbstraction for the safety verification problem, i.e., to

decide, given an initial region r0 and an error region E , whether the latter is reachable

from the former. To show that E is not reachable from r0, Algorithm LazyAbstraction

tries to build a reachability tree that is safe w.r.t. E from r0. If it can find such a tree

then we know that the LTS is safe. The algorithm LazyAbstraction is an implementation

of the previous algorithm where the nondeterministic choice for refinement is done using

traces corresponding to bogus counterexamples, the more precise (i.e., refined) region being

47

Algorithm 2 LazyAbstraction.(A,Refine, r0, E)

Input: a region structure R = (R,⊥,t,u, post, [[·]]) for LTS S, an abstraction structure
A = (R, p̂ost,�), a refine operator Refine for A, an initial region r0 ∈ R, s.t. [[r0]] = S.S0

and an error region E ∈ R.
Output: Either Safe(r), where Reach.S.([[r0]]) ⊆ [[r]] and r u E ≡ ⊥, or Unsafe(σ) where

σ is a counterexample to E from r0.
1: L := {n0 :r0}, Intl := ∅ {Initialize}
2: while L 6= ∅ do
3: Pick and remove n :r from L {process next worklist element}
4: if (r v t{r′ | n′ :r′ ∈ Intl }) then
5: Leaf := Leaf ∪ {n} {covered node}
6: else
7: if r u E 6v ⊥ then
8: {abstract counterexample found}
9: if there is a n′ :r′

σ
−→n :r s.t. post.r′.σ u E ≡ ⊥ then

10: relabel n′ by w = Refine.(r′, lσ, E) {refine using bogus counterexample σ}
11: if KeepSubtree.n′ then
12: L := L ∪ {n}
13: for all n′′ such that n′

σ′
−→n′′−→n

14: relabel n′′ by p̂ost.w.σ′ {refine path}
15: else
16: L := L ∪ {n′}
17: remove subtree of n′ from tree,L,Intl ,Leaf {refine subtree}
18: for all n′′ ∈ Leaf labelled after n′ do
19: remove n′′ from Leaf , add it to L {to guarantee correctness}
20: else
21: let σ be the trace such that n0

σ
−→n {σ is a genuine counterexample}

22: return Unsafe(σ)
23: else
24: Intl := Intl ∪ {n} {build reach tree}
25: for all labels l ∈ Σ do
26: r′ := p̂ost.r.l
27: construct an l-son n′ :r′ of n
28: L := L ∪ {n′}
29: return Safe(t{r | n :r ∈ Intl })

48

obtained via a refine operator Refine.

The Refine Operator

The refinement step uses a refine operator, denoted Refine. Intuitively, a refine operator is

needed when we have a a bogus abstract counterexample σ to E from some region r. We

want Refine.(r, σ, E) to return a region w equivalent to r, but precise enough to rule out the

the bogus error trace σ. Formally, a refine operator Refine for an abstraction structure A

with region set R is a function Refine: R × Σ∗ × R → R such that for all regions r, E ∈ R

and all σ ∈ Σ∗,

− Refine.(r, σ, E) ≡ r and Refine.(r, σ, E) � r, and

− if post.r.σ u E ≡ ⊥, then p̂ost.(Refine(r, σ, E)).σ u E ≡ ⊥.

The second condition is not necessary for correctness of the algorithm LazyAbstraction, but

it will allow us to obtain a termination criterion in Section 3.4. In parsimonious predicate

abstraction, a refine operator adds predicates for the various commands in the bogus coun-

terexample trace in order to render the trace abstractly infeasible, but leaves the boolean

formula characterizing the node’s region unchanged. As the predicates are added locally, at

any time there may be regions in the reachability tree with different predicate maps. We

defer the discussion of a refine operator for imperative programs which enjoys the above

properties to Section 3.3.

The Algorithm LazyAbstraction

The algorithm LazyAbstraction builds reachability tree that is precise enough to demonstrate

that no error state is reached from the initial states, or if that is not the case, then the

algorithm returns a counterexample trace from the initial region to the error region.

The LazyAbstraction algorithm behaves exactly like a usual symbolic forward-search

algorithm SymbReachRefine, as long as every time a node is picked from the worklist, the

node’s region has an empty intersection with the error region. However, when it finds a

node whose region contains an error state, it checks if the abstract counterexample trace

corresponding to the path in the tree to the node is genuine or not. If the counterexample is

genuine then LazyAbstraction returns it, reporting the system unsafe. If the counterexample

49

is bogus, it uses the refine operator on the trace to refine the abstraction, and continue.

This is made precise in the algorithm LazyAbstraction (Algorithm 2).

As before, we use a worklist and iteratively build the reachability tree. When the

algorithm processes a node n whose reachable region has a nonempty intersection with the

error region (line 7), it checks if this is an actual error. For each node n′ along the path

from the root n0 to n, let the bad trace of the node n′ be the trace σ′ labelling the path from

n′ to n in the tree. The bad region of n′ is the set of error states that the system can be in

after executing the bad trace from a state in the reachable region of n′, i.e., the bad region

of n′ :r′ is post.r′.σ′ u E .

The algorithm checks for every ancestor n′ of n if the bad region of the ancestor is

empty (line 9). If so, then n′ is a pivot node, and the bad trace from n′ : r′ is a bogus

counterexample to E from r′ that we shall use it to refine our abstraction (line 10). If there

is no pivot node, in particular if the root node n0 is not a pivot, then its bad trace is a

genuine counterexample to E from r0, and it is returned (lines 20–22).

The algorithm refines the search from the pivot node on, by relabeling the pivot with

a more precise version of its region using the refine operator Refine. If it is worth keeping

the whole subtree of the pivot node (which is determined by the KeepSubtree heuristic),

then it refines the path from the pivot node to the currently processed node n (lines 12–14);

otherwise it removes the entire subtree rooted at the pivot node and adds the pivot to the

worklist (lines 16–17). The rest of the algorithm is identical to SymbReachRefine.

The KeepSubtree function determines whether the subtree rooted at the pivot node is

discarded in the refinement process. It does not affect correctness, but may affect termina-

tion. For efficiency, we want to keep as much computation as possible (to avoid repeating

the same work), and hence we would like to keep subtrees. But there may be coarse nodes

in the subtrees that can cause the algorithm to go into infinite “refinement loops.” The use

of a KeepSubtree function allows us to experiment with different strategies.

Example 7 [Refinement Loops] Consider the CFA given in Figure 3.6(a). The result

of the first search phase is given in (b). The second node labeled 2 is covered by its parent.

Along the other branch the search hits an error node. Figure (c) shows how the error path

is refined, by adding the support predicate x = 0: at the parent 2 node, the reachable

50

x=0

[x != 0][x = 0]

1

2

ERR

(a)

1True

True

True 2

2 ERR

(b)

[x != 0]

x=0

ERR

1

2

2True

x=0

True

(c)

ERR

1

2

True

x=0

True

True 2

2

(d)

Figure 3.6: Refinement loops

region is now x = 0, so the branch to the error node is ruled out. The child 2 node is now

no longer covered, so it is unmarked and the search resumes from that node. In (d) we see

that the search results in exactly the same subtree we had in (b), hence, the refine-search

process will repeat forever. If, instead, we delete the entire subtree below the pivot node

(i.e., the node labeled 1), unmark the pivot node, and start over searching with the new

predicate x = 0 from the pivot node onwards, then the algorithm terminates. 2

If the LazyAbstraction.(A,Refine, r0, E) terminates and returns Safe(r), then, using The-

orem 2, we can show that the tree rooted at n0 is a complete reachability tree, and the

properties of LazyAbstraction ensure that the root is labelled with r0 and every node has

an empty intersection with E and hence, the tree is safe w.r.t. E from r0. Hence, from

Proposition 2, we conclude that S is safe w.r.t. E from r0. If instead, it returns Unsafe(σ),

then σ is a counterexample to E from [[r0]] and hence, S is not safe w.r.t. E from r0. The

correctness of the LazyAbstraction algorithm, which again does not depend on the order in

which the state space is explored, is expressed by the following theorem.

Theorem 3 [Correctness] Let A be an abstraction structure for an LTS S, and let Refine

be a refine operator for A. For every initial region [[r0]] = S.S0, and error region E, if

LazyAbstraction.(A,Refine, r0, E) returns:

1. Safe(·), then S is safe w.r.t. E,

2. Unsafe(·), then S is not safe w.r.t. E.

51

1: x := ctr ; 〈x, 1〉 = 〈ctr , 0〉 x = ctr
2: ctr := ctr + 1; 〈ctr , 1〉 = 〈ctr , 0〉+ 1 x = ctr − 1
3: y := ctr ; 〈y, 2〉 = 〈ctr , 1〉 x = y − 1
4: assume (x = m); 〈x, 1〉 = 〈m, 0〉 y = m+ 1
5: assume (y 6= m+ 1); 〈y, 2〉 = 〈m, 0〉 + 1

Figure 3.7: (a) Infeasible trace (b) Constraints (c) Predicates.

We mention two optimizations of Algorithm 2. First, if nodes from the worklist are

picked in depth-first search order then for every ancestor n of the latest labelled node, the

marked nodes in the subtree of n are precisely the nodes that were labelled after n was

marked. Hence the for-loop of lines 17–18 can be limited to the leaves in the subtree of n.

Second, in order to implement efficiently the covering test of line 4, we use a variable c to

collect the union of reachable regions of internal nodes as we go along. We can then replace

the covering test of line 4 by the test r v c, and the return statement of line 27 by return

c. To update c, we add the statement c ← c t r after line 24, and we recompute c after

line 17.

3.3 A Refine operator for Imperative Programs

We now present a Refine operator for imperative programs. Recall that the task at hand is

the following: given a bogus abstract counterexample trace, we wish to wish to find a more

precise abstraction in which the trace becomes abstractly infeasible.

Our approach is the following: we shall encode the trace as a formula called the trace

formula, which is unsatisfiable iff the trace is (concretely) infeasible. We shall then partition

the proof of unsatisfiability of the trace formula, to obtain a new set of support predicates.

The support predicates are a map from commands to sets of predicates. The problem,

then, is (i) to extract predicates from the proof, together with (ii) information where to use

each predicate, such that the refined abstraction no longer contains the infeasible trace. We

shall first give an intuitive overview of the technique, using the infeasible trace shown in

Figure 3.7(a), and then describe it formally.

52

3.3.1 Overview

Symbolic Simulation. One possible approach to designing a refine operator is to sym-

bolically simulate the trace until an inconsistent state is reached; such inconsistencies can

be detected by decision procedures [BPS00]. A dependency analysis can be used to com-

pute which events in the trace cause the inconsistency, and this set of events can then be

heuristically minimized to obtain a suitable set of predicates [BR02a; CCGS03]. There are

two problems with this approach. First, the inconsistency may depend upon “old” values

of program variables, e.g. in the trace shown, such an analysis would use facts like x equals

“the value of ctr at line 1,” and that the “current” value of ctr is one more than the “value

at line 1.” In general there may be many such old values, and not only must one use heuris-

tics to deduce which ones to keep, a problem complicated by the presence of pointers and

procedures, but one must also modify the program appropriately in order to explicitly name

these old values. Intuitively, however, since the program itself does not remember “old”

values of variables, and yet cannot follow the path, it must be possible to track relationships

between “live” values of variables only, and still show infeasibility. Second, this approach

yields no information about where a predicate is useful.

We now demonstrate our technique on the trace of Figure 3.7(a). First, we build a

trace formula (TF) which is satisfiable iff the trace is feasible. The TF ϕ is a conjunction

of constraints, one per instruction in the trace. In Figure 3.7(b), the constraint for each

instruction is shown on the right of the instruction. Each term 〈·, ·〉 denotes a special

constant which represents the value of some variable at some point in the trace, e.g. 〈ctr , 1〉

represents the value of ctr after the first two instructions. The constraints are essentially the

strongest postconditions, where we give new names to variables upon assignment [CFR+91;

FS01]. Thus, for the assignment in line 1, we generate the constraint 〈x, 1〉 = 〈ctr , 0〉, where

〈x, 1〉 is a new name for the value of x after the assignment, and 〈ctr , 0〉 is the name for

ctr at that point. Notice that the “latest” name of a variable is used when the variable

appears in an expression on the right. Also note that the conjunction ϕ of all constraints

is unsatisfiable.

To compute the new set of predicates, we could simply take all atomic predicates that

53

occur in the constraints, rename the constants to corresponding program variables, create

new names (“symbolic variables”) for “old” values of a variable e.g. for 〈ctr , 1〉 = 〈ctr , 0〉+1

create a new name that denotes the value of ctr at the previous instruction, and add these

names as new variables to the program. However, such a support set is often too large, and

in practice [BR02a; HJMS02] one must use heuristics to minimize the sets of predicates and

symbolic variables by using a minimally infeasible subset of the constraints.

Craig interpolation. Given a pair (ϕ−, ϕ+) of formulas, an interpolant for (ϕ−, ϕ+) is a

formula ψ such that (i) ϕ− implies ψ, (ii) ψ ∧ ϕ+ is unsatisfiable, and (iii) the variables of

ψ are common to both ϕ− and ϕ+. If ϕ− ∧ ϕ+ is unsatisfiable, then an interpolant always

exists [Cra57], and can be computed from a proof of unsatisfiability of ϕ− ∧ ϕ+. If P is

a proof of unsatisfiability of ϕ− ∧ ϕ+, then we write ITP.(ϕ−, ϕ+).(P) for the extracted

interpolant for (ϕ−, ϕ+).

In our example, suppose that P is a proof of unsatisfiability for the TF ϕ. Now consider

the partition of ϕ into ϕ−
2 , the conjunction of the first two constraints (〈x, 1〉 = 〈ctr , 0〉 ∧

〈ctr , 1〉 = 〈ctr , 0〉 + 1), and ϕ+
2 , the conjunction of the last three constraints (〈y, 2〉 =

〈ctr , 1〉 ∧ 〈x, 1〉 = 〈m, 0〉 ∧ 〈y, 2〉 = 〈m, 0〉 + 1). The symbols common to ϕ−
2 and ϕ+

2 are

〈x, 1〉 and 〈ctr , 1〉; they denote, respectively, the values of x and ctr after the first two

operations of the trace. The interpolant ITP.(ϕ−
2 , ϕ

+
2).(P) is ψ2 = (〈x, 1〉 = 〈ctr , 1〉 − 1).

Let ψ̂2 be the formula obtained from ψ2 by replacing each constant with the corresponding

program variable, i.e., ψ̂2 = (x = ctr−1). Since ψ2 is an interpolant, ϕ−
2 implies ψ2, and so

x = ctr −1 is an overapproximation of the set of states that are reachable after the first two

instructions (as the common constants denote the values of the variables after the first two

instructions). Moreover, by virtue of being an interpolant, ψ2∧ϕ
+
2 is unsatisfiable, meaning

that from no state satisfying ψ̂2 can one execute the remaining three instructions, i.e., the

suffix of the trace is infeasible for all states with x = ctr − 1. If we partition the TF ϕ in

this way at each point i = 1, . . . , 4 of the trace, then we obtain from P four interpolants

ψi = ITP.(ϕ−
i , ϕ

+
i).(P), where ϕ−

i is the conjunction of the first i constraints of φ, and ϕ+
i

is the conjunction of the remaining constraints. Upon renaming the constants, we arrive

at the formulas ψ̂i, which are shown in the rightmost column of Figure 3.7. We collect the

atomic predicates that occur in the formulas ψ̂i in the predicate map Π by letting Π map

54

opi to the predicate ψ̂i, for i = 1, . . . , 4.

We can prove that the trace is abstractly infeasible using the predicate map Π. Intu-

itively, for each point i = 1, . . . , 4 of the trace, the formula ψ̂i represents an overapprox-

imation of the states s such that s is reachable after the first i instructions of the trace,

and the remaining instructions are infeasible from s. From Proposition 3 of Section 3.3.2,

it follows that SP.(ψ̂i).opi+1 implies ψ̂i+1, for each i. For example, SP.(x = ctr − 1).(y :=

ctr) implies x = y − 1. Therefore, by adding all predicates from all ψi to Π, we have

SPΠ.true.(op1 · . . . · opi) implies ψ̂i. Note that, as the trace is infeasible, ψ̂5 = ψ5 = false .

Thus, SPΠ.true.(op1 · . . . · op5) implies false, i.e., the trace is abstractly infeasible (cf. Sec-

tion 2.3).

Locality. The interpolants give us even more information. Consider the naive method of

looking at just the TF. The predicates we get from it are such that we must track all of them

all the time. If, for example, after the third instruction, we forget that x equals the “old”

value of ctr , then the subsequent assume[] does not tell us that y = m + 1 (dropping the

fact about x breaks a long chain of reasoning), thus making the trace abstractly feasible.

In this example, heuristic minimization cannot rule out any predicates, so all predicates

that occur in the proof of unsatisfiability of the TF must be used at all points in the trace.

Using the interpolant method, we show that for infeasible traces of length n, the formula

SP
ψ̂n
.(. . . (SP

ψ̂1
.true.op1)).opn is unsatisfiable (see Theorem 4 for a precise statement of

this). Thus, at each point i in the trace, we need only to track the predicates in ψ̂i. For

example, after executing the first instruction, all we need to know is x = ctr , after the

second, all we need to know is x = ctr − 1, after the third, all we need to know is x = y− 1,

and so on. This gives us a way to localize predicate usage. Thus, instead of a monolithic

set of predicates all of which are relevant at all points of a trace, we can deduce a small set

of predicates for each command of the trace.

3.3.2 Interpolants from Proofs

Consider formulas in the quantifier-free fragment of FOL. A sequent is of the form Γ ` ∆,

where Γ and ∆ are sets of formulas. The interpretation of Γ ` ∆ is that the conjunction of

the formulas in Γ entails the disjunction of the formulas in ∆.

55

Hyp
Γ ` φ

φ ∈ Γ

Comb
Γ ` 0 ≤ x Γ ` 0 ≤ y

Γ ` 0 ≤ c1x+ c2y
c1,2 > 0

Cong
Γ ` x1 = y1 . . . Γ ` xk = yk

Γ ` fk(x1, . . . , xk) = fk(y1, . . . , yk)0
fk is k-ary

Contra
{φ1, . . . , φn} ` 0 ≤ c
Γ ` ¬φ1, . . . ,¬φn

c < 0

Res
Γ ` {φ} ∪Θ Γ ` {¬φ} ∪Θ′

Γ ` Θ ∪Θ′

Figure 3.8: Proof system.

We use a decision procedure[Nel81; BHJ+] that generates refutations for sets of clauses

using the sequent proof system of Figure 3.8. In particular, all boolean reasoning is done

by resolution. This system is complete for refutation of clause systems over the rationals.

We obtain an incomplete system for the integers by systematically translating the literal

¬(0 ≤ x) to 0 ≤ −1− x, which is valid for the integers.

An interpolated sequent is of the form (ϕ−, ϕ+) ` ∆ [ψ], where ϕ− and ϕ+ are sets of

clauses, ∆ is a set of formulas, and ψ is a formula. This encodes the following three facts:

(1) A ` A′, (2) A′, B ` φ, and, (3) Every variable occurring in A′ also occurs in B or in φ.

Note that if (ϕ−, ϕ+) ` false [ψ], then ψ is an interpolant for (ϕ−, ϕ+).

There is a system of rules for corresponding to the rules of the proof system using which

we can derive interpolated sequents that are sound, in that they are valid, and complete,

in the sense that we can translate the derivation of any sequent ϕ− ∪ ϕ+ ` ∆ into the

derivation of an interpolated sequent (ϕ−, ϕ+) ` ∆[ψ].

In particular, we can show that for every derivation P of a sequent (ϕ−, ϕ+) ` φ in our

original proof system, there is a corresponding derivation P ′ of an interpolated sequent of the

form (ϕ−, ϕ+) ` φ [ψ]. We will refer to the interpolant ψ thus derived as ITP.(ϕ−, ϕ+).(P).

56

Using the same proof but partitioning the antecedent differently, we can obtain related

interpolants. For example, we can show the following fact:

Proposition 3 Let ϕ−, ϕ+, φ be formulas in FOL and P be a derivation of ϕ−, ϕ+, φ `

false. Then, ITP.(ϕ−, φ ∪ ϕ+).(P) ∧ φ⇒ ITP.(ϕ− ∪ φ, ϕ+).(P).

The interpolant derivation rules have been proposed and studied by others and are

beyond the scope of this dissertation. We refer the reader to the proof-theory literature

[Kra97; Pud97] for the rules for boolean reasoning and linear arithmetic and to the work

of Ken McMillan on combining the above with the theory of equality and uninterpreted

functions [McM03; McM04], which was the inspiration for our work.

3.3.3 The Algorithm Refine

The refine operator is given an initial region r, a trace σ and an error region E , such

that σ is a bogus counterexample to E from r. It must return a region r ′ that is a more

precise version of r such that σ is not an abstract counterexample to E from r ′. In the

case of imperative programs, the error region is a particular location pc E in the program,

i.e., E = (pcE , (true, ·), ·). We assume, for clarity, that the starting region is the atomic

region (pc, (ϕ,Π), cs). In this case, the trace σ is a bogus counterexample because SPΠ.ϕ.σ

is satisfiable, even though SP.ϕ.σ is not. It suffices to find a new support predicate set Π ′

such that SPΠ′ .ϕ.σ is unsatisfiable, and then the refined region returned, i.e., Refine.(r, σ, E)

is just (pc, (ϕ,Π′), cs).

Our method, described in Section 3.3.1, is made precise in Algorithm 3. First, we

initialize Π′ to be the empty map. Second, we use an operator Con, to build a constraint

map Γ, a function that maps each point i of the trace σ to a constraint that corresponds

to the ith operation of the trace. The conjunction of the constraints that are generated at

all points of σ is the trace formula (TF) for σ, which is satisfiable iff the trace is feasible.

Third, we find a proof P of the unsatisfiability of the TF. Such a proof exists as σ a bogus

counterexample, and hence the TF is unsatisfiable. Fourth, for each point i in the trace, we

cut the constraints into those from the first i commands (ϕ−) and those from the remaining

commands (ϕ+). Using the proof P we compute the interpolant ψ for (ϕ−, ϕ+) and add

the atomic predicates that occur in ψ after cleaning to the predicate map Π′. Finally, the

57

Algorithm 3 Refine

Input: A region r = (pc, (ϕ,Π), cs), a trace σ, region E = (pcE , (true , ·), ·), s.t. σ is a bogus
counterexample from r to E .

Output: A region r′, s.t. σ is not an abstract counterexample to E from r ′.
Π′ := ∅ {Initialize}
(·,Γ) := Con.(θ0,Γ0 :: IC.θ0.ϕ) {Build Trace Formula}
P := derivation of

∧
1≤i≤n Γ.i ` false {Find Proof of Unsatisfiability}

for i := 1 to |σ| do
{Cut TF at each point}

ϕ− :=
∧

1≤j≤i Γ.j

ϕ+ :=
∧
i+1≤j≤n Γ.j

ψ := ITP.(ϕ−, ϕ+).(P)
Π′.(σ.i) := Atoms.(Clean.ψ) {Add predicates from interpolant at cut}

return (pc, (true ,Π ∪Π′), cs).

region returned is the input region with the new support predicates Π′ added to the original

support set. The correctness of this procedure is stated in Theorem 4.

Theorem 4 [Correctness of Refine] For any trace σ and region r = (pc, (ϕ,Π), cs), if

SP.ϕ.σ is unsatisfiable, i.e., σ is infeasible from r then SPΠ′ .ϕ.σ is unsatisfiable i.e., σ is

abstractly infeasible from Refine.(r, σ, ·) = (pc, (ϕ,Π′), cs).

Proof. (Sketch) Let r′ = Refine.(r, σ, ·). It suffices to show that at the end of the

Algorithm 3, the Π′ is such that SPΠ′ .ϕ.σ is unsatisfiable, as from this it follows that

p̂ost.r′.σ ≡ ⊥), and hence σ is not an abstract counterexample to E . Let σi denote the

prefix of the first i operations of σ, namely σ.1 · . . . · σ.i, and let ψi be the cleaned inter-

polant from the i-cut, namely Clean.ψ, at the end of the ith iteration of the for loop. We

can show, by induction on i, and using Proposition 3, that SPΠ′ .ϕ.σi ⇒ ψi. As the TF is

unsatisfiable, ψ|σ| is false, and so SPΠ′ .ϕ.σ ⇒ ψ|σ| ⇒ false i.e., SPΠ′ .ϕ.σ is unsatisfiable.

2

In particular, Theorem 4 states that our predicate discovery procedure Refine is complete

in the sense that if the refined region r ′ returned is such that the trace is abstractly infeasible

from it, and hence is not an abstract counterexample from r. Note that we lose precision by

modelling operations like multiplication with uninterpreted functions, and the integers with

rationals. In all these cases though, the “concrete” semantics, obtained via the SP operator,

are themselves approximations. For the latter case, if the trace is deterministic, we never

58

l SP.ϕ.l Con.(θ,Γ).l

(f() : ·) ϕ (θ,Γ:: true)

(return : ·) “” “”

(x := e : ·) ∃x′. (ϕ[x′/x] ∧ x = e[x′/x]) (θ′,Γ::Sub.θ′.(x = Sub.θ.e))

where x′ is a fresh variable where θ′ = Upd.θ.{x}

(assume[p] : ·) ϕ ∧ p (θ,Γ::Sub.θ.p)

Figure 3.9: Postconditions and Constraints for PI traces.

assign an arbitrary integer value to a variable, then we can assume that all integer variables

are initialized to some default integer value, say 0. In this case all satisfying assignments of

the SP of a trace will be integral even if the SP is interpreted over the rationals. Thus, if

the trace is infeasible over the integers, our proof system can derive the unsatisfiability of

the strongest postcondition.

We now fill in the details of the above algorithm 3, by showing how to generate the

constraint map using the operators Con and IC, and by showing how Clean works. As

before, we shall first discuss pointer-free programs, and then generalize to programs with

pointers.

Constraints for Pointer-free Programs : PI

Lvalue Maps. An lvalue map is a function θ from Lvals.X to IN. The operator Upd:

(Lvals.X → IN) → 2Lvals.X → (Lvals.X → IN) takes a map θ and a set of lvalues L, and

returns a map θ′ such that θ′.l = θ.l if l 6∈ L, and θ′.l = il for a fresh integer il if l ∈ L. The

function Sub takes an lvalue map θ and an lvalue l and returns 〈l, θ.l〉. The function Sub.θ

is extended naturally to expressions and formulas. A new lvalue map is one whose range

is disjoint from all other maps. We use lvalue maps to generate trace formulas (TF); at a

point in the trace, if the map is θ, then the the pair 〈l, θ.l〉 is a special constant that equals

the value of l at that point in the trace. Whenever some lvalue l is updated, we update the

map so that a fresh constant is used to denote the new value of l. For every such constant

c = 〈l, i〉, let Clean.c = l. The operator Clean can be naturally extended to expressions and

formulas of FOL.

59

true
(assume (b > 0) :pc1); 〈b, 0〉 > 0

(c := 2 ∗ b :pc2); 〈c, 1〉 = 2 ∗ 〈b, 0〉
(a := b :pc3); 〈a, 2〉 = 〈b, 0〉

(a := a− 1:pc4); 〈a, 3〉 = 〈a, 2〉 − 1 ϕ−

(assume (a < b) :pc5); 〈a, 3〉 < 〈b, 0〉 ϕ+

(assume (a = c) :pc6) 〈a, 3〉 = 〈c, 1〉

Figure 3.10: Cutting a PI trace.

Constraint Maps. A constraint map is map Γ : IN → FOL ∪ ⊥. By Γ0 we denote the

map: λn.⊥, i.e., which returns ⊥ everywhere. By |Γ| we denote min{n | Γ.n = ⊥}. Given a

formula ϕ in FOL, by Γ::ϕ we denote the map Γ[|Γ| 7→ ϕ]. By
∧
n Γ we denote the formula

∧
i≤n Γ.i, where occurrences of ⊥ are replaced with true.

Constraint Generation. The constraints are generated by the function Con, which takes

a pair (θ,Γ) consisting of an lvalue map θ and a constraint map Γ, and a command (pc :op),

and returns a pair (θ′,Γ′) consisting of a new lvalue map and constraint map. The map is

extended to traces as: Con.(θ,Γ).ε = (θ,Γ) and Con.(θ,Γ).lσ = Con.(Con.(θ,Γ).l).σ.

The function Con is defined in Figure 3.9, where we also repeat the definition of SP,

as the generated constraints are a skolemized version of the strongest postcondition. We

generate one constraint per command: If the operation is an assignment x := e, we first

update the lvalue map so that a new constant denotes the value of x, and the constraint

specifies that the new constant for x has the same value as the expression e (with appropri-

ate constants substituted for program variables). If the operation is an assume operation

assume[p], the constraint stipulates that the constants at that point satisfy the formula p.

The initial constraint IC.θ0.ϕ is just Sub.θ0.ϕ. For any formula ϕ in FOL, we can show, by

induction over the length of σ, that Sub.θ.(SP.ϕ.σ) is equivalent (upto renaming of vari-

ables) to
∧

|σ| Γ where (θ,Γ) = Con.(θ0,Γ0 :: Sub.θ0.ϕ).σ. Here Γ.i is the constraint for

command σ.i. This gives the following propostion.

Proposition 4 [Equisatisfiability] For a trace σ, and formula ϕ in FOL, let (·,Γ) =

Con.(θ0,Γ0 :: IC.θ0.ϕ).σ. Then SP.ϕ.σ is satisfiable iff the
∧

|σ| Γ is satisfiable. Moreover,

the size of
∧

|σ| Γ is linear in the size of σ.

60

Example 8 [Constraints from Traces] Consider the infeasible trace from [BR02a]

shown on the left in Figure 3.10. On the right, the figure shows the result of Con.(θ0,Γ0 ::

true).σ, where the initial lvalue map θ0 maps a, b, and c to 0. To the right of each command

is the corresponding constraint. When we cut the trace at the fourth location, the resulting

pair (ϕ−, ϕ+) consists of the conjunctions of the constraints from above and below the line,

respectively. The interpolant in this case is 〈a, 3〉 ≤ 〈c, 1〉 − 2, which upon cleaning yields

the predicate a ≤ c− 2. Notice that the constants common to both sides of the cut denote

the values of the respective variables after the first four operations, and ϕ− implies the

interpolant. 2

Programs with Pointers : PII

l SP.ϕ.l Con.(θ,Γ).l

(f() : ·) ϕ (θ,Γ:: true)

(return : ·) “” “”

(l := e : ·) ∃M ′.(ϕ[M ′/M] ∧M = upd(M ′,M ′.l,M ′.e)) (θ′,Γ::ϕ)
where M ′ is a fresh store where (θ′, ϕ) = Asgn.X.θ.(l, e)

X is the program’s variables

(assume[p] : ·) ϕ ∧M.p (θ,Γ::Sub.θ.(clos∗.true.p))

Figure 3.11: Postconditions and constraints for PII traces.

We now show how to generate constraints for consider programs with pointers in a

sound and complete way.

Constraints for modeling allocation. Suppose there are two variables x and y, each

of type ref Int . When the program begins, and the pointers are allocated, the standard

semantics is that their values are not equal. For completeness, this must be explicitly

modeled by constraints. For a set X of variables, let:

Mreach.X = {∗kx | x ∈ X and k ≥ 0}

be the set of cells that are reachable from X by dereferences. As we do not have recursive

types, this set is finite and syntactically computable (k is bounded by the type of x). For

an lvalue l, let

Alias.X.l = {l′ | l′ ∈ Mreach.X and l′ may be aliased to l}

61

Note that the above is a subset of {l′ | l′ ∈ Mreach.X and typ.l′ = typ.l 6= Int}, and hence,

finite. For correctness, we shall only require that Alias.X.l overapproximates the set of

lvalues that can actually alias l. Let

Aliases.X = {(l, l′) | l ∈ Mreach.X and l′ ∈ Alias.X.l}

To model the distinctness of pointers at the start of execution, we assume that the first

command of the initial function fmain, is an assume statement that stipulates the predicate
∧

(l,l′)∈Aliases.X l 6= l′, where X is the program’s variables. Note that this clause is this clause

is quadratic in the size of X. An example is the first assume in the trace of Figure 3.12.

Modeling the store with lvalue maps. Recall that using sel and upd it is straightfor-

ward to generate the strongest postconditions for programs with pointers; see Figure 3.11.

Unfortunately, the theory of arrays does not have the interpolant property, thus we cannot

get interpolants from TFs that use this theory. For example, the conjunction of:

M ′ = upd(M,x, y)

and

(a 6= b) ∧ (sel(M,a) 6= sel(M ′, a)) ∧ (sel(M, b) 6= sel(M ′, b))

is not satisfiable, but there is no quantifier-free interpolant in the common set of variables,

namely {M,M ′}. We surmount this hurdle by modeling the memory axioms using (general-

ized) lvalue maps, and by instantiating the array axioms on demand. Recall the definitions

of lvalue maps and Upd from Section 3.3.3. The set ChLval consists of elements cl gener-

ated by the grammar cl ::= 〈x, i〉 | 〈cl , i〉, where i ∈ IN. The function Clean of the previous

section is extended by Clean.〈x, i〉 = x and Clean.〈cl , i〉 = ∗(Clean.cl). Each cl ∈ ChLval

is a special constant that denotes the value of Clean.cl at some point in the trace. The

function Sub of the previous section is extended to all lvalues by Sub.θ.(∗kx) = 〈x, θ.x〉

if k = 0, and Sub.θ.(∗kx) = 〈Sub.θ. ∗k−1 x, θ.(∗kx)〉 otherwise, and extended naturally to

expressions, atomic predicates, and formulas.

Constraints for assume operations. Modeling the memory with sel and upd gives us

some relations for free, e.g. from x = y (modeled as sel(M,x) = sel(M,y)) the equality

∗x = ∗y (modeled as sel(M, sel(M,x)) = sel(M, sel(M,y))) follows by congruence. We

62

explicitly state these implied equalities when generating constraints, by closing a predicate

with the operator clos∗.true: FOL→ FOL, where

clos∗.b.p =





(clos∗.b.p1) op (clos∗.b.p2) if p ≡ (p1 op p2),

¬(clos∗.(¬b).p1) if p ≡ (¬p1),

p ∧
∧

0≤k≤N ((∗kl1) = (∗kl2)) if p ≡ (l1 = l2) and b = true

p otherwise.

provided typ.l1 = typ.l2 = refN Int . The formula clos∗.true.p explicates all equalities in-

ferred by the memory axioms from the formula p. When generating the constraints for

assume (p), we first “close” p using clos∗, and then generate constraints for the result. Con-

sider, for example, the constraint for the fourth command in Figure 3.12. For any formula

p that can appear in an assume , we have M.p⇔ M.(clos∗.true.p) in the theory of arrays.

Using this equivalence, we can show the following proposition, which tells us that the con-

straints have been modeled adequately. For a program P , an lvalue ∗kx is well-typed in P

if typ.x = ref N Int for some N ≥ k, i.e., if x has type ref Int , then ∗x is well-typed but

not ∗ ∗ ∗x. A formula p is well-typed w.r.t. P if (1) it does nor contain memory variables,

sel, or upd, and (2) each lvalue that occurs in p is well-typed in P .

Proposition 5 For a program P, two formulas p, p′ ∈ Pred.X that are well-typed w.r.t. P,

and an lvalue map θ, the condition M.p implies M.p′ iff Sub.θ.(clos∗.true.p) implies Sub.θ.p′.

Constraints for assignments. When assigning to ∗l1 we must explicate that for all

lvalues ∗l2 such that l1 = l2, the value of ∗l2 is updated as well. Let Equate be a function

that takes a pair of lvalue maps (θ1, θ2) and a pair of expressions (l1, l2), and generates

equalities between the names of l1 and its transitive dereferences under θ1, and the names

of l2 and its transitive dereferences under θ2. Formally,

Equate.(θ1, θ2).(l1, l2) =
∧

0≤k≤N

(Sub.θ1.(∗
kl1) = Sub.θ2.(∗

kl2)),

where typ.l1 = typ.l2 = refN Int . Define the function EqAddr, which takes a pair of lvalues

and returns a formula that is true when the lvalues have the same address, as:

EqAddr.(∗k1x1, ∗
k2x2) =

{
false if k1 = 0 or k2 = 0

(∗k1−1x1 = ∗k2−1x2) otherwise.

63

Finally, we define the function Asgn, which generates appropriate constraints for an assign-

ment l := e. The function Asgn takes a set of variables X, an lvalue map θ, and a pair

(l, e), where l is an lvalue and e the expression that is being written into l, and returns

a pair (θ′, ϕ′) of an updated lvalue map θ′ and a formula ϕ′. Define θ′ = Upd.θ.S, where

S = {∗kl′ | l′ ∈ (Alias.X.l) ∪ {l} and k ≥ 0}, and define

ϕ′ = Equate.(θ′, θ).(l, e)∧

∧

l′∈Alias.X.l




ite. (Sub.θ.(EqAddr.(l, l′))).
(Equate.(θ′, θ).(l′, e)).
(Equate.(θ′, θ).(l′, l′))


 .

The first conjunct of ϕ′ states that l gets a new value e, and all transitive dereferences of

l and e are “equated” (i.e., ∗l gets the new value ∗e, and so on). The big second conjunct

of ϕ′ states how the potential aliases l′ of l are updated: if l and l′ have the same address,

then the new value of l′ (given by Sub.θ′.l′) is equated with e; otherwise the new value of

l′ is equated with the old value of l′ (given by Sub.θ.l′). This generalizes Morris’ definition

for the strongest postcondition in the presence of pointers [Mor82].

Proposition 6 Let l := e be an assignment in a program P, let ϕ = SP.true .(l := e : ·),

and let (θ′, ϕ′) = Con.(θ0, true).t for some lvalue map θ0. For every formula p ∈ Pred.X

that is well typed w.r.t. P, the formula ϕ implies M.p in the theory of arrays iff ϕ ′ implies

Sub.θ′.p.

Constraint Generation. Figure 3.11 gives the definition of the operator SP using the

theory of arrays, as well as the generated constraints. Notice that the “current” memory is

always represented by M . We use Asgn to generate the appropriate constraints for dealing

with the possible alias scenarios. For assume operations, the constraint generated is on the

“closure” of the predicate using clos∗. Constraints for traces are obtained as before. The

initial predicate IC.θ0.ϕ is Sub.θ0.(clos
∗.true .ϕ). The size of the constraints is quadratic in

the size of the trace. By induction over the length of the trace, splitting cases on the kind

of the last operation, and using Propositions 5 and 6, we can prove the following theorem.

Theorem 5 Given a trace σ of a program P, let (θ,Γ) = Con.(θ0,Γ0 :: IC.θ0.ϕ).t, and

let ϕr = SP.ϕ.σ. For every formula p ∈ Pred.X that is well-typed w.r.t. P, the formula

64

true
(assume (x 6= y) : pc1); 〈x, 0〉 6= 〈y, 0〉

(∗x := 0 : pc2); 〈∗〈x, 0〉, 3〉 = 0
(y := x : pc3); 〈y, 4〉 = 〈x, 0〉 ∧ 〈∗〈y, 4〉, 5〉 = 〈∗〈x, 0〉, 3〉

(assume (y = x) : pc4); 〈y, 4〉 = 〈x, 0〉 ∧ 〈∗〈y, 4〉, 5〉 = 〈∗〈x, 0〉, 3〉
(∗y := ∗y + 1 : pc5); 〈∗〈y, 4〉, 6〉 = 〈∗〈y, 4〉, 5〉+ 1∧

ite.(〈x, 0〉 = 〈y, 4〉)
.(〈∗〈x, 0〉, 7〉 = 〈∗〈y, 4〉, 5〉+ 1)
.(〈∗〈x, 0〉, 7〉 = (〈∗〈x, 0〉, 3〉))

(assume (∗x = 0) : pc6) 〈∗〈x, 0〉, 7〉 = 0

Figure 3.12: Cutting a PII trace.

ϕr implies M.p in the theory of arrays iff
∧

|σ| Γ implies Sub.θ′.p. Hence, the trace ϕr is

satisfiable iff
∧

|σ| Γ is satisfiable. Moreover, the size of
∧

|σ| Γ is cubic in the size of σ.

Example 9 [Constraints from PII Traces] The right column in Figure 3.12 shows the

constraints for the trace on the left. For readability, we omit unsatisfiable and uninteresting

disjuncts (for the second and third commands). At the fourth cut-point of this trace, the

common variables are 〈∗〈y, 4〉, 3〉, 〈y, 4〉, 〈x, 0〉, and 〈∗〈x, 0〉, 3〉, which denote the values of

∗y, y, x, and ∗x at that point in the trace. The interpolant for this cut is 〈∗〈y, 2〉, 3〉 = 0,

which gives the predicate ∗y = 0 for the location pc4. 2

3.4 Theoretical Issues

In this section we consider two theoretical issues regarding lazy abstraction. First, we

provide sufficient conditions for the termination of the algorithm LazyAbstraction. Second,

we show that it is undecidable to check if there is a finite predicate abstraction that is

sufficient to prove a given safety property.

3.4.1 Termination

Let S = (X,Σ,;) be a labeled transition system. For a state s ∈ S and a sequence σ ∈ Σ∗,

we write s
σ
; if there is a state s′ ∈ S such that s

σ
;s′. Two states s1, s2 ∈ S are trace-

equivalent if for every σ ∈ Σ∗, we have s1
σ
; iff s2

σ
;. The labeled transition system S has

a finite trace equivalence if the trace-equivalence relation on S has a finite index.

Let A be an abstraction structure for S with region set R and extension function [[·]].

The abstraction structure A satisfies the ascending-chain condition if there does not exist

65

an infinite strictly increasing sequence r0 < r1 < · · · < rk < · · · of regions in R, where

r < r′ if [[r]] ⊂ [[r′]].

In the following theorem we make two assumptions. First, in order to relate trace

equivalence with the reachability of error states, we assume without loss of generality that

error states have no outgoing transitions; that is, for every state s ∈ [[E]], there is no label

l ∈ Σ such that s
l
−→. Second, we assume that the keep subtree function used by algorithm

LazyAbstraction on line 11 always returns false, to avoid infinite loops as in Example 2.

Theorem 6 [Termination] Let A be an abstraction structure for a labeled transition sys-

tem S, and let Φ be a refine operator for A. If

(i) S has a finite trace equivalence, and

(ii) A satisfies the ascending chain condition,

then for every initial region r0 and error region E, the execution of LazyAbstraction.(A,Φ, r0, E)

(Algorithm 2) terminates.

In the proof, we use finite trace equivalence to show that a node in the reachability

tree cannot be refined infinitely often, and then derive (by way of contradiction) an infinite

ascending chain of regions for any nonterminating run. Unfortunately, the regions obtained

from predicate abstraction with respect to an infinite predicate language usually do not

satisfy the ascending chain condition. However, for a given labeled transition system with

a finite trace equivalence, we may be able to choose a predicate language with a finite

set of predicates, such as predicates that define (unions of) trace-equivalence classes. For

example, this is the case for timed automata [AD94]. As the boolean combinations of a

finite set of predicates trivially satisfy the ascending chain condition, the theorem guarantees

termination.

3.4.2 Finite predicate abstraction is undecidable

The Lazy Abstraction algorithm with predicate abstraction does not necessarily terminate

on labeled transition systems with infinite state spaces. Indeed, we show that the problem

whether there is a finite set of support predicates that witnesses a given safety property is

66

undecidable. Let L be a predicate language for the labeled transition system S = (X,Σ,;).

Let Γ be a finite set of predicates from L, and define the induced equivalence ∼=Γ on S as

s1 ∼=Γ s2 iff for all predicates p ∈ Γ, we have s1 ∈ [[p]] iff s2 ∈ [[p]]; denote by [s]∼=Γ the equiv-

alence class of state s. The quotient S∼=Γ
is the labeled transition system ({x∼=},Σ,;∼=),

with the single variable x∼= whose range is the (finite) set of equivalence classes of ∼=Γ, and

for all l ∈ Σ, we have s
l

;∼=s
′ iff there exist two states t ∈ s.x∼= and t′ ∈ s′.x∼= with t

l
;s′.

Note that every path in labeled transition system has a counterpart in the quotient, but

not necessarily vice versa.

For a predicate language L for 2-counter machines, the L-finite abstraction problem

L-FINABS is defined as follows:

• Input A 2-counter machine M , an initial state m0 and a final state mf of M , both

definable in L.

• Output “Yes” if either mf is reachable in M from m0, or there is a finite set Γ of

predicates from L such that [mf]∼=Γ
is not reachable in the quotient M∼=Γ

from [m0]∼=Γ
.

Notice that the problem is not trivial as the set of states reachable from m0 (or the set of

states that can reach mf) may not be expressible as a boolean formula over predicates in L.

Let Presburger-FINABS be the finite abstraction problem where L contains the control

locations as propositions, and the quantifier-free formulas of Presburger arithmetic for con-

straining the counter values. We show undecidability by reduction from the halting problem

for 2-counter machines. In particular, given M , we construct a 2-counter machine M ′ with

initial state m′
0 and halting state m′

f such that M halts iff 〈M ′,m′
0,m

′
f 〉 is in Presburger-

FINABS (we construct M ′ such that the reachable states of M ′ cannot be defined by a

Presburger formula).

Theorem 7 Presburger-FINABS is complete for Σ0
1 sets.

More generally, let L be any predicate language for 2-counter machines. Then L-

FINABS is complete for Σ0
1 sets.

67

3.5 Related work

Our work is related to counterexample-driven abstraction refinement [BR01; CGJ+00;

DD01; Sai00]. As in [BMMR01; DDP99; GS97a], we automatically construct a predicate

abstraction by using an automatic theorem prover to answer satisfiability queries. However,

all previous counterexample-driven refinement methods do not reuse the work done in one

pass in the next pass: after every pass, the abstraction is constructed from scratch, and

the new system is model checked. The results from model checking the previous passes are

not reused, and a large part of the symbolic state space may be traversed repeatedly, even

though a coarser abstraction is sufficient to prove the property of interest for that region.

Lazy abstraction takes advantage of previous runs by abstracting locally.

Dataflow and type-based analyses have been used to check safety properties of systems

code (e.g., [ECCH00; FTA01; Ste93]). These analyses typically ignore data dependence and

may generate false positives owing to infeasible paths. Our work can be seen as an extension

to such analyses by introducing path sensitivity to the analysis. Moreover, counterexample-

driven refinement avoids an explosion of spurious error traces.

Current predicate discovery engines that learn predicates from traces implement (vari-

ations on) the following basic algorithm [HJMS02; BR02a; DD02; CCGS03]. Given a trace,

the tool symbolically executes the trace, keeping a history of what values every variable held

at each point, and checking for an inconsistency at each step. Upon finding an inconsistency,

the tool looks at which components of the present state are inconsistent, and performs a

value flow analysis to detect which old values can transitively effect the inconsistent state.

It then returns a minimally infeasible subset of the facts as the new set of predicates. This

method suffers from two drawbacks. First, the inconsistent state may depend on old values

of variables, requiring the introduction of new “symbolic variables” denoting these stale val-

ues for the variables at various points in the program []. However it is often not clear which

symbolic variables are enough, and several ad hoc heuristics are used [BR]. Second, the

tool cannot pinpoint where exactly the predicates are needed and where they are not, thus

making the resulting abstraction over several iterations too detailed; efforts to minimize the

set over several iterations lead to considerable optimization effort [CCGS03].

68

On the other hand, predicate discovery based on interpolants does not have the above

problems: the predicates learnt are in terms of the current state (thus eliminating the need

for intermediate symbolic variables in functions), and local (thus keeping the abstraction

small).

69

Chapter 4

Applications

We have implemented Lazy Abstraction in a tool called Blast , downloadable at http://www.eecs.berkeley.edu/~blast,

that checks safety properties of C programs. We handle all syntactic constructs of the C

language, including pointers, structures, and procedures. Constructs not in the predicate

language are left uninterpreted, which implies a loss of precision in our “concrete” semantics.

Also, we do not model pointer arithmetic precisely; we assume a logical model of memory.

Thus, we model the expression p + i, where p is a pointer and i is an integer, as yielding

a pointer value that points to the object pointed to by p. Currently we handle procedure

calls using an explicit stack and do not handle recursive functions, but the systems code we

have analyzed is not recursive.

Our tool is written in Objective Caml (http://www.ocaml.org), and consists of two

main parts:

1. A functor implementing the LazyAbstraction algorithm, which takes a symbolic ab-

straction structure together with a focus operator as input, and

2. The symbolic abstraction structure and refine operator for C. The latter is made up

of two parts: (a) the C front end, for which we use the CIL C Compiler Infrastructure

[NMRW02], which converts a C program to a Control-flow Graph, from which we

obtain the CFAs, and (b) a module that contains the data structures for C regions as

well as the functions post, p̂ost, and Refine.

In order to obtain checkers for other formalisms, one need only to implement and plug in

a symbolic abstraction structure together with a Refine procedure for the formalism. We

briefly discuss some aspects of our implementation, not considered in earlier chapters.

70

http://www.eecs.berkeley.edu/~blast
http://www.ocaml.org

1. Regions. The boolean formulas over predicates that represent data regions are stored

as BDDs [Som98] to get a canonical sum-of-product form for formulas. Apart from com-

pactly representing the abstract regions, the BDD representation also allows easy boolean

manipulation and covered (inclusion) checking. For each control state, i.e., pair of program

counter and stack, we store as a BDD, the union of all the data regions seen for that con-

trol location. To check if a node is covered, we use BDD operations to check whether the

node’s data region implies (under a purely boolean interpretation), the presently seen data

region for the corresponding control location. To check if a region is empty, we check, using

the decision procedure Simplify [DNS], whether the formula corresponding to the region is

satisfiable.

2. Post. To implement SP, we use a flow-insensitive implementation of Andersen’s Alias

analysis [And94] to prune the number of disjuncts arising from splitting cases on the possible

lvals that may be affected by an update (cf. Section 3.3.3).

3. Abstract Post : Cartesian Abstraction. We have found that computing the most

precise predicate abstraction via a recursive subdivision of the state space [GS97b; DDP99;

SS99; FQ02] is prohibitively expensive for the large numbers of predicates that we need

to track, as they require exponentially many (in the number of predicates), calls to deci-

sion procedures. Fortunately, for the programs we have considered, a significantly cheaper

method, called cartesian abstraction[GS97b] is sufficiently precise. We fix a canonical sum-

of-product form for formulas. We ask, for each disjunct ψ of the canonical sum-of-product

form of ϕ, and each support predicate p ∈ Λ, if ψ implies p, and if ψ implies ¬p. This

gives, for each disjunct ψ of ϕ, a conjunction ψ ′ of support predicates, where the predicate

p occurs positively if ψ ⇒ p is valid, occurs negatively if ψ ⇒ ¬p is valid, and does not occur

if neither validity holds. Let ϕ′ denote the disjunction of all conjunctions ψ ′ so constructed.

The region Âbs.Λ.ϕ is the formula ϕ′. Hence, to compute p̂ost, we compute

SPΠ.ϕ.l = Âbs.(Π.l).(SP.ϕ.l)

The imprecision of Cartesian abstraction has not caused false positives for the programs we

have considered. In our experiments (see Section 4.1), we could prove all the properties using

71

the Cartesian p̂ost in much less running time. Since the abstract p̂ost of a region is computed

very frequently in the lazy-abstraction algorithm, any speedup in its computation results in

a significant overall speedup. The Cartesian abstraction computed above takes time linear

in the number of support predicates, as opposed to exponential in the number of support

predicates for the most precise computation. For the validity checks described above, checks

in the counterexample analysis we use the theorem prover Simplify. Nevertheless, it would

be interesting to see if the interpolation based methods described in Section 3.3 could be

applied to refine Cartesian Abstractions by discovering which predicates need to be tracked

precisely. In addition to the above, we treat basic blocks of sequences of assignments.

4. Refine. The algorithm for generating interpolants [McM04] uses the Vampyre proof-

generating theorem prover, available at http://www.eecs.berkeley.edu/~rupak/Vampyre.

For efficiency, we have implemented several optimizations of the basic procedure described

in Section 3.3. First, we treat sequences of assignments atomically. Second, we do not cut

at every point of a spurious error trace. Instead, we perform a preliminary analysis which

identifies a subset of the constraints that imply the infeasibility of the trace, and only con-

sider the instructions that generate these constraints as cut-points. It is easy to check that

the optimized procedure is still complete. We also identify multiple reasons for infeasibility

of a trace in one refinement step. When we have identified a subset of constraints that imply

infeasibility, we replace each constraint arising from an assume statement in this subset to

true, and repeat a search for unsatisfiability with the new, weaker set of constraints.

4.1 Device Driver Verification

We have run the implementation to check simple safety properties of some Linux and

Microsoft Windows NT device drivers. The properties are specified using a language that

allows the user to specify legal sequences of events (such as function calls, returns), using

monitor automata that can view those events during the execution of the program. The

safety property then amounts to specifying which sequences of events are legal: illegal

sequences of events lead to the error state. The language is described in detail in [BCH+04a].

By default Blast makes optimistic assumptions about missing functions, namely they are

72

http://www.eecs.berkeley.edu/~rupak/Vampyre

Figure 4.1: Property 1: Double Locking

.

Name LOC Predicates Thm Prover Calls Running
Total Active Total Cached Time (s)

driver.c 95 3 3 260 165 0.08
funlock.c 40 4 3 340 182 0.14

read.c 370 28 18 5643 2862 4.42
floppy.c 6473 5 5 4137 3759 2.05
qpmouse.c 400 3 3 3117 2925 0.74

ll rw block.c 1281 9 7 10143 9483 5.82

Table 4.1: Double Locking

treated as assume true. We check the code using a model of the kernel that exercises the

driver. The model first calls the driver initialization routine, then calls the driver functions

(read, write, etc.) in a loop, and finally unloads the driver.

Double Locking

The first property we checked for was double locking, i.e., that calls to lock() and unlock()

alternate, the same property as in the example from Section 3.1, shown again in Figure 4.1.

All times are on a 800MHz Pentium III with 256M RAM, and do not include parsing time.

The results are summarized in Table 4.1. LOC refers to postprocessed lines of code. The

total number of predicates is the total number required in the run; the active column gives

the total number of support predicates active at any particular node in the reachability tree.

There are many redundant theorem prover calls (the fraction of cached calls is very high).

In several examples, the benefits of local predicates can be seen as the number of active

predicates is less than the total number of predicates. This is especially true for read.c,

because the property being checked has two disjoint branches, which require different sets

of predicates to be verified.

73

The program driver.c is the driver code from [BR01]; the program funlock.c is the

example from Section 3.1. The file read.c is a (simplified) serial driver and floppy.c is

a floppy driver from the Microsoft Windows DDK. Finally, qpmouse.c and ll rw block.c

are Linux device drivers (from the 2.4.9 kernel). We check locking disciplines in floppy.c

and ll rw block.c. We check for null pointer dereferences in qpmouse.c. In read.c we

check the property discussed in [BR01], namely, that the driver dispatch routine correctly

handles both immediate and asynchronous services. In most cases, correctness cannot be

proven using a data-independent analysis [FTA01], and requires the automatic discovery

of relevant predicates. Moreover, correctness spans several functions, so an interprocedural

analysis is required.

In ll rw block.c, a spinlock is acquired in function make request, and passed on

to function add request. Under normal circumstances, add request returns with the lock

held, and make request unlocks it. However, in case there is a system bug, the driver

invokes the macro BUG(), and the lock is unlocked. The first run of the tool did not model

the behavior of BUG() (which causes the system to crash), and found an error trace that

involved a call to add request from make request with the lock held, a system bug,

an unlock and return, and a subsequent unlock in make request. We then modified

the specification to check for the locking discipline only when no system bugs occur. The

property could now be proved.

Program LOC Monolithic Parsimonious
src/pre Disc Reach Disc Reach Preds Avg/Max

kbfiltr 5933/12301 1.12 0.30 3.48 0.10 72 6.5/16
floppy 8570/17707 7.10 3.59 25.20 0.46 240 7.7/37
diskperf 7209/14286 5.36 3.3 13.32 0.27 140 10/31
cdaudio 8921/18209 20.18 4.55 23.51 0.52 256 7.8/27
parport 12288/61777 - - 74.58 2.23 753 8.1/32
parclass 30380/138373 - - 77.40 1.6 382 7.2/28

Table 4.2: Experimental results for Blast checking the IRP Handling property: ‘m’ stands for
minutes, ‘s’ for seconds; ‘LOC’ is the number of lines of code: src is raw C source, pre is preprocessed
code fed into Blast (including stubs, libraries etc.) ’Monolithic’ is using the same set of predicates
everywhere, previous approaches to predicate discovery, ’Parsimonious’ is the method described in
the previous chapter; ‘Disc’ is the total running time of the verification starting with the empty set
of predicates; ‘Reach’ is the time to perform the reachability analysis only, given all necessary pred-
icates; ‘Preds’ is the total number of predicates required, and Avg (Max) is the average (maximum)
number of predicates tracked at a program location; the symbol ‘-’ indicates that the tool does not
finish in 6 hours.

74

Figure 4.2: Property 2: IRP Handler

IRP Handler

The second safety property we considered was related to the correct handling of I/O Request

Packets (IRP) by Windows NT device drivers. The property is a finite-state automaton

with 22 states [BR], shown in Figure 4.2. The states correspond to various stages in the

processing of the IRP, and the edges to kernel system calls. The results, obtained on an IBM

ThinkPad T30 laptop with a 2.4 GHz Pentium processor and 512MB RAM, are summarized

in Table 4.2. We present two sets of numbers: ‘Monolithic’ gives the times for using a

monolithic set of predicates (traditional predicate abstraction) throughout the state space;

‘Parsimonious’ uses interpolants and tracks only the relevant predicates at each program

location. The monolithic version of Blast timed out after several hours on the drivers

parport and parclass. We found several violations of the specification in parclass. The

numbers in the table refer to a version of parclass where the cases that contain errors

are commented out. ‘Parsimonious’ performs better than the monolithic version (for larger

programs), as here the cost of predicate/location discovery is more than made up for by the

saving via the reduced abstract state space. For smaller programs, when started with the

empty set of initial predicates, ‘Monolithic’ is faster than ‘Parsimonious’, because the latter

may rediscover the same predicate at several different program locations. However, even

75

for small programs, as the predicates are tracked extremely precisely (the average number

of predicates at a program location is much smaller than the total number of predicates

required), ‘Parsimonious’ uses considerably less memory, and subsequent runs (for example,

for verifying a modified version of the program [HJMS03], or to generate proofs (described

in the next section), and the proof trees much smaller.

4.2 Temporal-safety proofs from Reachability Trees

Proof-carrying code (PCC) [Nec97b] has been proposed as a mechanism for witnessing the

correct behavior of untrusted code. Here, the code producer sends to the consumer the code

annotated with loop invariants and function pre- and postconditions, as well as a proof of

correctness of a verification condition, whose validity guarantees the correctness of the code

with respect to the specification. From the code and the annotations, the consumer can

build the verification condition and check the supplied proof for correctness. The checking

of the proof is much simpler than its construction. In particular, by encoding the proof,

proof checking becomes a type-checking problem. Proof-carrying code has the advantages

of avoiding trusted third parties, and of being tamper-proof, because tampering with either

the proof or the code will result in an invalid proof. The main problem faced by PCC is

that a user may have to supply annotations such as loop invariants. In [Nec97b] it is shown

how loop invariants can be inferred automatically for proofs of type and memory safety,

but the problem of inferring invariants for behavioral properties, such as temporal safety,

remains largely open [Ern00].

We show that Lazy Abstraction can be used naturally and efficiently to construct small

correctness proofs for temporal-safety properties in a PCC based framework. The proof

generation is intertwined with the model-checking process: the data structures produced

by lazy abstraction automatically supply the annotations required for proof construction,

and provide a decomposition of the proof which leads to a small correctness certificate. In

particular, using abstraction predicates only where necessary keeps the proof small, and

using the model checker to guide the proof generation eliminates the need for backtracking,

e.g., in the proof of disjunctions. Our strategy to generate proofs from model-checking

runs is different from [Nam01; PZ01]. We exploit the structure of sequential code so that

76

the proof is an invariant for every control location, along with local checks for every edge

of the control-flow graph that the invariants are sound. Both [Nam01; PZ01] work at the

transition-system level. On the other hand, they generate proofs for properties more general

than safety.

We have implemented proof generation in Blast , and have used it to automatically

construct proofs that various Linux and Windows device drivers satisfy certain temporal

safety properties. The proofs are fairly small, and we believe this provides evidence that

the approach can be used to construct small correctness certificates for low level systems

code.

4.2.1 Overview

1: do {
lock();

old = new;

2: if (*) {
3: unlock();

new++;

}
4: } while (new != old);

5: unlock();

exit;

new++
unlock()

lock()
old=new

unlock()

[new != old]

[new = old]

1

2

3

4

 5

exit

[true]

[true]

unlock()

False

LOCK=0

 LOCK=0 False

LOCK=1 & new=old

LOCK=1 & new=old

LOCK=0 & !new=old LOCK=1 & new=old

& new=old

LOCK=0 & new=old

1

2

3

4 4

1 5 1 5

 Exit

LOCK=1
& new=old

[true]

[new = old][new != old]

Figure 4.3: (a) The program Example, (b) CFA, (c) Reachability Tree

We consider a small example to give an overview of proof generation. We shall give a

quick overview of proof generation using the program in Figure 4.3(a), which is a fragment

of the program we saw earlier in Figure 2.2. The temporal-safety specification is that calls

to lock(), and unlock() should alternate; as we saw before this specification is violated iff

the program goes to the location ERR. Shown on the right in Figure 4.3(c) is the Reachability

Tree produced by LazyAbstraction Algorithm 2 when invoked on this program with the error

states ERR.

To certify that a program satisfies its specification, we use a standard temporal-safety

77

rule from deductive verification: given a transition system, if we can find a set I of states

such that (1) I contains all initial states, (2) I contains no error states, and (3) I is closed

under successor states, then the system cannot reach an error state from an initial state. If

(1)–(3) are satisfied, then I is called an inductive invariant set. In our setting, the temporal-

safety rule reduces to supplying for each vertex pc of the CFA an invariant formula I.pc

such that

1. (LOCK = 0)⇒ I.pc0;

2. I.pcE = false;

3. For each pair of CFA vertices pc
op
−→pc ′ SP.(I.pc).(op :pc ′)⇒ I.pc ′.

Thus, to provide a proof of correctness, it suffices to supply a location invariant I.pc for

each vertex pc of the CFA, and proofs that the supplied formulas meet the above three

requirements.

The location invariants can be mined from the reachability tree (Figure 4.3(c)). In

particular, the invariant for pc is the disjunction of all reachable regions that label the

nodes in the tree where the program counter is pc. For our example,

I.pc4 = (LOCK = 0 ∧ ¬new = old) ∨ (LOCK = 1 ∧ new = old)

It is easy to check, (LOCK = 0)⇒ I.pc0, since the root of the reachability tree is labeled

by the precondition of the program (LOCK = 0). Also, as there is no node labeled ERR in

the tree, we get the second requirement by definition. The interesting part is checking that

the third requirement, that for each edge pc
op
−→pc ′ of the CFA, SP.(I.pc).(op :pc ′)⇒ I.pc ′.

Consider the edge pc4
[new!=old]
−−−−−−→pc1. We need to show that

SP((LOCK = 0 ∧ ¬new = old) ∨ (LOCK = 1 ∧ new = old), [new! = old])⇒ (LOCK = 0).

To prove this, notice that as SP distributes over ∨, the disjuncts on the LHS can

be broken down into subformulas obtained from individual tree nodes. We can show the

implication by matching up each subformula with the appropriate successor on the RHS.

78

That is, it suffices to show that:

SP((LOCK = 0 ∧ ¬new = old), [new! = old])⇒(LOCK = 0)

SP((LOCK = 1 ∧ new = old), [new! = old])⇒(LOCK = 0)

To get each of the above, we recall how the formulas for the nodes of 1 were constructed

when building the reachability tree — they were the predicate abstractions, i.e., overapprox-

imations computed using a theorem prover, of the strongest postconditions of the formulas

labeling the respective parents. The computations by the theorem prover can be easily

turned into proofs, which serve as proofs for the above obligations. We formalize this mech-

anism in the subsequent sections, and show how to generate machine-checkable proofs for

correctness.

4.2.2 Verification Conditions

For ease of exposition, we describe our method only for programs (and CFAs) without

function calls; it can be extended to handle function calls in a standard way (and function

calls are handled by the Blast implementation).

Let C = (X,PC , pc0,−→), ϕ0 be a formula in Pred.X and pcE be a special error location

in PC . The initial region r0 is (pc0, (ϕ0, ·), ε), and the error region E is (pcE , (true , ∅), ·).

The corresponding safety verification problem is to check whether Reach.(SC).r0 u E is not

empty, in other words, to check whether there is a feasible path in C , to pc E from pc0, with

the initial variables satisfying ϕ0. Note that every temporal-safety property can be reduced

to the above.

A verification condition (VC) [Dij76] for a program and a specification is a first-order

formula Ψ such that the validity of Ψ ensures that the program adheres to the specification.

In order to produce the VC we require an invariant, a map I : PC → FOL. We call I.pc

the invariant formula of pc. Given and invariants I: the verification condition is defined

as: VC.(C , ϕ0, pcE , I) that asserts the correctness of the CFA is defined

VC.(C , ϕ0, pcE , I) = (ϕ0 ⇒ I.pc0 ∧ (I.pcE = false) ;∧
∧

pc
op
−→pc′

(
SP.(I.pc).(op :pc ′)⇒ I.pc ′

)

Which contains one conjunct for each edge of C . Intuitively, the invariant formula of a

location is an overapproximation of the states that system can be in while at that control

79

location. The union of the invariant formulas is an overapproximation of the reachable

region of the CFA. The check for each edge ensures that the overapproximation is a fixpoint.

The specification that the error control location pcE is not reachable, is captured by requiring

I.pcE = false. In other words, the VC states that the invariant of each location is an

inductive overapproximation of the states that can be reached at that location, and that

the error states are not reached. The following theorem states that a proof of the above VC

suffices to guarantee the safety of the given program: (recall that for a FOL formula Ψ we

write ` Ψ to indicate the validity of Ψ).

Theorem 8 [Adequacy of VC based proofs] For a CFA C, formula ϕ0, an er-

ror control location pcE ∈ C .PC, and an invariant annotation I : C .PC → FOL, if

` VC.(C , ϕ0, pcE , I) then Reach.SC .[[r0]] ∩ [[E]] = ∅ where r0 = (C .pc0, (ϕ0, ∅), ε) and E =

(pcE , (true , ∅), ε).

In Proof-Carrying Code (PCC) [Nec97b], the code producer sends to the consumer the

code as well as annotations in the form of loop invariants and function pre and postcon-

ditions. From the code and the annotations, the code consumer builds the verification

condition, whose validity guarantees the correctness of the code with respect to the safety

specification. The code producer is required to supply to the consumer a proof of the valid-

ity of the VC, which the consumer is required merely to check. The checking of the proof

should be much simpler than the production; in particular by an encoding of the proof,

proof-checking becomes a fast type-checking problem. The annotations we require are more

than those required by PCC, which are just loop invariants. We can justify these as they

are being produced automatically and will also help in making the proof of the VC smaller.

In the next section we show how lazy abstraction can be used to produce the annotations

and prove the resulting VC. Unlike in [Nec97b] where it is assumed that the code is given

in binary format we shall assume that both the producer and the consumer are working at

the level of the CFA.

4.2.3 VCs and Proofs via Lazy Abstraction

We now show how using Lazy Abstraction, we can get both the Invariants needed to generate

the VC, and then, a proof of the validity of the resulting VC.

80

Invariants grow on Trees

The invariants required for the VC are mined from the reachability tree produced by

LazyAbstraction, Algorithm 2. We assume that both the code producer and consumer are

working at the CFA level.

As there are no control stacks in the present setting, we can those, as well as the

predicate sets from the node markings, and assume that the nodes are marked n : (pc, ϕ).

Recall, that for the safety verification problem mentioned above, the lazy abstraction

algorithm, Algorithm 2, upon termination, either produces a counterexample demonstrating

the system is unsafe, or, produces a reachability tree for C that is safe w.r.t (pc E , true) from

(pc0, ϕ0) (Theorem 3). In the latter case, recall that the tree has the following properties:

1. For every edge n : (pc, ϕ)
(op:pc′)
−−−−→n′ : (pc ′, ϕ′), we have SP.ϕ.(op : ·) ⇒ ϕ′, as ϕ′ is

Abs.Λ.SP.ϕ.(op : ·), for some set of predicates Λ,

2. For every leaf node n : (pc, ϕ), there are internal nodes n1 : (pc, ϕ1), . . . , nodek : (pc, ϕk),

such that ϕ⇒
∨

1≤i≤k ϕi,

3. The root node is n0 : (pc0, ϕ0),

4. For every n : (pcE , ϕ) in the tree we have ϕ ∧ ϕE is unsatisfiable.

The first two conditions follow as the tree is complete, the latter two as it is safe.

The reachable regions that label the nodes of a safe reachability tree provide the in-

variant map; the invariant formula I.pc the control location pc ∈ C .pc is defined to be the

union of all reachable regions of internal nodes of the reachability tree, labelled by pc.

I.pc =
∨

n:(pc,ϕ)∈Intl

ϕ

Proof Generation

We now show how to generate a proof of the validity of the verification condition VC.(C , ϕ0, pcerr, I)

resulting from the invariant map I described above.

Representing proofs. We encode the proof of the verification condition in LF [HHP93], so

that proof checking reduces to a linear-time type-checking problem. The logic we encode in

81

And introduction
` ϕ1 ` ϕ2

` ϕ1 ∧ ϕ2

andi Or introduction
` ϕ1

` ϕ1 ∨ ϕ2

orir
` ϕ2

` ϕ1 ∨ ϕ2

oril

Rules for implication
` ϕ⇒ ψ1

` ϕ⇒ ψ1 ∨ ψ2

imp-mono-l
` ϕ1 ⇒ ψ ` ϕ2 ⇒ ψ

` ϕ1 ∨ ϕ2 ⇒ ψ
imp-dist

` ϕ⇒ ϕ1 ` ϕ⇒ ϕ2

` ϕ⇒ ϕ1 ∧ ϕ2

imp-andi
` ϕ1 ⇒ ϕ2 ` ϕ2 ⇒ ϕ3

` ϕ1 ⇒ ϕ3

imp-trans

Figure 4.4: First order proof rules used in constructing the proof

LF is first-order logic with equality and special relation and function symbols for arithmetic

and memory operations. The encoding is standard [HHP93; Nec97b], and is omitted. The

inference rules of the proof system include the standard introduction and elimination rules

for the boolean connectives used in natural deduction with hypothetical judgments [Pfe97],

together with special rules for equality, arithmetic, and memory operations. In Blast ,

proofs are represented in binary form using Implicit LF [NL98]. We use the proof encoding

and checking mechanism of an existing PCC implementation to convert proofs from a textual

representation to binary, and to check proofs.

Generating proofs. Given a reachability tree for CFA C that is safe w.r.t. E from

ϕ0, let I denote the resulting invariant map, described above. We must prove the three

conjuncts of the corresponding verification condition VC.(C , ϕ0, pcE , I), namely, that (1) the

precondition implies the invariant of the initial location, (2) the invariant of the error

location is false, and (3) the invariants are closed under postconditions. We prove each

conjunct separately.

The first conjunct of the VC is ϕ0 ⇒ I.pc0. Since the root n0 : (pc0, ϕ0, we know that ϕ0

is a disjunct of I.pc0. Hence, the first conjunct of the VC follows from simple propositional

reasoning. The second conjunct of the VC is I.pcE = false; this holds as the tree was safe

w.r.t. pcE .

For the third conjunct, it suffices to show a proof obligation for each edge of the CFA. We

use distributivity of postconditions and implication over disjunction to break the obligation

for a CFA edge into individual obligations for the edges of the safe reachability tree that

correspond to the CFA edge. Then we discharge the smaller proof obligations by relating

them to the construction of the reachable regions during the search phase of the lazy-

82

abstraction algorithm.

Consider the edge pc
op
−→pc ′ of C , and the corresponding proof obligation SP.(I.pc)(op :

pc ′) ⇒ I.pc ′. Recall that I.pc is the union of all reachable regions of nodes of the tree

labeled by pc. Since SP distributes over disjunction, it suffices to prove:

 ∨

n:(pc,ϕ)∈Intl

SP.ϕ.(op :pc ′)


⇒


 ∨

n′:(pc′,ϕ′)∈Intl

ϕ′




,or equivalently, to prove:

∧

n:(pc,ϕ)∈Intl


SP.ϕ.(op :pc ′)⇒

∨

n′:(pc′,ϕ′)∈Intl

ϕ′




Hence, it suffices to prove one obligation for each internal node labeled by pc. Each

such internal node n : (pc, ϕ) has a unique (op : pc ′)-son n′ : (pc ′, ϕ′). This observation is

essential for guiding the proof generation. We break the proof of SP.ϕ.(op : pc ′) ⇒ I.pc ′

into two cases, corresponding to whether the unique (op :pc ′)-son, n′ is an internal node or

a leaf node.

If n′ is an internal node, then it suffices to prove SP.ϕ.(op : pc ′) ⇒ ϕ′. We generate a

proof for this by considering the computation that put the edge from n to n′ into the safe

reachability tree. Assume that ϕ =
∨
Ri, where each disjunct Ri is a cube, a conjunction of

literals, where each literal is either an abstraction predicate or its negation. Then ϕ ′ =
∨
R′
i,

where for each i, the disjunct R′
i is computed as an overapproximate (abstract) successor

region of Ri as follows: the literal p (resp., ¬p) appears in R′
i iff SP.Ri.(op : ·) ⇒ p (resp.,

SP.Ri.(op : ·)⇒ ¬p) is valid. We extract a proof of validity from the decision procedure used

to check the implication when building the reach tree. We combine these proofs of validity

with imp-andi to get a proof for SP.Ri.(op : ·) ⇒ R′
i, for each i, which using imp-mono-l,

yields a proof for SP.Ri.(op : ·) ⇒ ϕ′. As SP distributes over disjunction, we use the rule

imp-dist to combine the above proofs into a proof for SP.ϕ.(op : ·)⇒ ϕ′.

If n′ is a leaf, then we break the proof into three parts. First, we generate a proof

for SP.ϕ.(op : ·) ⇒ ϕ′ as above. Second, we check why the node n′ is a leaf of the safe

reachability tree. There must be a set S = {n′1 : (pc ′ : ϕ′
1), . . . n

′
k : (pc ′ : ϕ′

k)} of internal

nodes that covered n′, i.e., such that ϕ′ ⇒
∨

1≤i≤k ϕ
′
i; this set can be obtained from the

lazy-abstraction algorithm. We extract the proof of the above implication. Third, we notice

83

that
∨

1≤i≤k ϕ
′
i ⇒ I.pc ′, by the definition of I.pc ′. These three proofs are combined using

transitivity of implication (imp-trans) into a proof of SP.ϕ.(op :pc ′)⇒ I.pc ′.

Lazy Abstraction optimizes proof-generation in two ways. First, we use the intermediate

steps of the model checker to break a proof that invariants are closed under postconditions

into simpler proofs about the disjuncts that make up the invariants. Moreover, these proofs

are available from the forward-search phase of the model checker. Second, we reduce the size

of the proof by using a coarse, nonuniform abstraction sufficient for proving correctness, as

provided by the lazy-abstraction algorithm. This eliminates predicates that are not essential

to correctness and submits fewer and smaller obligations to the proof generator than would

a VC obtained by direct symbolic simulation of all paths.

Example 10 We illustrate the construction of the proof on the example from Section 3.1.

In particular, we show the proof for the edge pc4
[new!=old]
−−−−−−→pc1. The proof obligation for this

edge is:

SP.((LOCK = 0 ∧ ¬new = old) ∨ (LOCK = 1 ∧ new = old)).[new! = old]⇒ (LOCK = 0)

Equivalently, after taking the strongest postcondition, and distributing over ∨, we get

(LOCK = 0) ∨ false ⇒ (LOCK = 0), and this is the proof obligation generated by the

verification condition generator. We break this obligation into obligations for each inter-

nal node, so we need to prove the two obligations (LOCK = 0) ⇒ (LOCK = 0) and

false ⇒ (LOCK = 0). Each proof is discharged using a proof generating theorem prover,

and the entire proof is now constructed by combining these proofs. The complete proof

encoded in LF is:

(alli [LOCK : exp] (imp-dist
(impi [H1 : pf false](falsee (= LOCK 0) H1))
(impi [H2 : pf (= LOCK 0)] (H2)))).

2

4.2.4 Experiments

The cost of verification and certification is dominated by the cost of theorem proving, so we

incorporate automatic lemma extraction by caching theorem prover calls. Our experiments

84

Program Postprocessed Proof Size
LOC (bytes)

qpmouse.c 23539 175
ide.c 18131 253
tlan.c 16506 405

cdaudio.c 17798 156787
floppy.c 17386 60129
kbfiltr.c 12131 7619
parport.c 61781 102967

Table 4.3: Proof Sizes. The first three rows are for Property 1, rest are are for property 2.

show that many atomic proof obligations that arise during the entire process are identical,

and so the size of the proof in dag representation is considerably smaller than a derivation

tree. While our running times and proof sizes are encouraging, we feel there is a lot of room

for improvement. We expect, based on previous experience, that the use of an oracle-based

representation of proofs [NR01], would further reduce the size of the proofs by an order of

magnitude.

4.3 Tests from Counterexample Traces

The software engineer is often interested in the set of all program locations where the

property may be violated: given a predicate p, the programmer may wish to know the set

of all program locations q that can be reached such that p is true at q. For example, when

checking the security properties of a program it is useful to find the locations where the

program has root privileges. We now show how to extend Blast to provide this information.

As a special case (take p to be the predicate that is always true), Blast can be used to

find the reachable program locations, and by complementation, it can detect dead code.

Moreover, if Blast claims that a certain program location q is reachable such that

the target predicate p is true at q, then from the program trace that exhibits p at q, the

tool automatically produces a test vector that witnesses the truth of p at q. This feature

enables the software engineer to pose reachability queries about the behavior of a program,

and to automatically generate test vectors that satisfy the queries [Pel01]. Technically, we

symbolically execute the counterexample trace produced by the model checker, and extract

a satisfying assignment of the symbolic constraints as a test vector. In particular, for a

85

predicate p and its negation, the tool automatically generates for each program location q,

if p is always true at q, a test vector that exhibits p at q; if p is always false at q, a test

vector that exhibits ¬p at q; and if p may be true or false at q, then two test vectors, one

that exhibits the truth of p at q, and another one that exhibits the falsehood of p at q. In

this way, Blast generates more informative test suites than any tool that is purely based

on coverage, because the program locations of the third kind are each covered by two test

vectors with different outcomes.

Often a single test vector covers the truth of p at many locations, and the falsehood of

p at others, and Blast produces a small set of test vectors that provides the desired infor-

mation. It is essential that Blast uses incremental model checking technology [HJMS03],

which reuses partial proofs and counterexamples as much as possible. We have used our

extension of Blast to query C programs with 30 K lines of code about locking disciplines,

security disciplines, and dead code, and to automatically generate corresponding test suites.

Related Work. There is a rich literature on test-vector generation using symbolic ex-

ecution [Cla76; Kin76; RHC76; JBW+94; GMS98; GBR02; KPV03]. Our main insight

is that given a particular target, one can guide the search to the target efficiently by

searching only an abstract state space, and refining the abstraction to prune away infea-

sible paths to the target found by the abstract search. This is exactly what the model

checker does for us. In contrast, unguided symbolic-execution based methods would have

to precisely execute many more paths, resulting in scalability problems. Therefore, most

research on symbolic-execution based test generation curtails the search by bounding,

e.g. the number of iterations of loops, or the size of the input domain [JV00; BKM02;

KPV03]. Unfortunately, this makes the results incomplete: if no trace to the target is

found, one cannot conclude that no execution of the program reaches the target. Of course,

once a suitable trace to the target is found, all previous methods to generate test vectors

still apply.

This is not the first attempt to use model checking technology for automatic test-vector

generation. However, the previous work in this area has followed very different directions.

For example, the approach of [HCL+03] considers fixed boolean abstractions of the input

program, and does not automatically refine the abstraction to the degree necessary to

86

#include <stdlib.h>
#include <stdio.h>

int readInt(void);

int middle(int x, int y, int z) {
L1: int m = z;
L2: if(y < z)
L3: if(x < y)
L5: m = y;
L6: else if(x < z)
L9: m = x;

else
L10: if(x > y)
L12: m = y;
L13: else if(x > z)
L15: m = x;
L7: return m;
}
int main() {
int x, y, z;
printf("Enter the 3 numbers: ");
x = readInt();
y = readInt();
z = readInt();
printf("Middle number: %d", middle(x,y,z));

}

L1

L2

Block(m = z;)

L7

Pred(Not (y<z))

L3

Pred(y<z)

L8

Block(return m;)

L6

Pred(Not (x<y))

L5

Pred(x<y)

L10

Pred(Not (x<z))

L9

Pred(x<z)

L13

Pred(Not (x>y))

L12

Pred(x>y)

Pred(Not (x>z)) L15

Pred(x>z)

Block(m = x;)

Block(m = y;)

Block(m = x;)

Block(m = y;)

Figure 4.5: middle (a) Program (b) CFA

generate test vectors that cover all program locations for a given set of observable predicates.

Peled [Pel03] proposes three further ways of combining model checking and testing. Black-

box checking and adaptive model checking assume that the actual program is not given at all

or not given fully. Unit checking [GP02] is the closest to our approach in that it generates

test vectors from traces, however, these traces are not found by automatic abstraction

refinement.

Organization. We begin with an overview in Section 4.3.1. Then, in Section 4.3.2 present

the testing framework, and in Section 4.3.3 we show how test vectors are generated from

counterexamples, how sufficiently many counterexamples are obtained to guarantee coverage

for the resulting test suite, and how the corresponding test driver is constructed from the

program. In Section 4.3.4 we conclude by presenting some applications and experimental

results.

4.3.1 Overview

We first give an overview of the method using a few small examples. Consider the program

of Figure 4.5(a), which computes the middle value of three integers. The program takes

three inputs and invokes the function middle on them. A test vector for this program is a

87

triple of input values, one for each of the variables x,y,z. The right column of Figure 4.5(b)

shows the control-flow automaton (CFA) for middle. The CFA is essentially the control-flow

graph of middle with the control locations as nodes, and edges labeled by the operations

that take the program from one node to the next —either basic blocks of assignments,

or predicates that correspond to branch conditions which must be true for control to flow

across an edge. For brevity, we omit the CFA for the main function. We first consider the

problem of location coverage, i.e., we wish to find a set of test vectors such that for each

location of the CFA, there is some test vector in the set that drives the program to that

location.

Phase 1. Model checking. To find a test vector that takes the program to location L5,

we first invoke Blast to check the property that L5 is reachable. Blast proceeds by

iterative abstraction refinement to check that L5 is reachable and, if this is the case, it

finds a counterexample, i.e., a trace to L5 in the CFA. This trace is given by the following

sequence of operations: m=z; assume (y<z); assume (x<y); where the first operation

corresponds to the assignment upon entry, and the second and third (assume) operations

correspond to the first two branch conditions being taken.

Phase 2. Tests from counterexamples. In the second step, we use the counterexample

trace from the model-checking phase to find a test vector, i.e., an initial assignment for

x,y,z that takes the program to location L5. This is done as follows. First, we build a

trace formula (TF), which is a conjunction of constraints, one constraint per operation in

the trace. In this case the formula is (m = z)∧ (y < z)∧ (x < y). Second, the feasibility of

the trace implies that the TF is be satisfiable, and we find a satisfying assignment to the

formula, e.g. “x=0,y=1,z=2,m=2”, which after ignoring the value for m, gives a test vector

that takes the program to L5.

We repeat these two phases for each location, noting that one input takes us to several

locations —those along the trace— until we have a set of test vectors that covers all locations

of the CFA. Along with each test vector, Blast also produces a trace in the CFA that

is exercised by the test. A set of test vectors for node coverage of middle is shown in

Figure 4.6. Each row in the table gives an input vector —initial values for x,y,z— and the

corresponding trace as a sequence of locations. For example, the vector of test values for

88

the target location L12 is (1,0,1), and Blast reports the trace 〈L1,L2,L3,L6,L10,L12〉,

which is easy to understand with the help of the CFA in Figure 4.5(b). The trace is a prefix

of the complete program execution for the corresponding test vector.

The alert reader will have noticed that the tests do not cover all locations; L13 and L15

remain uncovered, as denoted by the absence of shading in Figure 4.5(b). It turns out that

Blast proves that these locations are not reachable —i.e., they are not visited for any

initial values of x,y,z— and hence there exists dead code in middle. A close analysis of the

source code reveals that a pair of braces is missing, and that the indentation is misleading

for the code without braces: the if on L6 matches the else after L9, which is meant for

the if on L2.

Executing tests. To execute the generated tests, we automatically build a test driver

from the given program. We feed the program and the name of the initial function from

which the program’s execution begins, into Blast ’s test-driver generator, which results in

a C program that is compiled into a test driver. The test driver reads a file containing a

set of test vectors we wish to run, and executes the program being tested using the vectors

as input values. The user may run the driver in a debugger to study the dynamic behavior

of the program under the various test inputs.

A security example. We now show how Blast can offer help to the programmer to check

for security vulnerabilities in programs. Figure 4.7 shows a simple program that manipulates

Unix privileges using setuid system calls. Unix processes can execute in several privilege

levels; higher privilege levels may be required to access restricted system resources. Privilege

levels are based on process user id’s. Each process has a real user id, and an effective user

id. The seteuid system call is used to set the effective id, and hence the privilege level

of a process. The user id 0 (or root) allows a process full privileges to access all system

x y z Counterexample Trace

0 0 0 〈L1,L2,L7,L8〉
0 1 2 〈L1,L2,L3,L5〉
0 0 1 〈L1,L2,L3,L6,L9〉
1 0 1 〈L1,L2,L3,L6,L10,L12〉

Figure 4.6: Generated test vectors for middle

89

int saved uid, saved euid;

int get root privileges () {
L1: if (saved euid!=0) {
L2: return -1;

}
L3: seteuid(saved euid);

L4: return 0;

}
work and drop priv() {
L5: FILE *fp = fopen(FILENAME,"w");

L6: if (!fp) {
L7: return;

}
L8: // work

L9: seteuid(saved uid);

}

int main(int argc, char *argv[]) {
L10:saved uid = getuid();

L11:saved euid = geteuid();

L12:seteuid(saved uid);

L13: // work under normal mode

L14:if (get root privileges ()==0){
L15: work and drop priv();

}
L16:execv(argv[1], argv + 1);

}

Figure 4.7: The setuid example program

resources. We assume for our program that the real user id of the process is not zero,

i.e., the real user does not have root privileges. This specification is a simplification of the

actual behavior of setuid system calls in Unix [CWD02], but is sufficient for exposition.

The main routine first saves the real user id and the effective user id in the variables

saved uid and saved euid, respectively, and then sets the effective user id of the program

to the real user id. This last operation is performed by the function call seteuid. The

function get root privileges changes the effective user id to the id of the root process

(id 0), and returns 0 on success. If the effective user id has been set to root, then the

program does some work (in the function work and drop privileges) and sets the effective

user id back to saved uid (the real user id of the process) at the end (L9). To track the state

changes induced by the setuid system calls, we instrument the code for the relevant system

calls as follows. The user id is explicitly kept in a new integer variable uid; the getuid

function is instrumented to return a nonzero value (modeling the fact that the real user id of

the process is not zero); and the geteuid function is instrumented to nondeterministically

return either a zero or a nonzero value. Finally, we change the seteuid(x) system call so

that the variable uid is updated with the argument x passed to seteuid as a parameter.

The instrumented versions are omitted for brevity.

Secure programming practice requires that certain system calls that run untrusted pro-

grams should not be made with root privileges [CW02], because the privileged process has

90

L10: saved_uid = getuid();

/* body of getuid omitted */

L11: saved_euid = geteuid();

/* body of geteuid omitted */

/* geteuid returns 0 */

L12: seteuid(saved_uid);

/* uid = saved_uid */

L14: tmp = get_root_privieleges();

L1: if (saved_euid!=0) /* fails */

L3: seteuid(saved_euid);

/* uid = saved_euid */

L4: return 0;

L14: if (tmp==0) /* succeeds */

L15: work_and_drop_priv();

L5: fp = fopen(FILENAME, ‘‘w’’);

L6: if (!fp) /* succeeds */

L7: return;

L16: /* uid = 0 */

Figure 4.8: A trace generated by Blast

full permission to the system. For example, calls to exec and system must never be made

with root privileges. Therefore it is useful to check which parts of the code may run with

root privileges.

We use the model checker Blast in test mode to check which code lines can be executed

with root privileges. More specifically, we ask the model checker to output all locations

that are reachable in the program, with uid=0 as target predicate (which indicates root

privileges). For each such location, Blast generates a test vector that causes the program

to reach that location with the system being in a state where uid=0.

The Blast output shows, surprisingly, that the execv system call can be executed

with root privileges. An inspection of the symbolic program trace generated by the model

checker (Figure 4.8) shows that there is a bug in the work and drop privileges function:

if the call to fopen fails, the function returns without dropping root privileges.

4.3.2 Testing Framework

Testing is usually carried out within a framework comprising (1) a suitable representation

of the program, (2) a representation for test vectors, and a set of test vectors called a test

suite, (3) an adequacy criterion that determines whether a test suite adequately tests the

program, (4) a test generation procedure that generates an adequate test suite, and (5) a

91

test driver that executes the program with a given test vector by automatically feeding

input values from the vector.

Programs and tests. We use CFAs as our representation of programs. This representation

is very similar to the control-flow graphs [ASU86] used in many testing frameworks. A test

vector is a sequence of input data required for a single run of the program. This sequence

contains the initial values for the formal parameters of the program, and the sequence of

values supplied by the environment whenever the program asks for input. In other words,

in addition to input values, the test vector also contains a sequence of return values for

external function calls. For example, when testing device drivers, the test vector would

contain a sequence of suitable return values for all calls to kernel functions made by the

driver, and a sequence of values for data read off the device.

Target predicate coverage. Ideally, one would like the test suite to exercise all exe-

cution paths of the program (“path coverage”), and thus expose any errors that the pro-

gram may have. As such test suites will be infinitely large for most programs, the notions

of location and edge coverage are used to approximate when a program has been tested

sufficiently[Mye79; PY03].

We use the following notion of target predicate coverage: given a C program in the form

of a CFA, and a target predicate ϕ, we say a test vector covers a location pc of the CFA

w.r.t. ϕ if the execution resulting from the vector takes the program into a state where it

is in location pc and the variables satisfy the predicate ϕ. We deem a test suite adequate

w.r.t. ϕ if all ϕ-reachable CFA locations are covered w.r.t. ϕ by some vector in the suite.

For example, consider the program in Figure 4.7 and the target predicate uid=0. The

algorithm outputs tests vectors for all locations that the program can reach with the value

of uid being 0. As another case, suppose that the target predicate ϕ is true. Then the test-

generation algorithm outputs test vectors for all reachable CFA locations. Furthermore,

Blast reports all CFA locations that are (provably) unreachable by any execution, as

dead locations (they correspond to dead code). If we run Blast on a program with both

predicates ϕ and ¬ϕ, then for all CFA locations pc that can be reached with ϕ either true

or false, we obtain two test vectors —one that causes the program to reach pc with ϕ true,

and another one that causes the program to reach pc with ϕ false.

92

Generator

Pred
Target Program

Test Test
DriverSuite

Testing

Generator
Test DriverTest Suite

Figure 4.9: Test flow

The notion of target predicate coverage corresponds to location coverage (“node cover-

age”) if ϕ = true. For edge coverage, for an edge e that represents a branch condition pe, we

can find a test that takes the program to the source location of e with the state satisfying

the predicate pe, thus causing the edge e to be traversed in the subseqent execution step.

We can similarly adapt our technique to generate tests for other testing criteria [HCL+03;

PY03]; we omit the details.

Test flow. The overall testing framework as implemented in Blast is shown in Figure 4.9.

A program and a target predicate are fed as inputs. The test-suite generation procedure

takes the program and the target predicate as input and produces an adequate test suite,

i.e., one such that every ϕ-reachable CFA location is covered w.r.t. ϕ by some test vector

in the suite. The test-driver generation procedure takes the program as input and produces

another program, the test driver, that runs the original program on the test inputs. The

test driver has a wrapper function for all external function calls, which returns values from

the test vector to the program.

In the following subsections we describe how to generate an adequate test suite, and

how to generate a test driver that can execute the program on the test vectors in the suite

in order to allow developers to see how the program behaves on the generated tests.

4.3.3 Test Suite Generation

For ease of exposition, we describe our method only for programs (and CFAs) without

function calls; it can be extended to handle function calls in a standard way (and function

93

calls are handled by the Blast implementation).

Let C = (X,PC , pc0,−→), ϕ be a formula in Pred.X and pcE be a special error location

in PC . We say that a trace σ is a ϕ-trace to pc if σ is a counterexample to (pc, (ϕ, ∅), ε)

from (pc0, (true , ∅), ε). Recall that σ is a ϕ-trace to pc iff σ corresponds to a path to pc from

pc0 in the CFA, and, SP.true.σ ∧ ϕ is satisfiable. We say that a location pc is ϕ-reachable

if there is a ϕ-trace to pc.

From the definitions, and Proposition 2 it follows that, if T is a reachability tree for C

that is safe w.r.t. (pc, ϕ) from (pc0, true), then pc is not ϕ-reachable in C .

In the sequel, assume that Algorithm 2 is modified so that it takes as input a CFA C

(from which it builds a symbolic abstraction structure), a partial reachability tree (T, F),

and a pair of (pc, ϕ), where pc is a target location and ϕ a target predicate. Upon termi-

nation, the modified algorithm returns with one of two outcomes: either O1, a complete

reachability tree T ′ that is safe w.r.t. (pc, ϕ) from (pc0, true), or O2, a partial reachability

tree (T ′, F ′) that has a path from the root node n0
σ
−→n such that σ is a is a ϕ-trace to pc.

In the former case, from Theorem 3 we conclude that pc is not ϕ-reachable in C ; in the

latter case, we shall extract from the program trace a test vector that drives the program

to the location pc such that at pc, the program variables satisfy the predicate ϕ. Given a

program and a target predicate ϕ, the test-suite generation now proceeds as follows.

Step 1. The locations of the CFA are numbered in depth-first order, and put into a worklist

in decreasing order of the numbering (i.e., the location numbered last in DFS order

is first on the worklist). We create an initial partial reachability tree (T, F), where T

is a tree with a single node, namely the root n0 : (pc0, true), and F is the singleton

set containing n0. The initial test suite is the empty set.

Step 2. If the worklist is empty, then we return the current test suite; otherwise let pc be

the first CFA location in the worklist. We invoke the model checker with the partial

reachability tree (T, F) and (pc, ϕ), and we update the current reachability tree with

the result of the model checking.

Step 3. If the model checker returns with outcome O1, then we conclude that for all lo-

cations pc ′ such that the new reachability tree (T ′, F ′) is safe w.r.t. (pc ′, ϕ), no test

94

vector exists, and so we delete all such locations from the worklist. Otherwise, if the

model checker returns with outcome O2, then we have a ϕ-trace to the location pc.

We use this trace to compute a test vector that covers the location pc w.r.t. ϕ using a

procedure described below. We add this vector to the test suite, and remove pc from

the worklist. In both cases, we go back to step 2.

It can be shown that upon termination, the above procedure returns a test suite that

is adequate w.r.t. ϕ according to our criterion of target predicate coverage.

We incorporate several optimizations to the above loop. First, when a test vector

is found, we can additionaly find (by symbolically executing the program on the vector)

which other locations it covers, and we remove those locations from the worklist. Second,

the model-checking algorithm uses heuristics to choose the next node to unfold in the partial

reachability tree. The nodes that need to be unfolded are partitioned into those that have

been covered by a vector in the current test suite, and those that are still uncovered. The

model checker unfolds uncovered nodes first, and it unfolds covered nodes only if there

remain no uncovered nodes. A node that has been covered by a previous test may still

need to be unfolded, because a path to an (as yet) uncovered location may go through it.

Third, the user has the option to give a time-out for the model checking. Thus in step 3,

if instead of O1 or O2, the model checker times out, then we give up on the location pc, by

deleting it from the worklist and going back to step 2. We have found these optimizations

to be essential for the algorithm to work on large programs.

Generating tests from traces

When model checking in step 2 ends with outcome O2, the resulting tree contains a path

to a node n : (q, r) such that the path corresponds to a ϕ-trace ending at pc. We now

describe how to extract from this trace a test vector that, when fed to the program, takes

it to location pc satisfying the target predicate ϕ.

Constraint generation. Recall that to check if a trace σ corresponding to a path in the

tree is feasible, we check if the SP.true.σ is satisfiable. To build a test vector from the trace,

we shall first construct the Trace Formula for the trace using the operator Con described

in Section 3.3. As the trace is feasible, the TF is satisfiable (from Theorem 5). We use a

95

Example() {
if (y == x) assume (y=x) 〈y, 0〉 = 〈x, 0〉 〈x, 0〉 7→ 0 x 7→ 0
y ++ ; y = y+1 〈y, 1〉 = 〈y, 0〉 + 1 〈y, 0〉 7→ 0 y 7→ 0

if (z <= x) assume !(z<=x) ¬〈z, 0〉 ≤ 〈x, 0〉 〈y, 1〉 7→ 1 z 7→ 2
y ++ ; 〈z, 0〉 7→ 2

a = y - z; a = y-z 〈a, 2〉 = 〈y, 1〉 − 〈z, 0〉 〈a, 2〉 7→ −1
if (a < x) assume (a<x) 〈a, 2〉 < 〈x, 0〉
LOC:

}
(a) Program (b) Trace (c) Trace formula (d) Assignment (e) Test vector

Figure 4.10: Generating a test vector

decision procedure to produce a satisfying assignment for the variables of the TF. From the

satisfying assignment we build a test vector that drives the program to the target location

and target predicate. Given a ϕ-trace σ to pc, Let (θ,Γ) = Con.(θ0,Γ0 :: true).σ. Then, the

TF is
∧

|σ| Γ ∧ Sub.θ.ϕ.

Tests from constraints. The TF is a conjunction of constraints about special constants

of the form 〈l, i〉, each of which is an arithmetic fact that relates the values of program

variables at various points in the trace. In our experience, many programs generate linear

arithmetic constraints. Thus, we can find a satisfying assignment for the TF using an

integer linear programming (ILP) solver. For a satisfiable formula ϕ, let S.ϕ be a satisfying

interpretation of all special constants that occur in the formula. A test vector that exercises

the trace t is obtained by setting every input variable x of the program to the initial value

S.ϕ.〈x, 0〉.

Example 11 [Traces, Tests] Figure 4.10(a) shows a program, and Figures 4.10(b) and

4.10(c) show, respectively, a trace to the program location LOC, and the TF for that trace.

The constraint for each atomic operation of the trace is shown to the right of the operation;

the TF is the conjunction of all constraints. Figure 4.10(d) shows a satisfying interpretation

for the special constants of the TF of Figure 4.10(c). It is easy to check that if we set the

inputs initially to “x=0, y=0, z=2,” then the program follows the trace of Figure 4.10(b).

The generated test vector is shown in Figure 4.10(e). 2

Pointers. The above method can be extended to programs with pointers. We first generate

96

the TF from whose satisfying assignment we obtain a test vector as described above; the

details of the TF generation are given in in [HJMM04]. The resulting TF contains disjuncts

due to possible aliasing. There are two ways to deal with this. First, we can convert the

formula to DNF and check each disjunct separately, and on finding a satisfiable disjunct,

we can extract a test vector from a satisfying assignment of the disjunct. Second, we

can use efficient decision procedures for propositional satisfiability [MMZ+01] to find a

possibly satisfiable disjunct, and then use the ILP solver to find a satisfying assignment for

that disjunct, from which again the tests are computed as discussed above. Many off-the-

shelf decision procedures already incorporate this style of propositional reasoning [FORS01;

SBD02; HJMM04]. Of course, there are programs for which our constraint-based test-

generation strategy fails because the given constraint language is not expressive enough.

Library calls. If a trace contains library calls whose source code is not available for

analysis, or asks for user input, the constraint generation assumes that the library call or

the user can return any value. Thus, some of our tests may not be executable if the library

calls always return values from some subset of possible values. In this case, the user can

model postconditions on library calls by writing stub functions that restrict the possible

return values.

Test Driver Generation

Recall that a test vector generated by Blast is a sequence of integer values (our test-vector

generation is currently restricted to integer inputs): these are the values that are fed to the

program by the test driver during the actual test; they include the initial values for all

formal parameters and the return values for all external function calls.

The test-driver generator takes as input the original program and instruments it at

the source-code level to create a test driver containing the following components: (1) a

wrapping function, (2) a test-feeding function, and (3) a modified version of the original

program. The test driver can then be compiled and run to examine the behavior of the

original program on the test suite. It can be run on each individual test vector and the user

can study the resulting dynamic behavior as she pleases, by using a debugger for example.

The wrapper is the main procedure of the driver: it reads a test vector and then calls

97

Table 4.4: Experimental results
Program LOC CFA locations Locations Tests Predicates Time

Live Dead Fail Total Average

kbfiltr 5933 381 298 83 0 39 112 10 5 min
floppy 8570 1039 780 259 0 111 239 10 25 min
cdaudio 8921 968 600 368 0 85 246 10 25 min
parport 12288 2518 1895 442 181 213 509 8 91 min
parclass 30380 1663 1326 337 0 219 343 8 42 min
ping 1487 814 754 60 0 134 41 3 7 min
ftpd 8506 6229 4998 566 665 231 380 5 1 d

the main function of the original program, passing it initial values for the parameters from

the vector. The driver generator modifies the code of the program being tested by replacing

every call to an external function with a call to the special test-feeding function. The test-

feeding function reads the next value from the test vector and returns it. We are guaranteed

that the vector will have taken the program to the target when the test-feeding function

has consumed the entire vector. Hence, once the test vector is consumed, the feeder returns

arbitrary values.

4.3.4 Experiments

We ran Blast to generate test suites for several programs. We used two sets of bench-

mark programs: a set of Microsoft Windows device drivers, and two security-critical pro-

grams. The results are summarized in Table 4.4. The programs kbfiltr, floppy, cdaudio,

parport, and parclass are Microsoft Windows device drivers. The program ping is an

implementation of the ping utility, and ftpd is a Linux port of the BSD implementation of

the ftp daemon. The experiments were run on a 3.06 GHz Dell Precision 650 with 4 GB of

memory.

We present results for checking the reachability of code. In these experiments, the speci-

fication was trivial (i.e., the target predicate was true): we checked which program locations

are live (reachable by some execution) and dead (not reachable by any execution), and we

generated test vectors that cover all live locations. Syntactically plausible executions (for ex-

ample, control-flow paths, or data flows) may not be semantically possible, for example, due

to correlated branching [BGS97]. This is called the infeasibility problem in testing [PY03;

JBW+94]. The usual approach to deal with infeasible paths is to argue manually on a case-

98

by-case basis, or to resort to adequacy scores (the percentage of all static paths covered by

tests). By using Blast we can automatically detect dead code, and generate tests for live

code.

In the table, LOC refers to lines of code. CFAs represent programs compactly; each

basic block is a single edge. In the table, the column CFA locations shows the number of

locations of the CFA which are syntactically reachable by exploring the corresponding call

graph of the program. Live is the number of reachable locations, Dead is the number of

unreachable locations, and Fail is the number of locations on which our tool failed. Ideally,

the total number of CFA locations is equal to the sum of the live and dead locations.

However, in our tool we set a time-out for each location. So in practice, the tool fails on

a small percentage of locations. The failure is due both to time-outs, and to not finding

suitable predicates for abstraction. In our experiments, we set the time-out to 10 minutes

per location.

The column Tests gives the number of tests generated. The implementation does not

run the model checker for a location that is already covered by a previous test. Thus, the

number of tests is usually much smaller than the number of reachable locations. This is

especially apparent for the larger programs. Total is the total number of predicates, over

all locations, generated by the model-checking process. Average is the average number

of predicates active at any one program point. The average number of predicates at any

location is much smaller than the total number of predicates, thus confirming our belief

that local and precise abstractions can scale to large programs [HJMS02; HJMM04]. Time

gives the running time rounded to minutes (except for ftpd, where the tool ran for two

overnight runs).

We found many locations that were not reachable because of correlated branches. For

example, in floppy, we found the following code:

driveLetterName.Length = 0;

// cut 15 lines

...

if (driveLetterName.Length != 4 ||

driveLetterName.Buffer[0] < ’A’ ||

99

driveLetterName.Buffer[0] > ’Z’) {

...

}

Here, the predicate driveLetterName.Length != 4 is true; so the other tests are never

executed. Another reason we get dead code is that certain library functions (like memset)

make many comparisons of the size of a structure with different built-in constants. At run

time, most of these comparisons fail, giving rise to many dead locations.

While the table reports only experiments that check for unreachable code, we ran

Blast also on several small examples with security specifications in order to find which

parts of a program can be run with root privileges. Unfortunately, most security programs

make recursive calls, and our previous implementation of Blast did not support recursive

function calls. We are currently implementing a new version that does handle recursive

calls. We are also optimizing our test-generation procedure to generate tests directly from

the internal data structures of the model checker.

100

Chapter 5

Multithreaded Programs: Context

Inference

We now turn our attention to the safety verification problem for concurrent, multithreaded

programs. Dynamic methods, e.g. testing, are particularly inadequate in the multithreaded

setting as the combinatorial explosion of the possible number of behaviours arising from

the many ways that single threaded executions can be interleaved by schedulers, makes

erroneous executions difficult to find and reproduce.

A classic safety verification problem for concurrent programs is data race detection: a

data race occurs when two threads can access (read or write) a data variable simultaneously,

and at least one of the two accesses is a write. The program is race-free if no such state is

reachable.

Consider, for example, the “test-and-set” nesC program taken from [GLvB+03] in

Figure 5.1. Previous approaches, which require that locks be the mechanism by which race-

freedom is enforced, falsely flag this program as potentially buggy, as it uses the value of

the variable state instead of explicitly declared locks to guarantee race-freedom. The first

thread to enter the atomic block sets its local variable old to 0 and the global state to 1,

and gets to access x. The other threads copy the value 1 into their local copy of old, and the

check old = 0 before accessing x precludes the possibility of a race on x. In many programs,

the problem is harder as the accesses to the “protected” variable happen in procedures other

than the ones where the variable state is toggled, and often happen only if the function

that changes the “state” variable returns a particular value (“conditional locking”). Other

synchronization mechanisms, such as the enabling and disabling of certain interrupts, are

101

also beyond the scope of methods based on locks. A more precise path and interleaving

sensitive analysis, such as model checking, that tracks the values of variables is required to

verify the absence of races.

The difficulty with directly model checking multithreaded programs arises from the

interleaving of executions of concurrent threads which causes an exponential explosion in

the control state that must be tracked. In programs where threads can be dynamically

created, the problem is worse as the set of control states is unbounded.

Our approach to the safety verification problem for multithreaded programs is to con-

sider the system as comprising a main thread and a context which is an abstraction of

all the other threads in the system, and then verifying (a) that this composed system

is safe (“assume”) and (b) that the context is indeed a sound abstraction (“guarantee”).

Once the appropriate context has been divined, the above checks can be discharged by

existing methods [God97; CDH+00; Hol00; HP00; FQS02]. Additionally, the remaining

data abstraction can be performed automatically using counterexamples [BR00; HJMS02;

COYC03].

If the context is imprecise, then either of the above checks may fail, leaving us with

no information about the safety of the multithreaded program. This poses the following

questions: First, what is a model for the context that is simultaneously (i) abstract enough

to permit efficient checking and (ii) precise enough to preclude false positives as well as yield

real error traces when the checks fail. Second, how can we infer such a context automatically.

We were tempted to answer these questions as follows [HJMQ03]. We chose as context

model, a relation R on the global variables, which represents the possible effects that the

other threads may have on the global state between any two transitions of the main thread,

i.e., at any point, the context could change the global variables from s to s ′ so long as

(s, s′) ∈ R. We designed an algorithm to infer such contexts using CEGAR.

Experiments showed that this stateless context model lacks the precision required to

prove the safety of programs such as the ones described earlier, and to produce error traces

for buggy programs. As context threads change the global variables depending on their local

states, statelessness leads to false positives. Also, to generate error traces (and to refine

abstractions) we must be able to check if an abstract trace corresponds to some concrete

102

interleaving of the program’s threads. This is difficult if the context has no information

about the other threads’ local states. For these reasons, the context must track the local

state of its threads. Unfortunately, statefulness brings the burden of tracking the state of

each of the arbitrarily many context threads. We now present a richer model for contexts

that solves both the above problems, and a generalization of the algorithm from [HJMQ03]

that constructs these richer context models automatically.

Stateful Contexts. First, we represent each context thread by an Abstract Thread (AT).

Each AT location corresponds to a set of control locations of the thread, and we keep ATs

minimal by computing weak bisimilarity quotients [CGP99]. Each AT location is labeled

by a formula over the globals, which constrains the possible values of the global variables.

Second, we track the state of each of arbitrarily many context ATs by labeling each AT

location with an integer counter (possibly ω), which represents the number of threads at

that location (“counter AT”). Thus, our context models combine three forms of abstraction:

predicates for data abstraction, weak bisimilarity quotients for control abstraction, and

counters for abstracting multiple threads.

Context Inference. Suppose, for simplicity, that all threads run the same code as main.

In general, our algorithm requires that each of the threads be running one of finitely many

pieces of code, and that the threads do not reference each other. The inference of context

models proceeds in two nested loops. The outer loop sets the context model to be the

strongest model (which does not interfere with main) and then executes the inner loop.

Given a predicate abstraction of main, and a counter AT that represents the multithreaded

context, the inner loop iteratively weakens the context model until either (i) an abstract

error is found, or (ii) the resulting counter AT overapproximates (simulates) the program.

If (i) happens, we break out of the inner loop and analyze the abstract counterexample.

If it is real we report the bug and exit, if it is spurious we add new predicates or refine

the counter, and repeat the outer loop. If (ii) happens, we conclude (by assume-guarantee

reasoning) that the program is free of races and exit. Otherwise (i.e., neither (i) or (ii)),

we weaken the context model by transforming the current reach set of main into a new AT

and repeat the inner loop with the new, weaker context model. The whole process stops

when either a concrete race is found, or the absence of races is proved using a context which

103

int x, state;

Thread() {
int old;

1: while (1) {
atomic{

2: old := state;

3: if (state = 0){
4: state := 1;

}
}

5: if (old = 0){
6: x := x+1;

7: state := 0;

}
}

}

5

old = state

state = 1

x++state = 0

1

2*

3*

4*

[state = 0]

 6

 7

[state != 0]

[old != 0]

[old = 0]
state = 0 {state}

{x , state}

state != 0

I

III*

II*

IV state = 1

V

Figure 5.1: (a) Thread (b) CFA (c) AT

overapproximates the program.

While our method applies to verifying any safety property of concurrent programs,

we have focused on race detection for two reasons. First, race checking requires no code

annotations or specifications from the user. Second, the absence of race conditions is a

prerequisite for establishing a variety of more complicated correctness requirements.

In the next Section 5.1, we present our method using the example from Figure 5.1. Then,

in Section 5.2 we present our formal model of multithreaded programs and the approach

of thread-context reasoning. In Section 5.3 we describe abstractions for multithreaded pro-

grams, and in Section 5.4 we describe how to use those abstractions to verify multithreaded

programs using Thread-Context Abstraction-Refinement. In Section 5.6 we describe our

experiences with looking for races in nesC programs, and we conclude the chapter in Sec-

tion 5.7 with a result about the completeness of counter abstractions.

5.1 An Example

We begin by illustrating our method using an example. The formal development is post-

poned to the next section. Consider the fragment of code shown in Figure 5.1, taken from

a nesC program [GLvB+03]. This fragment describes the behavior of a single thread; x

104

and state are global variables and each thread has a local variable called old. The mul-

tithreaded program P has an arbitrary number of threads running this code concurrently.

We wish to verify that there are no races on x in P , i.e., that P never reaches a state where

two (or more) threads are about to access (read or write) x, and one of the accesses is a

write.

5.1.1 Threads

Threads. We represent each thread as a Control Flow Automaton (CFA) (cf. Section 2.2.1).

Our method and implementation handles threads comprising a set of (non-recursive) func-

tions, but for clarity, we shall consider each thread to have a single CFA.

Example 12 [Thread] Consider the CFA shown in the middle in Figure 5.1 for the thread

shown on the left in the same figure. The vertices marked with ∗ are atomic locations. The

atomic construct of nesC allows a sequence of operations to occur without preemption;

atomic locations model this. If in a multithreaded program, a thread is at an atomic

location, only that thread is allowed to execute. Additionally, we assume that each command

labeling an edge executes without preemption. If not, the edge is broken into an appropriate

sequence of edges. 2

Informal Semantics. A multithreaded program is a set of threads where each thread is

represented by a CFA. A state of a multithreaded program is a valuation for all the vari-

ables, including the global variables shared by all threads and each thread’s local variables

(e.g. program counter). We shall assume for clarity that all threads have the same CFA. In

the initial state, each thread is at the start location, and all the variables have value 0. The

system evolves as follows. (1) A thread is scheduled: if some thread is at an atomic location,

it gets to run, otherwise some thread is chosen non-deterministically. (2) The scheduled

thread picks one of the out-edges of the location it is at and executes it and proceeds to

the target of the edge. If the edge is an assume, this happens only if the state satisfies the

predicate and the variables remain unchanged; if the edge is an assignment x:=e then the

expression e is evaluated and written into x, and then the program moves to the target

location of the edge. It can be checked that if the start location is not atomic, then in any

reachable state at most one thread is at an atomic location.

105

Data Races. There is a data race on the variable x if the program can reach a state in

which two or more threads have enabled actions that read or write x, and at least one of

these accesses is a write. We say a thread can write (read) x if there is an out-edge from its

location where x is assigned (read). Thus a state has a race on x if (1) no thread is at an

atomic location, and (2) one thread is at a location where x may be written and another is

at a location that may access x. In the program comprising threads of Figure 5.1, there are

no races on x if in every reachable state, at most one thread is at location 6.

5.1.2 Thread-Context Programs

We analyze a multithreaded program as a thread-context program (TCP), which comprises

a main thread executing in a context which represents all the other threads. We model each

of the context threads using an abstract thread.

Abstract Threads. An abstract thread (AT) is a directed graph, whose vertices are

abstract control locations labeled by predicates on the global variables of the program, and

optionally by atomic, and whose edges are labeled by sets of havoced global variables. When

the automaton moves from one location to the next, the havoced variables on the traversed

edge are written to with arbitrary values, but the successor state is constrained to satisfy

the predicate labeling the successor location.

Example 13 [Abstract Thread] Figure 5.1(c) shows an AT for the thread of the ex-

ample. Locations labeled ∗ are atomic, and if there is an (abstract) thread at an atomic

location, then only that (abstract) thread is scheduled. Each location is also labeled by

a predicate inside a box, locations not labeled explicitly have the label true. Note this

abstraction captures the essence of the behavior of the thread: first, it enters the atomic

block, then if state is 0, it havocs state subject to the constraint that state is 1 in the

next state. It then proceeds to access x, as it will have set its old to 0, and then havocs

state to any arbitrary value. Alternately, if state is not 0 when the thread entered the

block, then it would set its old to a non-zero value and thus loop back without writing to

x or state. 2

Informal Semantics. A TCP, written TCP.(C , A) is a set {C} ∪ Aω comprising a main

thread, represented by a CFA C , and a context which is an arbitrary number of abstract

106

threads A. The semantics of a TCP are similar to that of a multithreaded program. At the

initial location, the main thread is at the start location of C and each context thread is at

the start location of A. At each time step, either the main or a context thread is scheduled,

and the scheduled thread makes a transition according to one of the out-edges of its current

location.

5.1.3 Verification by Abstraction

Our method works by analyzing a TCP which is an abstraction of the multithreaded pro-

gram we wish to verify. A precise analysis of the reachable states of a multithreaded program

must abstract the state space to counter the infinite data valuations as well as the exponen-

tial number of possible program location tuples. Accordingly, we present three orthogonal

abstractions.

1. Data Abstraction. The number of valuations for the program variables is infinite.

To deal with this, we use predicate abstraction [AM78; GS97b], where instead of tracking

the exact values of variables, we track relationships between program variables captured by

boolean formulae over a finite set of predicates over the variables. Any local variable in a

predicate refers to the main thread’s copy of the local variable.

2. Control Abstraction. The number of configurations of other context threads is expo-

nential in the number of program locations of each thread. To ameliorate this exponential

blowup, we represent each context thread as an abstract thread which is a state machine

that (1) has fewer locations than, and (2) overapproximates the behavior of (e.g. simulates),

the thread it represents. All the predicates labeling the AT vertices are over the globals;

information pertaining to the local state of context threads is encoded in the AT location.

3. Counters. There may be an arbitrary number of context threads. To make our analysis

sound in this setting, we must model the AT location of each of the arbitrarily many context

threads. To do this, we track the number of abstract threads that are at each of the finitely

many AT control location [Lub84]. Since this representation is infinite, we use a counter

abstraction: we track the number precisely so long as it is less than or equal to a parameter

k, and any number greater than k is abstracted to ω, meaning an arbitrary number of

107

threads is at that abstract control location.1

Abstract Multithreaded Programs

To abstract TCP, we shall use regions to represent sets of states. We use a set of support

predicates Λ from the thread’s commands to finite sets of support predicates, to abstract

the main thread. To abstract Aω, we shall use counter maps which indicate how many

copies of A are at each location of A. To keep the number of these maps finite, we shall

treat all values above a parameter k to be ω.

A region of TCP.(T,A) is the tuple ((pc, ϕ), δ), where pc is the main thread’s control

location, ϕ is a boolean formula over the range of Π (local variables refer to the main

thread’s copy of the local variable), and δ is a map from A’s locations to {0, . . . , k, ω}. The

operations enabled at a region are the operations enabled at pc and at each location n of

A s.t. δ.n > 0, so long as none of the above mentioned locations is atomic, otherwise, the

enabled operations are the operations enabled at the (single) atomic location.

In the initial region, the main thread is in the initial location of C , δ is ω for the initial

abstract location, and 0 elsewhere, and ϕ is a formula stipulating that all the variables

are 0. For an region ŝ = ((pc, ϕ), δ) and an operation op, the successor region post.ŝ.op =

((pc ′, ϕ′), δ′) is computed as follows. If the operation is the main thread’s operation, then

pc ′ is the target of the CFA edge taken, ϕ′ is the predicate abstraction (w.r.t. Λ) of the

strongest postcondition of ϕ w.r.t. the operation (cf. Section 2.2.2), and δ′ = δ. If it is

a context AT moving across an abstract edge n → n′, then pc′ = pc, ϕ′ is the predicate

abstraction (w.r.t. Λ) of (∃y1 · · · yk.ϕ) ∧ r′ where y1 · · · yn are havoced on edge n→ n′ and

n′ :r′, and δ′ maps n to δ.n− 1, n′ to δ.n′ + 1, and all other n′′ to δ.n′′.

Abstract Reachability. We build the set of reachable regions by iterating post from the

initial region until a fixpoint. We check if there are races by checking if any reachable state

contains a race. If so, the reachability procedure returns an abstract error trace. We say

that G is an abstract reachability graph (ARG) for TCP.(C , A) if it is an AT that overap-

proximates the behavior of C in TCP.(C , A). The reachability procedure also computes an

ARG G for TCP.(C , A) which we use to guarantee the soundness of A. If A is an overap-

proximation of (e.g. can simulate) G then we know that A is sound. If not, a minimized

1 Note: k + 1 = ω, ω + 1 = ω, and ω − 1 = ω

108

version of G gives us a better abstraction of the individual threads, which we use in the

subsequent analysis.

5.1.4 The Algorithm CIRC

Given a CFA C , and a global variable x, we wish to verify that in the multithreaded program

comprising arbitrarily many copies of C running concurrently, there are no races on x. In

addition, the user may supply an initial set of predicates Λ (the default is ∅), and an initial

counter parameter k (the default is 1).

Initialization (“Initial context”) Set the initial AT A to be the empty AT, i.e., the context

does nothing.

Step 1 (“Reachability: Assume”) Assuming that the context is made of threads behaving

as A, compute the set of abstract reachable states of C using the present set of predi-

cates P . Simultaneously build an abstract reachability graph (ARG) which is an AT G

overapproximating the behavior of C in the current context (Algorithm ReachAndBuild

in Section 5.4).

Step 2 (“Counterexample analysis”) Check if the reachable states computed above contain

states with races on x. If there are no such states, go to step 3. Otherwise, check

whether this trace is real by first generating a concrete sequence of interleaved thread

operations (from the sequence of thread/AT operations) and then checking if the

interleaved trace is feasible. The concretization of the AT trace is done using the ARG

of which the AT is the minimized version. Hence, every sequence of AT operations,

corresponds to a (possibly infeasible) path through the underlying CFA. If (a) it was

not possible to generate the concrete trace as the counter was too low, increment k,

(b) the concrete trace is infeasible, infer new predicates using a Refine procedure (cf.

Section 3.3) and add them to the set of predicates Λ, (c) the concrete trace is feasible

then return Unsafe with the genuine error trace. Reset A to the empty context

and go to step 1.

Step 3 (“Guarantee”) Check that the A assumed in step 1 was sound by checking that it

overapproximates G computed in step 1 (Algorithm CheckSim). If so, return Safe,

109

else, set A to be the bisimulation minimization of G (Algorithm Collapse), and go to

step 1.

Running CIRC. We shall now run the algorithm on the example of Figure 5.1. Recall that

there is no race on x. The first thread that goes inside the atomic block sets state to 1

and subsequent threads always set their old to 1 and so do not write state or x. Once

the original thread has set state back to 0 the other threads can make another attempt,

in which they set their old to 0, set state to 1 and then access x.

Initialization The initial AT A0 is set to be the empty AT. The initial set of predicates

Λ0 is empty, but control flow is explicitly tracked.

Iteration 1

Step 11, 21 The ARG G1 of ReachAndBuild is shown in Figure 5.2(a). All the control

locations are reachable and the state is just true, i.e., we know nothing about the values

of the variables of C . The reachability is trivially free of races as the context threads do

nothing.

Step 31 Since A0 was empty, Algorithm CheckSim detects that A0 does not overapproximate

G1 and hence A0 is unsound. Thus, we minimize G1 to get the new AT A1 shown in

Figure 5.2(b). The dotted circles denote the sets of G1 states that are merged into a single

A1 state. The minimized AT starts at a non-atomic location, then moves into an atomic

location, in which it havocs state and moves to a non-atomic location from which it again

havocs {x, state} and returns to the start location. The locations I,II are not collapsed

together as we wish to preserve atomicity, the same holds for II,III. Locations I,III are

not collapsed as x can be written only in III. We repeat the loop setting A to be A1.

Iteration 2

Step 12 On redoing reachability assuming the context threads behave as A1 we find a

race where one of the context threads moves two steps to reach the abstract location III

(Figure 5.2(b)), following which the main thread moves to the concrete location 6.

Step 22 We concretize the abstract trace described above and find that the thread followed

an infeasible path: 1→ 2→ 3→ 5→ 6, i.e., the trace is infeasible without even considering

the other thread. From this trace, we learn the predicates old = state and old = 0 are

110

1

2*

3*

4*

 6

 7

5

{x}{state}

{state}

I

II

III

{state}
{state}

I

II*

III
{x}

Figure 5.2: (a) ARG G1 (b) Min. ARG A1

required to rule out this infeasible path. We add these to get the new set of predicates Λ2,

set the context AT A2 to be the empty AT, and go back to step 1.

Iteration 3

Steps 13, 23, 33 We repeat the reachability using A2 and Λ2, to get the ARG G3, shown

in Figure 5.3(a). Notice that this time, the only path to the location where the write is

enabled is a feasible path for each thread. Again, the reach set is trivially error free. As G3

is not overapproximated by A2, the latter being the empty AT, we set A to be A3 which is

the result of minimizing G3. This is shown in Figure 5.3(b). Note that the path that leads

to III where to the write to x is enabled is feasible for the individual threads.

Iteration 4

Step 14 We recompute the reachability assuming the context has threads behaving as A3,

and the predicates Λ2. The same abstract race as in step 12 is possible again.

Step 24 We concretize the trace from the previous step. This time, we get the feasible

path 1→ 2→ 3→ 4→ 5→ 6 for the individual threads, but find that the composed trace,

where the context thread follows the above path and waits at 6 then the main thread

follows the same path to 6 is infeasible. This is because the first thread will set state to

1, and so the second thread cannot take the assume edge 3→ 4. The analysis reveals the

predicates state = 0 and state = 1 rule out this behavior and we add these to our set to get

111

1

2*

3*

4*

5

 6

{x}

 7

{state}
{state}

II

I

III

IV

5’

Node Labels

3:
4:

5’:
5,6,7:

old = state

old = state & old = 0

old = state & old != 0

old = 0

I

II*

III

{state}
{state}

{x}

IV

Figure 5.3: (a) ARG G3 (b) Min. ARG A3

Λ4, set A4 to be the empty AT and return to step 1.

Iteration 5

Steps 15, 25, 35 We repeat the reachability using A4 and Λ4, to get the ARG G5, shown

in Figure 5.4. Notice that this time, the vertices in G5 contain the values of state. The

reach set is error free, but G5 is not overapproximated by A4, the latter being the empty

AT, so we set A to be A5 which is the result of minimizing G5. This is the same as the AT

shown in Figure 5.1(c). Notice that II,III are not collapsed as they differ on the values of

predicate state = 0. Notice also, that in A5, the various locations are labeled by predicates

describing the value of state when the abstract thread is at that location. In particular,

when a thread is at IV, the value of state is non-zero, thus preventing other threads from

writing x.

Iteration 6

Step 16, 26 We compute the ARG with the new AT A5 with counter parameter still 1. We

find a few more states, e.g. after a thread sees in its atomic block that state is 1, it may see

that it has been havoced, but this is not essential as the thread still just returns to the head

of the loop (since its old is still 0). There is no error possible as if a context AT goes first, it

keeps state at 1 till after it has written x: so when the main thread takes the assume edge

3→ 4 ([state = 0]) the region is empty (state = 0 ∧ state = 1 is unsatisfiable) meaning

112

1

2*

3*

4*

5

 6

{x}

 7

{state}
{state}

I

5’

Node Labels

3:
4: old=state & old=0 & state=0

5’: old=state & old!=0 & state!=0

5,6,7:

old = state

II

III

IV

V

old = 0 & state = 1

Figure 5.4: ARG G5

that edge is not behavior is not possible. Similarly, if the main thread gets in first, when

a context thread attempts to take the abstract edge 2′ → 3′, the abstract state is empty.

The resulting ARG is G6, and we proceed to step 3.

Step 36 We find that in fact G6 is overapproximated byA5 and so the context approximation

is sound. We conclude the system is free of races.

5.2 Safety Verification of Multithreaded Programs

We now formally define our model of multithreaded programs, and present our approach to

verifying them. First we define the semantics of such programs abstractly using transition

systems, and then one concrete syntactic representation using CFAs. Then, we shall describe

our approach to verifying multithreaded programs using Thread-Context Reasoning.

For two sets of variables X,X ′ and an X-state s and X ′-state s′, we say s ≈ s′ if for all

x ∈ X ∩X ′, we have s.x = s′.x. For sets of X,X ′ states S, S ′, we say S . S ′ iff for each

s ∈ S, there exists s′ ∈ S′ such that s ≈ s′. We say S ≈ S ′ if S . S′ and S′ . S. Notice

that ≈ is an equivalence relation and . is reflexive and transitive. For an X-state s, and

X ′-state s′, such that s ≈ s′, we denote by s ◦ s′ the X ∪X ′-state that equals si.x if x ∈ Xi

(for i ∈ {1, 2}). For sets of X,X ′-states S, S ′, we write S ◦ S ′ for the set of X ∪X ′-states

{s ◦ s′ | s ∈ S, s′ ∈ S′, s ≈ s′}.

113

5.2.1 Multithreaded Labeled Transition Systems

A thread LTS (or thread, in brief) is an LTS T = (X,Σ,;, S0) (cf. Section 2.1). For a

label l ∈ Σ, the variables written by l are given by

WriteT (l) = {x ∈ X | ∃s
l

;s′.s.x 6= s′.x}

We use Multithreaded Labeled Transition Systems (MLTS) to model multithreaded pro-

grams. An MLTS Ŝ is a set of threads {T1, T2, . . .} such that for each i, j, (1) Ti.S0 ≈ Tj.S0,

and, (2) Ti.Σ ∩ Tj .Σ = ∅. The set of global variables of Ŝ is XG = ∪i6=jTi.X ∩ Tj . The

set of local variables of Ŝ is XL = X \ XG. An MLTS Ŝ corresponds to a thread LTS

(X,Σ,;, S0), defined as follows:

Variables. The set of variables X is ∪iTi.X,

Labels. The set of labels of Σ is ∪iTi.Σ,

Transition Relation. The transition relation ; is defined as (s◦ t)
l

;(s◦ t′) if there exists

some Ti ∈ Ŝ such that t
l

;Ti
t′. That is, if the thread Ti updates its variables according

to its transition relation, and all the other variables remain unchanged.

Initial States. The initial states S0 are the combination T1.S0 ◦ T2.S0 ◦ . . ., of the initial

states of all the threads.

5.2.2 Thread-Context Verification

Given an MLTS Ŝ, with initial states S0, we define Reach.Ŝ as for LTSs (cf. Section 2.3),

namely the set {s | ∃s0 ∈ S0, σ ∈ Σ∗.s0
σ
;s}. Given a set of Y -states E , we say Ŝ is safe

w.r.t. E if Reach.Ŝ ◦ E = ∅. The multithreaded safety verification problem is to decide if an

MLTS Ŝ is safe w.r.t. a set of error states E . To check if the MLTS is safe w.r.t. E , we could

attempt to compute all the states reachable from the initial states. Such an endeavour is

most likely doomed to failure as the “product” of the threads will be prohibitively large,

for non-trivial threads.

Assume-Guarantee Reasoning

First, we recall the technique of Assume-Guarantee [MC81; Jon83; MC81; AL91; AH99;

McM97; FQS02] reasoning, in which we replace each thread with a smaller one, an assump-

114

tion, when verifying the system, and then, to ensure soundness, check that the assumption

made captured all the behaviors of the thread it replaced. To describe this method, we

formally describe what it means for one thread to capture the behaviour of another (simu-

lation), and “all the behaviors” of a thread (projection).

Simulation. For two LTS T1 = (X1, ·,;1, ·) and T2 = (X2, ·,;2, ·), we define the simu-

lation relation[HHK95; CGP99] � to be the largest set V.X1 × V.X2 such that if s1 � s2,

then

1. s1 ≈ s2, and,

2. For each s1;1s
′
1, there exists a s2;2s

′
2 such that s′1 � s

′
2.

For sets of X1, X2 states S1, S2, we say S1 � S2 if for every s1 ∈ S1 there exists a s2 ∈ S2

such that s1 � s2. We say that T1 � T2 if T1.S0 � T2.S0.

Projection. For an MLTS Ŝ = {T1, T2, . . .}, we define the projection of Ŝ to Ti, written

Ŝ ↓Ti to be the thread LTS (Ti.X, Ti.Σ,;, Ti.S0), where s
l

;s′ iff there exists t, t′ such that

(1) s ◦ t ∈ Reach.Ŝ, and, (2) there exists σ ∈ (Ŝ.Σ \ Ti.σ)∗ such that (s ◦ t)
lσ
;Ŝ(s′ ◦ t′).

Intuitively, this projection is an LTS that captures the transitions made by Ti when Ŝ

executes from its initial states.

Theorem 9 [Assume-Guarantee] For an MLTS Ŝ = {T1, T2, . . .}, and set of states E,

if there exists Ŝ ′ = {T ′
1, T

′
2, . . .} such that for each i, letting Ŝ ′i = Ŝ ′[Ti/T

′
i], we have

1. Ŝ ′i is safe w.r.t E, and,

2. Ŝ ′i ↓Ti � T
′
i ,

then Ŝ is safe w.r.t. E.

Thread-Context Reasoning for Symmetric MLTS

The above applies to arbitrary MLTSs. We now turn to the safety verification problem for

symmetric MLTSs, namely MLTSs comprising arbitrarily many copies of the same thread.

Let X be a set of variables partitioned into XG, a set of global variables, and, XL, a

set of local variables. For a natural i, we write X[i] be the set XG ∪ {xi | x ∈ XL}. For an

115

X-state s, we write s[i] for the X[i]-state where s ≈ s[i] and for xi ∈ XL, s[i].xi = s.x. For

a set of X-states, S, we write S[i] for the set {s[i] | s ∈ S}. For a thread T = (X,Σ,;, S0),

we write T [i] to be the thread (X[i],Σ[i],;, S0[i]) where (1) Σ[i] is the set {l[i] | l ∈ Σ},

and, (2) s[i]
l[i]
;s′[i] if s

l
;s. For a thread T we write write T ω for the MLTS {T [i] | i ∈ IN}.

Notice that the global variables of the MLTS T ω are exactly T.XG. Given a thread T , and

a set of error states E ⊆, the symmetric safety verification problem is to decide if T ω is safe

w.r.t. E .

Given a thread T and an environment thread T ′, the Thread-Context Program(TCP)

of (T, T ′), written TCP.(T, T ′) is the MLTS {T} ∪ T ′ω. Intuitively, the TCP of T, T ′ is a

program where a main thread T is executing in a context of an arbitrarily many copies of

the environment thread T ′. If the environment thread captures all the relevant behaviors of

the main thread, then the safety of the TCP implies the safety of the symmetric program.

Proposition 7 [Thread-Context Reasoning] For a thread T , and a set of error states

E, if there exists a T ′ such that:

1. TCP.(T, T ′) is safe w.r.t. E, and,

2. TCP.(T, T ′)↓T � T ′

then T ω is safe w.r.t. E.

The above follows from Theorem 9. This motivates Algorithm 5.2.2 for the symmetric

safety verification problem. In Algorithm 5.2.2, we try to find an appropriate environment

thread T ′ by starting with the “empty” thread, and then enriching its transitions until

either we find a counterexample behavior, or, we find that the conditions of Proposition 7

are met, and thus T ω is safe w.r.t. E .

5.3 Abstractions

There are several related hurdles that must be crossed in order to implement the algo-

rithm 5.2.2. First, we must be able to compute Reach.(TCP.(T, T ′)). In order to do so, we

require some abstraction of TCP.(T, T ′). Second, we must be able to compute the projection

116

Algorithm 4 Context Inference

Input: Thread T , Error states E
Output: Safe if T ω is safe w.r.t. E , Unsafe τ , where τ is a counterexample to E otherwise
T ′ := (T.X, T.Σ, ∅, T.S0) {Initialize}
try

repeat
T ′ := TCP.(T, T ′)↓T {Weaken assumption}

until Reach.(TCP.(T, T ′)) ◦ E = ∅ and TCP.(T, T ′)↓T � T ′

return Safe

with (Exception(τ)) →
return Unsafe(τ)

of TCP.(T, T ′) w.r.t. T (in order to get the new T ′), as well as check if one candidate envi-

ronment thread is simulated by another. In order to do these, we must have an abstraction

of environment threads that can be computed by projecting the TCP, and on which we can

compute the simulation.

Suppose we are given a symbolic abstraction structure that abstracts the data values for

the main thread (cf. Section 2.1.2). We shall use this data abstraction structure, to obtain

an abstract representation for environment threads, called a control abstraction. From the

control abstraction, we shall construct an abstraction structure for contexts, using counters.

Finally, we shall combine the abstractions for the main thread and the context, to get an

abstraction for the TCP.

5.3.1 Main Thread: Data Abstraction

A Havocable Region Structure for a thread T = (X,Σ,;, S0), is a pair (R,Hvc) where R is

a symbolic region structure (R,⊥,t,u, post, [[·]]), for T (cf. Section 2.1.1), and Hvc : R →

2X → R, such that for all r ∈ R and X ′ ⊆ X:

[[Hvc.r.X ′]] = {s′ | ∃s ∈ [[r]].∀x ∈ X \X ′s′.x = s.x}

We say a region r ∈ R is a global region if r = Hvc.r.XL, i.e., all the local variables have been

havoced and so can have any value. Notice that for any X ′, Hvc.(Hvc.r.X ′).X ′ = Hvc.r.X ′.

A Havocable Abstraction Structure for a thread T is a tuple A = ((R,Hvc), p̂ost,�, Ĥvc),

where (R, p̂ost,�) is a symbolic abstraction structure for T (Section 2.1.2), and Ĥvc : R→

2X → R, such that for all r ∈ R and X ′ ⊆ X:

Hvc.r.X ′ v Ĥvc.r.X ′

117

To abstract the main thread T , we shall use a havocable abstraction structure A for T .

5.3.2 Environment Thread: Control Abstraction

For a symbolic region structure R = (R,⊥,t,u, post, [[·]]) for thread T = (X,Σ,;, S0), a

R-Abstract Thread is A = (X,Q, q0,−→), where:

1. X is the set of variables of T

2. Q is a finite set of abstract locations, labelled with global regions from R; we write

q :r for the location q ∈ Q labeled with r ∈ R,

3. q0 ∈ Q is a start location, we write A.r0 for the label of q0,

4. →⊆ (Q× 2X ×Q) is a finite set of directed edges labeled with subsets of X; an edge

(q, Y, q′) ∈→ is written q
Y
−→q′.

An abstract thread A corresponds to a thread LTS TA defined as follows:

Variables. The variables of TA are X ∪ {pcA}, where pcA is single local variable whose

value is an element of Q, representing the abstract program counter of A,

Labels. The labels of TA are the subsets of X,

Transition Relation. The transition relation of TA is ; defined as: s
Y
;s′ if there exists

q : r
Y
−→q′ : r′ such that: (1) s.pcA = q, and, s′.pcA = q′, and, (2) {s} . [[r]] and

{s′} . [[r′ uHvc.r.Y]], and,

Initial States. The initial states of TA are [[A.r0]] ◦ {s | s.pcA = q0}.

An R-abstract thread is global if all the regions labelling its locations are global, and

the variables labelling its edges belong to XG. We shall represent environment threads

using global abstract threads. The global requirement is so that environment threads do

not change the values of the main thread’s local variables; the relevant local state of the

environment threads is captured in its abstract program counter. In the sequel we shall use

abstract threads in the same place as we use thread LTSs, i.e., we say A for the thread LTS

TA. Now we show how to construct abstract environment threads from TCPs, and how to

check if one abstract thread simulates another.

118

Abstract Reachability Graphs. Given a main thread T , a havocable region structure R

for T , and an environment thread, possibly given using a R-Abstract Thread, a R-Abstract

Reachability Graph(ARG) for TCP.(T, T ′) is an abstract thread A = (X,Q, q0,−→) such

that there exists a function f from the states of Reach.TCP.(T, T ′) to Q with the following

properties:

1. For all states s ∈ Reach.TCP.(T, T ′), if f.s :r then {s} . [[r]],

2. For all initial states s0 of TCP.(T, T ′), we have f.s0 = q0,

3. For each s ∈ Reach.TCP.(T, T ′), if s
l

;s′ then (1) if l ∈ T.Σ, then we have f.s
Y
−→f.s′

and Y contains WriteT (l), and, i.e., all the variables written in l, and (2) if l 6∈ T.Σ

then f.s = f.s′.

An abstract reachability graph for TCP.(T, T ′) represents an overapproximation of the

behavior of T in the context of arbitrarily many environment threads T ′.

Proposition 8 [Abstract Reachability Graphs] For every main thread T , havocable

region structure R for T , and environment thread T ′ if A is an R-Abstract Reachability

Graph for TCP.(T, T ′), then:

1. Reach.(TCP.(T, T ′)) ⊆ [[t{r | q :r ∈ A.Q}]],

2. TCP.(T, T ′)↓T � A.

Proposition 8 is a generalization of Theorem 1 for reachability trees (cf. Section 3.2).

Abstract Simulation. For twoR-Abstract ThreadsA = (X,Q, q0,−→) andA′ = (X,Q′, q′0,−→
′),

� is the largest subset of Q×Q′ such that: if q1 :r1 � q
′
1 :r′1 then:

1. r1 v r
′
1, and,

2. For every q1
Y
−→q2 there exists a q′1

Y ′

−→q′2 such that Y ⊆ Y ′ and q2 � q
′
2.

We say A � A′ or A′ abstractly simulates A if q0 � q
′
0.

Proposition 9 [Abstract Simulation] A � A′ implies TA � TA′ .

The above proposition, coupled with standard algorithms[CGP99; HHK95], gives us a

way to check if one abstract thread simulates another.

119

5.3.3 Context: Counter Abstraction

Given an abstract thread, we now show how to use counters to construct an abstraction for

contexts corresponding to an unbounded number of copies of the abstract thread. Intuitively,

the abstract thread’s location encodes all the relevant information about the local state of

the environment thread. When constructing the abstract thread, we shall havoc all the

local variables from the locations’ regions and hence the havoced labels capture the relevant

information about the global variables of the environment thread. Now, given that the local

information corresponds directly to the abstract location, we observe that instead of tracking

the local states of the each of the context threads, we can just count the number of threads

at each control location[Lub84]. This still leads to an infinite number of possibilities so we

shall use a counter abstraction, where given a parameter k we shall abstract any number

greater than k to be ω (infinity).

Formally, for every k ∈ IN ∪ {ω}, we define the counter abstraction function α.k : IN→

{0, . . . , k, ω} as:

α.k.j =

{
j if j ≤ k

ω otherwise.

For an Abstract Thread A, and a natural k, the counter abstraction of A w.r.t. k, is the

tuple (∆, δ0, p̂ost) where:

1. ∆ is the set of counter maps from A.Q to IN ∪ {ω},

2. δ0 is the initial counter map where δ0.q = ω if q = A.q0 and 0 otherwise, and,

3. p̂ost is a function ∆→ (A.Q)2 → ∆, defined as: :

p̂ost.δ.(q, q′) =

{
δ[q 7→ δ.q − 1][q′ 7→ α.k.(δ.q′ + 1)] if δ.q > 0,

δ o.w.

5.3.4 Abstracting Thread-Context Programs

We now combine the above abstractions as follows. Suppose that we are given a symbolic

havoc abstraction structure A = (R, p̂ost,�, Ĥvc) for a thread T , a R-Abstract Thread A,

and a natural k. Let the counter abstraction of A w.r.t. k be (∆A, δ0, p̂ostA). We have

TCPabs.(T,R).(A, k) as the tuple (Rω, [[·]]ω , p̂ost
ω
), defined as follows.

120

Regions. Rω = R × ∆A is the set of regions of TCP.(T,A); i.e., a region of TCP.(T,A)

is a pair (r, δ) where r is a region for T , and δ is a countermap for A. [[·]]ω is a map

from Rω to sets of TCP.(T,A) states, where s ∈ [[(r, δ)]]ω iff there exists a map f from

IN to A.Q such that (1) for all i ∈ IN, if f.i : ri then {s} . [[r u ri]], and (2) for all q,

|{i | f.i = q}| ≤ δ.q.

Abstract Post. The operations of TCP.(T,A) are the environment operations Y corre-

sponding to edges q
Y
−→q′ in A, and the main thread operations l ∈ T.Σ. An envi-

ronment operation q
Y
−→q′ is enabled in a region (r, δ), if δ.q > 0, and main thread

operation l in T.Σ is always enabled. For counter map δ for the abstract thread A, we

write uδ as an abbreviation for u{r | ∃q :r s.t. δ.q > 0}. The function p̂ost
ω

takes an

element of Rω, and an operation of TCP.(T,A), and returns another element of Rω

overapproximating the successor states corresponding to the operation. We define

p̂ost
ω
.(r, δ).op =

{
(uδ u p̂ost.r.l, δ) if op = l ∈ T.Σ

(uδ′ u Ĥvc.r.Y, δ′) if op = q
Y
−→q′ and δ′ = p̂ostA.δ.(q, q

′)

if op is enabled in (r, δ) and (⊥, λq.0) otherwise.

Proposition 10 [Abstract TCP] For every thread T , with havocable abstraction struc-

ture A = ((R, ·), ·, ·, ·), a R-Abstract Thread A, and a k ∈ IN, if TCPabs.(T,R).(A, k) =

(Rω, [[·]]ω , p̂ost
ω
) then:

1. TCP.(T,A).S0 ⊆ [[r0 uA.r0]] implies TCP.(T,A).S0 ⊆ [[(r0, δ0)]]
ω,

2. For any r ∈ Rω, for every s ∈ [[r]]ω, (1) if s
l

;s′ for l ∈ T.Σ, then s′ ∈ [[p̂ost
ω
.r.l]]ω,

and (2) if s
l[i]
;s′ for l ∈ A.Σ, then s′ ∈ [[p̂ost

ω
.r.l]]ω.

5.4 Verification by Thread-Context Abstraction-Refinement

Recall that the (symmetric) verification problem we are interested in is the following: given

the (main) thread T , and a set of T.X states E , we wish to check if T ω is safe w.r.t.

E . We now show how the abstractions described in the previous section can be used to

implement Algorithm 5.2.2 for the symmetric safety verification problem. Our strategy is

to infer an abstract thread that satisfies the conditions of Proposition 7, and thus show the

multithreaded system safe.

121

We require a havocable abstraction structure A = ((R, ·), ·, ·, ·), for T where R is the

region structure (R,⊥,t,u, post, [[·]]). The set E is given as a region in R. To implement

Algorithm 5.2.2 we use:

1. R-abstract threads to represent the candidate environment threads T ′,

2. p̂ost
ω

to compute (overapproximations of) Reach.(TCP.(T, T ′)),

3. Abstract Reachability Graphs to compute TCP.(T, T ′)↓T to weaken the environment

assumption, and,

4. Abstract Simulation to check if the assumed environment thread simulates the behav-

ior of T in the current context.

The Proposition 10 states that the initial abstract state of the TCP contains the initial

states of the TCP, and that p̂ost
ω

is an overapproximation of the successor states in the

Thread-Context Program. Given the operation p̂ost
ω
, we can construct a reachability graph

for a TCP.(T, TA), by starting from a root node labeled with (r0, δ0) and constructing

successors for each node by computing p̂ost
ω

for each enabled operation, and merging nodes

with the same region. We shall use a variant of SymbReachRefine Algorithm 1, to construct

this abstract reachability graph.

First, we show how if given an abstract thread, we can check if the system is safe, and

then we show how to infer the abstract thread by combining the fixpoint computation of

Algorithm 5.2.2, with counterexample-guided abstraction refinement.

5.4.1 Checking

Suppose that in addition to the thread T , havocable abstraction structure A = ((R, ·), ·, ·, ·),

for T and error region E , we have a R -Abstract Thread A, and a natural number k. In

Algorithm Check, using two steps, we directly use Proposition 7 to check that T ω is safe

w.r.t. [[E]].

1. Assume that A is a sound approximation of the behavior of T when T is composed with

infinitely many copies of itself. Compute the set of abstract states reachable in the ab-

stract multithreaded program TCP.(T,A), using the abstraction TCPabs.(T,R).(A, k)

122

Algorithm 5 ReachAndBuild.(A, r0, E).(A, k)

Input: A havoc abstraction structure A = ((R, ·), ·, ·, ·) for thread LTS T , initial region
r0 ∈ R.R, error region R.R, a global R-Abstract Thread A, natural k.

Output: Either a R-Abstract Thread A′, s.t. TCP.(T,A) ↓ T � A′, or raise exception
Exception(τ), where τ is a sequence of TCP.(T,A) operations.

1: (Rω, ·, p̂ost
ω
) := TCPabs.(T,R).(A, k)

2: L := {(r0, δ0)}, Intl := ∅, G := (∅, ∅, ∅)
3: while L 6= ∅ do
4: pick and remove state (r, δ) from L
5: if not ((r, δ) ∈ Intl) then
6: Intl := Intl ∪ {(r, δ)}
7: if r u E 6v ⊥ then
8: τ := FindPath.Intl .(r0, δ0).(r, δ)
9: raise Exception(τ)

10: else
11: for each enabled operation op of TCP.(T,A) do
12: (r′, δ′) := post.(r, δ).op
13: Connect.R.G.(r, op, r′)
14: L := L ∪ {(r′, δ′)}
15: A′ := (T.X,G.Q,Find.G.r0, G.

)
−→

16: return A′

and check that this set does not contain any error states. If an error is reached, return

“possibly Unsafe.” This step is implemented by procedure ReachAndBuild, which

does a reachability analysis and also builds an abstract reachability graph G describ-

ing the behavior of T when its context is an arbitrary number of abstract threads A

running concurrently.

2. Guarantee that the abstract thread A is indeed a sound approximation of the behavior

of T in this context, by checking that abstract reachability graph G computed in the

previous step is overapproximated by A, or more precisely, that G � A. If the check

succeeds, return Safe, else return “possibly Unsafe.” We perform this check by

using a variation of the standard simulation checking algorithm [HHK95].

The soundness of the above follows via inductive “assume-guarantee” reasoning [Jon83;

AH99]. We now describe ReachAndBuild in greater detail.

Procedure ReachAndBuild is shown in Algorithm 5. It is a standard worklist based

reachability algorithm [CGP99], but additionally builds an abstract reachability graph G

summarizing the reachability information similar to how Algorithms 1,2 build reachability

123

Algorithm 6 Connect.R.G.(r, op, r′)

Input: Region Structure R for thread T , Augmented Graph G = (Q,−→, S), where S :
Q→ 2R.R, and (r, op, r′) where r, r′ ∈ R and op is in T.Σ ∪ 2T.X .
q := Find.G.r; q′ := Find.G.r′

if op ∈ T.Σ then
{Main thread operation}

if q
Y
−→q′ is in G for some Y then

Replace (n
Y
−→n′) with (n

Y ∪WriteT (op)
−−−−−−−−−→n′ in G

else
Add q

WriteT (op)
−−−−−−→q′ to G

else
Union.G.(q, q′) {Environment operation}

Algorithm 7 Find.G.r

Input: Aug. Abstract Thread G = (Q,→, S), where S : Q→ 2R, and r ∈ R.
Output: A location q ∈ Q

if ∃q ∈ Q : r ∈ S.q then
return q

else
Create a fresh location q :r
Q := Q ∪ {q :r}
S := S[q 7→ {r}]
return q

trees. The main loop of lines 3–14 runs the reachability construction, using the worklist L.

At each step, a state is chosen from the worklist. If it has not been seen before (line 5), it

is added to the set of explored states (line 6), and checked for possible errors. If an error

state has been hit (line 7), the procedure finds an (abstract) interleaved error trace to the

error state, and raises an exception containing the error trace. Otherwise, the current state

is expanded. For this, we construct the successor of the current state for each operation

enabled from it (line 12), and connect the current state and its successor as an edge in

the abstract reachability graph G, using the procedure Connect described shortly. Finally,

the successor states are added to the worklist. Note that the locations of the abstract

reachability graph G correspond to abstract thread states, as we drop the counter maps

corresponding to the context’s abstract state. At the end of the while loop, we return

A′ which is the abstract thread corresponding to G; the initial location is the location

corresponding to the initial region r0.

124

Algorithm 8 Algorithm Union

Require: Region StructureR = (R, ·,t, ·, ·, ·), Aug. Abstract Thread G = (Q,→, S) where
S : Q→ 2R, and q, q′ ∈ Q.
if (q 6= q′) then

Let q :r, and q′ :r′

Relabel q with r t r′

S := S[q 7→ S.q ∪ q′]
for each q′′

Y
−→q′ in G do

Add q′′
Y
−→q to G

Remove q′′
Y
−→q′ from G

for each q′
Y
−→q′′ do

Add q
Y
−→q′′ to G

Remove q′
Y
−→q′′ from G

return q

Procedure Connect adds edges between the abstract states computed by the reachability

analysis (Algorithm 6). It takes as argument the augmented Abstract Thread G that is

being constructed, abstract thread states r and r ′ (the successor of r), and an operation

op. Each location of G corresponds to a set of thread regions. The Abstract Thread G is

augmented with a map S that maps a location q to the set S.q of thread regions mapped

to q. Connect first finds locations q, q ′ corresponding to r and r′ respectively by invoking

the procedure Find. When Find is called with abstract thread state r it checks if a there

exists a location q with r ∈ S.q; If so, it returns that location and if not, it returns a new

location q where S.q = {r}. An invariant maintained is that if q : r then r = tS.q. The

edges of the graph G are added depending on the type of the operation op. There are two

cases: op is either a main thread operation, or an environment operation. In the first case,

we add the edge q
WriteT (op)
−−−−−−→q′, labelled with the variables written by the main thread, if

an edge exists between q, q′, we add the written variables to the edge label. In the second

case,i.e., if the operation is an environment operation, then the two locations q and q ′ are

unified by procedure Union which “merges” q ′ with q by merging the regions labelling q, q ′,

adding all the in and out edges, and deleting q ′ and all its edges from G.

Proposition 11 [Soundness of ReachAndBuild] For any havoc abstraction structure A

containing the havoc region structure R, for thread T , region r0, and R-Abstract Thread A,

such that T.S0 ⊆ [[r0 uA.r0]] if ReachAndBuild.(A, r0, E).(A, k) returns A′, then:

1. TCP.(T,A) is safe w.r.t. E, and,

125

2. TCP.(T,A)↓T � A′.

Using Proposition 10, we can show that A′ is an Abstract Reachability Graph for

TCP.(T,A), and hence the two facts above follow from Proposition 8 about Abstract Reach-

ability Graphs.

If in addition the Abstract Thread A′ (returned by ReachAndBuild), is abstractly sim-

ulated by A, then by Proposition 9, we have A′ � A. This, combined with the second

fact from Proposition 11 and transitivity of � implies that TCP.(T,A) ↓ T � A. Hence,

A is an environment thread that meets the requirements of Thread-Context Reasoning

(Proposition 7), and so we can conclude that T ω is safe w.r.t. E .

5.4.2 Inference

Algorithm 9 CIRC.(A,Refine, r0, E)

Input: A havoc abstraction structure A containing the region structure R for thread LTS
T , initial region r0 ∈ R.R s.t. T.S0 = [[r0]], error region R.R, and a refine operator
Refine.

Output: Safe if TCP.(T,) is safe w.r.t. [[E]], Unsafe σ where σ is a T ω counterexample
to [[E]].

1: k := 0
2: while true do
3: try
4: A′ = ∅
5: repeat
6: {Inner loop: build environment thread}
7: (A,µ) := Collapse.AA′

8: A′ := ReachAndBuild.(A, r0, E).(A, k)
9: until (A′ � A)

10: return Safe

11: with (Exception(τ)) →
12: if Refine.T.A.A′.µ.τ = Real (σ) then
13: return Unsafe (σ)
14: else
15: (r′0, k

′) := Refine.T.A.A′.µ.τ {r′0 � r0 or k < k′}
16: r0 := r′0
17: k := k′ {Outer loop: refine abstraction}
18: done

In general, the abstract environment thread A that succinctly summarizes the behavior

of thread T , and is simultaneously precise enough to show the absence of concurrency

errors, is not available. Therefore, we must construct this abstraction automatically via an

126

inference algorithm. Algorithm 5.4.2 shows our inference algorithm CIRC.

The algorithm has an outer loop within which the abstraction is successively refined

when required, and an inner loop, which attempts to build an appropriate context A. In

the first iteration of the outer loop, the initial abstraction comes from r0 and the counter

abstraction parameter k is 0. In the first iteration of the innerloop we assume the that

each environment thread does nothing, i.e., A′ is set to the empty abstract thread (line 4).

We then minimize the abstract reachability graph A′ with the procedure Collapse (line 6).

Collapse takes abstract reachability graph A′ and returns its weak bisimulation quotient

Abstract Thread A [CGP99], together with a map µ that maps each location of A′ to its

equivalence class (location) in A. In the first iteration, this is still empty. At each iteration,

A will be the “current” approximation of the main thread behaving in the context of an

unbounded number of copies of itself. We then call ReachAndBuild to see how T behaves

in the context of an unbounded number of copies of A, the result being the new abstract

thread A′ (line 7). If the present approximation A simulates the new abstract thread A ′

then it means that A was a sound approximation (i.e., meets the “guarantee”), and we

break out of the loop and return Safe (lines 8, 9). If on the other hand, we find that A was

not a good approximation (fails to meet the guarantee) then we repeat the loop with the

new abstract thread A′, which now gives us a better approximation of how each context

thread behaves (the repeat. . .until loop of lines 5–8).

At any point, the procedure ReachAndBuild may raise an exception claiming it has an

abstract error trace to E . We trap this exception and analyze the counterexample to see

if it is genuine, and if not, obtain a more precise thread region r ′0 or a larger (and hence,

more precise) counter parameter (lines 10–16). The exception Exception(τ) is caught in

line 10, and checked in procedure Refine. Procedure Refine takes as input a T , an Abstract

Thread A, the abstract reachability graph A′ such that A is the bisimilarity quotient of

G, the map µ mapping states of A′ to those of A, and an abstract error trace τ , which

is a sequence of operations that are either the main thread’s operations or environment

operations (corresponding to edges in A). If τ can be realized in the concrete program,

Refine returns a real error Real together with a concrete interleaved trace σ, which is a

counterexample to the error states [[E]] of T ω. In this case, the algorithm Refine returns

127

Unsafetogether with the real error σ. On the other hand, if the current error path τ does

not have a concrete realization in T ω then Refine, a variant of the procedure described in

Section 3.3, returns a refinement of the abstraction by returning either a new, more precise

initial region r0, or a larger value of the counter, k′. The algorithm updates the thread

and context abstractions by using the more precise root, and the larger counter respectively

(lines 14–16). If the abstraction is updated, we repeat the outer loop by resetting the

current approximation of each context thread A′ back to the empty abstract thread, and

repeat the inner loop using the new abstraction given by r0, k.

Procedure Collapse The procedure Collapse takes a havoc abstraction structure A, con-

taining the havoc region structure (R,Hvc), for thread T , and a R-abstract thread G and

returns (1) a global R-abstract thread A which is the a weak bisimulation quotient G after

replacing the location labels with their global versions, and, (2) a mapping µ from G.Q to

A.Q mapping each location of G to its equivalence class (location) in A. The algorithm

Collapse works in two steps. First, for each location q : r ∈ G.Q, we relabel the location

with Hvc.r.XL, where X are the variables of T Also, we remove all local variables XL

from the sets labeling the edges of G. We then run a standard weak bisimilarity algorithm

[CGP99] with the resulting global regions labeling states of G as observables. The bisimi-

larity procedure also constructs the required mapping. Whenever in G we have q
Y
−→q′, and

the bisimilarity collapses q, q′ to the same location q′′ in A, we ensure that A has a self loop

edge q′′
Y ′

−→q′′ with Y ⊆ Y ′. The result is a global R-Abstract Thread. This is important

as we want that any local variable appearing in the analysis refers to the local of the main

thread. The global abstract thread A returned when Collapse.R.G is such that G � A.

Putting the above together, we get the correctness of CIRC.

Theorem 10 [Correctness of CIRC] If Algorithm CIRC on input A containing a region

structure R for a thread LTS T , a refine operator Refine, initial region r0 ∈ R.R, and error

region E ∈ R.R, terminates and returns:

1. Safe then T ω is safe w.r.t [[E]].

2. Unsafe(σ) then T ω is not safe w.r.t. [[E]].

128

The algorithm is not complete in general, since reachability is undecidable already for

single-threaded programs. For finite-state systems and just predicate and control state

abstractions, completeness follows from finiteness of the state space. It is not obvious that

even for finite-state threads, Algorithm CIRC is complete, since we consider unboundedly

many threads. We show in Section 5.7 that our method using counters is complete if the

threads are finite-state. This implies that the only way the procedure can loop forever

is if either the threads are recursive, or we keep finding increasingly precise r0, e.g. by

discovering new predicates.

5.5 Race Detection for Multithreaded Imperative Programs

One instance of the previous algorithm is analyzing multithreaded imperative programs,

e.g. those written in C. In particular, we have applied the above to look for, and guarantee

the absence of data races in multithreaded C programs.

We now describe how to model multithreaded imperative programs as MLTSs, describe

the race detection problem as a safety verification problem for MLTSs, describe the abstrac-

tions we use and the Refine operator for such programs. For clarity we describe our method

only for CFAs for PI programs; the described method is extended in the implementation,

to deal with programs with pointers, in the same way as for sequential programs.

5.5.1 MLTSs from Imperative Programs

A Thread Control Flow Automaton(TCFA), is a tuple C = (X,PC , pc 0,−→) where (X,PC , pc0,−→)

is a CFA (defined in Section 2.2.1), and X is partitioned into XG and XL, respectively the

sets of local and global variables.

A Thread Program P is pair (F, fmain), where F is a set of functions, and each function

f ∈ F is denoted by its TCFA Cf , and fmain is a special initial function in F . A thread

program P corresponds to a thread LTS TP = (X,Σ,−→, S0), where the first three elements

are exactly the LTS corresponding to P (defined in Section 2.2.1). The global variables of

P are ∪f∈P .FCf .XG, and the remaining variables, as well as the program counter and call

stack are locals.

A Multithreaded Program P̂ is a set of thread programs {P1,P2, . . .}, such that for any

129

pair Pi,Pj , where i 6= j, the locals of Pi and Pj are disjoint. The Multithreaded Program P̂

corresponds to an MLTS Ŝ
P̂

= {TP1 , TP2 , . . .}. The variables of P̂ are ∪iPi.X. The global

variables of P̂ are ∩i6=jPi.X ∩Pj.X. We consider symmetric multithreaded programs, which

arise from an arbitrary number of copies of the same thread program running concurrently.

5.5.2 Predicate Abstraction

For threads given as imperative programs, we shall use a havocable abstraction structure

based on predicate abstraction (Section 2.2.2). It suffices only to describe Hvc and Ĥvc, for

data regions (Section 2.2.2); for the program counter or stack we simply replace them with⊥,

indicating they may have any value. For a formula ϕ, and set of variables X ′ = {x1, . . . , xk},

Hvc.ϕ.X ′ = ∃x′1 . . . x
′
k.ϕ[x′1, . . . , x

′
k/x1, . . . , xk]

We do away with the quantifier by skolemizing, i.e., substituting each xi with a brand

new x′i. We get Ĥvc.ϕ.X ′ by replacing all atomic predicates in ϕ that contain a variable

in X ′ with unknown,i.e., replacing them with true (false) if the atomic predicate appears

positively (negatively).

5.5.3 The Race Detection Problem

A specific instance of the safety verification problem for MLTSs is the race detection problem.

For a variable x ∈ T.X, define

Wr.T.x = {s | ∃s
l

;s′.x ∈WriteT (l)}

Suppose that we are supplied a map Rd.T from T.X to sets of T.X-states. Wr (resp. Rd)

stipulate the states in which the thread T writes (resp. reads) the variable x.

For LTS corresponding to imperative programs, each l is a pair (op : pc) (cf. Sec-

tion 2.2.1). Hence WriteTP
((op : ·)) contains x if op is an assignment to x in P , and Wr.TP .x

is the set of all states where there is an outgoing CFA edge labeled by an assignment to x.

Similarly Rd.TP .x is the set of all states where there is an outgoing CFA edge labeled by an

assignment y := e and x is a variable of e, or an assume assume[p] and x is a variable of p.

For LTS corresponding to Abstract Threads, each l corresponds to a set of variables

Y which equals WriteTA
(l). Hence, Wr.TA.x is the set of all states, where the AT is at a

130

location with an outgoing edge labeled by a set Y that contains x. On the other hand,

Rd.TA.x = ∅.

For an MLTS Ŝ = {T1, T2, . . .}, and a global variable x ∈ Ŝ.XG, we define the race

states Ex to be the set of Ŝ.X-states:

∪i6=jWr.Ti.x ∩ (Wr.Tj .x ∪ Rd.Tj .x)

The race-detection problem for a multithreaded program P̂ and a global variable x is to

check Reach.P̂ ◦ Ex = ∅. We say a program P has no races on variable x iff the program P

is safe w.r.t. Ex. If P̂ = Pω for some single thread program P , then the problem is called

the symmetric race detection problem.

Memory Model So far we have described our algorithms without considering pointers.

In our implementation, we extend the basic algorithm to deal with pointer variables and

aliasing. The problem is that we cannot infer the global memory address being accessed

syntactically by looking at the name of the lvalue. Thus, for the error check, we ask for

every pair of lvalues l1, l2 at a state, if the addresses of l1 and l2 can be the same, and in

addition if there is a race between l1 and l2. As an optimization, we use a flow insensitive

alias and escape analysis to curtail the possible aliasing relationships to be explored.

5.5.4 Procedure Refine

The procedure Refine analyzes abstract counterexamples, to either extract genuine error

traces or to refine the abstraction to eliminate the false positive. An abstract trace is a

sequence of operations of the main thread and the context ACFA. The input to Refine is a

CFA C, an ACFA A, a reachability graph G such that A is the weak bisimilarity quotient

of G, a map µ from states of G to states of A, and an abstract trace τ . It returns either a

real error trace s̄ or, if τ is infeasible, a refinement of the abstraction (P ′, k′) where P ′ is a

set of predicates, and k′ is a new counter value. Procedure Refine works in two steps:

1. Computing an Interleaving. A scan over the entire trace suffices to check if the

parameter k is large enough. If not, the only refinement is that k is incremented. If k is large

enough, we compute the number of context threads that participate in the counterexample.

Each operation in the abstract trace is a either a main thread operation, or an abstract

131

T1: I → II skip true
T1: II → III old := state 〈old, 1〉 = 〈state, 1〉

assume[state = 0] 〈state, 1〉 = 0
state := 1 〈state, 2〉 = 1
assume[old = 0] 〈old, 1〉 = 0

T0: skip skip true
T0: old := state old := state 〈old, 2〉 = 〈state, 2〉
T0: assume[state = 0] assume [state = 0] 〈state, 2〉 = 0
T0: state := 1 state := 1 〈state, 3〉 = 1
T0: assume old = 0 assume [old = 0] 〈old, 2〉 = 0

Figure 5.5: Abstract trace, concrete interleaving, TF

operation by a specific abstract context thread. To generate the concrete interleaving, we

get a concrete sequence of thread operations from the abstract context operation, by using

the underlying reachability tree of the ACFA.

2. Analyzing an Interleaving. Given an interleaved trace, we must check if it is feasible.

We first compute a trace formula (TF) which is a version of the strongest postcondition

of the trace. Each operation of the trace yields a clause and the TF is the conjunction of

all the clauses. The trace is feasible, and hence, the counterexample genuine, iff the TF is

satisfiable, which can be checked by querying a decision procedure. If it is not satisfiable,

the proof of unsatisfiability of the TF can be mined for predicates using an extension of the

technique described in Section 3.3.

Example 14 [Refinement] In Figure 5.5 the left, middle and right columns show respec-

tively, the abstract trace, concrete trace, and the unsatisfiable TF for the error trace from

iteration 4 of the example from Section 2. The proof of unsatisfiability yields the predicates

state = 0 and state = 1. 2

5.6 Experiences

nesC [GLvB+03] is a programming language for networked embedded systems. It is used to

implement event driven applications in the TinyOS operating system [HSW+00]. TinyOS

has two sources of concurrency: tasks and events. When an interrupt occurs an event is

fired, which may in turn fire other events. As other interrupts can occur while this is

happening, events can preempt each other. Events may also post tasks, which are run when

132

Name Variable] Preds AT size Time

secureTosBase gTxState 11 23 7m38s
(9539 lines) gTxByteCnt 4 13 1m41

gTxRunningCRC 4 13 1m50s
gTxProto 0 9 12s
gRxHeadIndex 8 64 20m50s
gRxTailIndex 0 5 2s

surge rec ptr 4 23 1m18s
(9697 lines) gTxByteCnt 4 15 1m34

gTxRunningCRC 4 15 1m45s
gTxState 11 35 9m54s

sense (3019 lines) tosPort 6 26 16m25s

Table 5.1: Experimental results with CIRC on a 2GHz IBM T30 with 512M RAM

nothing else is happening. A task may be preempted by events, but is never preempted

by another task. The presence of concurrent execution leads to potential data races on the

shared state. Since tasks are nonpreemptible, there is no data race on variables accessed

only in tasks, but there may be be races between events and tasks, or between two events.

As it is essential to avoid data races, nesC provides atomic sections in the language

with an atomic keyword. Code in an atomic section is executed atomically. Notice that this

can be modeled in our formalism as a special shared mutex variable. The nesC compiler

implements a flow based static analysis to catch race conditions on shared data variables. It

runs an alias analysis to detect which global variables are accessed (transitively) by interrupt

handlers, and then checks that each such access occurs within an atomic section. However,

this analysis precludes the use of some common programming idioms (e.g. the example

from Section 2) which cause the analysis to return false positives. For this, nesC provides

a norace annotation that the programmer must provide if she believes that there is no

race condition on a data variable. In practice, almost all shared accesses are put in atomic

sections to prevent compiler warnings, even though there may be no actual race condition.

Since atomic sections are implemented by interrupt disabling, this may make the system

less responsive. Thus, nesC programs gave us a suitable application for a precise race

checker like CIRC: first, they critically require the absence of data races, and second, they

use several non-trivial synchronization idioms.

Running CIRC on nesC Programs. We focused on the variables that had raised false

alarms with the flow-based analysis, and which subsequently were flagged with the norace

133

qualifier. nesC programs are compiled into C and event fires translate to function calls.

We modeled the nesC applications as an arbitrary number of threads each executing a big

while-loop that triggered hardware interrupts non-deterministically (as long as interrupts

were enabled, modeled by adding a special global) or called tasks non-deterministically (as

long as nothing else was running).

Our results on some of the largest nesC applications are summarized in (Table 1). The

examples requiring no predicates are ones that were trivially safe as they were accessed in

atomic sections or only by tasks and our tool finds this quickly. “Line” is the number of

lines in the compiled C source code. “Preds” is the number of predicates discovered to prove

safety, “AT” is the number of states in the final AT. The counter parameter was always 1.

State Variable based Synchronization. Many of the variables gTxByteCnt, gTxRunningCRC

were protected by a state variable much like the example in Section 2, and CIRC is able

to show there are no races, by finding the appropriate abstraction. gTxState is protected

in a similar manner but is accessed in a more complicated pattern: CIRC first reported a

violation on it in secureTosBase. On inspection we found that the variable was accessed at

several places inside a function, in most places before a call that changed the state variable,

but at the point of conflict, it was accessed after changing the state variable. On mov-

ing the access to before the call, CIRC reported the system was safe. There was another

“unprotected” access, that occurred when a certain function call returned the value 0, but

CIRC verified that in that context, the function never returned 0. gRxHeadIndex uses a

complicated synchronization on multiple values of a state variable along with “conditional”

accesses.

Split-phase based Synchronization. The variable rec ptr in surge was accessed by an

interrupt handler (event) (I) and by a task (T) in the following manner: the handler fired

only when I was enabled. It then disabled the interrupt I, posted the task T and then wrote

to rec ptr. The task, when it got to run, wrote to the variable, and then re-enabled the

interrupt. This is an instance of a split-phase operation, used to break up long tasks. When

we modeled this interrupt precisely by tracking its status in a global flag, CIRC was able to

report the absence of races after inferring the appropriate AT. (Since the C code does not

match up interrupt bits with handlers, we had to refer to the underlying hardware model.)

134

A more complicated form of synchronization was in sense where the variable tosPort was

protected by a combination of this and a state variable. We discovered this as CIRC found

a race where an interrupt fired which reset the state after one thread had already set it and

was about to write to tosPort thus letting another thread come in and access tosPort.

The programmer pointed out that the malicious middle interrupt was only enabled after

the first thread had finished writing to tosPort. On modeling this interrupt, the tool was

able to prove safety.

5.7 Completeness of Counter Abstractions

For finite-state threads, counterexample-guided refinement using counter abstractions ter-

minates.

Let T = (X ∪{pc},Σ,;, {s0}) be a thread with the single local variable pc. As before,

let T ω be the symmetric MLTS running an unbounded number of copies of the thread

T , each of which is obtained by renaming pc to pc[i], which is the only local variable of

thread T [i]. A thread T is finite-state if each variable in X ∪ {pc} takes values over a finite

domain. The parameterized multithreaded program T ω is finite-state if T is finite-state.

The assumption that there is a single local variable is w.l.o.g. as several locals can be

modeled with a single local which takes on a richer set of values. For a finite state thread

T , with variables X ∪ {pc}, and a set E of X-states, specifying possible error states, recall

that the symmetric safety verification problem is to check if Reach.(T ω) ◦ E . If so, we say

that T ω is safe w.r.t. E , otherwise, T ω is unsafe.

A state of T ω can be represented by a X ∪ {δ}-state s where δ : Q → IN ∪ {ω}, is a

map where Q is the finite range of the variable pc. Intuitively, s.x is the value of the global

variable x, and, s.δ.q for q ∈ Q counts the number (possibly infinite) of threads T [i] with

pc[i] = q.

We now define counter abstractions (T, k) of the multithreaded program T ω. Given

T = (X ∪{pc},Σ,;, S0), let the counter abstraction of T ω, w.r.t. k, be the MLTS (T, k) =

((X ∪ {δ}, (Q × Σ×Q),;k, {sk0})), defined as follows.

Variables. The variables of (T, k) are X ∪ {δ} where δ is a variable, not in X, that is a

map from Q to IN ∪ {ω}.

135

Labels. The labels of (T, k) are triples in Q× Σ×Q.

Transition Relation. The transition relation of (T, k) are triples (s, (q, l, q ′), s′) ∈;k s.t.

1. s.δ.q > 0

2. there exist t[pc 7→ q]
l

;t′[pc 7→ q′] s.t. s ≈ t, s′ ≈ t′, and,

3. s′.δ = s.δ[q 7→ s.δ.q − 1][q′ 7→ α.k.(s.δ.q′ + 1)]

Recall that α.k.j = j if j ≤ k and ω otherwise.

Initial States. The initial states of (T, k) are {s0}, where s0 is an X ∪{δ}-state such that:

s0 ≈ T.s0 and s0.δ = (λq. if q = T.s0.pc then ω else 0).

For every k, the MLTS (T, k) overapproximates the behavior of T ω.

Proposition 12 [Counter Abstractions] For every T and for every k ∈ IN we have:

1. T ω�
�(T, ω) � (T, k + 1) � (T, k)

2. Reach.(T ω) ≈ Reach.(T, ω) . Reach.(T, k + 1) . Reach.(T, k)

The second fact follows from the first using the observation that T � T ′ implies that

Reach.T . Reach.T ′. The above Proposition 12 states that the set of reachable states of T ω

and (T, ω) are equivalent, hence, to check if Reach.(T ω) is safe w.r.t. E , it suffices to check

if (T, ω) is safe w.r.t. E . Additionally, it states that for k, the reachable states of (T, k)

overapproximate the reachable states of (T, ω) (and hence T ω), and increasing k results in

a more precise overapproximation.

For a trace σ, we say that σ is a leads to E from S0 for P if there exists s0 ∈ S0 and

s such that s0
σ
;Ps and {s} . E . We say σ is a counterexample to E for P if σ leads to

E from P .S0. For a trace σ ∈ (Q × Σ × Q)∗, and a sequence ī = i1, . . . , i|σ|, we write

σ ◦ ī for the trace σ.1[i1], . . . , σ.|σ|[i|σ|]. From the first fact in Proposition 12 it follows

that if σ is a counterexample to E from for (T, ω), then there exists an ī such that σ ◦ ī is

an counterexample to E for T ω, i.e., every counterexample for (T, ω) can be appropriately

relabeled to get a counterexample for T ω.

136

The above proposition indicates that to solve the safety verification problem for T ω it

suffices to solve it for (T, ω); if the latter is safe, then so is the former, and if the latter is

unsafe, then any counterexample for it corresponds to a counterexample for the former. To

analyze the latter, we shall use counter abstractions, i.e., instead of analyzing (T, ω) which

is infinite state, we shall analyze (T, k) which is finite, and, as the next theorem shows,

sufficiently precise due to the existence of an appropriate k.

Theorem 11 [Completeness] Let T = (X ∪ {pc},;, {s0}), be a finite-state thread. Let

E be a set of X-states.

1. If (T, ω) is safe w.r.t. E, then there exists a k s.t. (T, k) is safe w.r.t. E.

2. If (T, ω) is unsafe w.r.t. E, then there exists a k and a σ that is counterexample to E

for (T, k) such that σ is a counterexample to E for (T, ω).

To prove the above theorem, we need to show the existence of a sufficiently precise

counter parameter k. We obtain such a k via the following result of [EFM99].

Upward Closure. For two X∪{δ}-states s, s′, we say s ≤ s′ if (1) for all x ∈ X, s.x = s′.x,

and, (2) For each q ∈ Q, s.δ.q ≤ s′.δ.q. The upward closure of set of (X ∪ {δ})-states G,

written G≤, is the set {s′ | ∃s ∈ G.s ≤ s′}.

Lemma 1 ([EFM99]) Let T be a finite-state thread, and E be a set of T.X-states. There

exists a finite set of (T.X ∪ {δ})-states GE , such that:

1. For each s ∈ GE , for each q ∈ Q, we have s.δ.q ∈ IN.

2. s ∈ G≤
E iff there exists {s′} . E and σ such that s

σ
;ωs′.

A corollary of the above lemma is that if s′ ∈ G≤
E and s

·
;ωs′ then s ∈ G≤

E . In other

words, the set G≤
E is closed under the “predecessor” operation.

For a finite state thread T , and set of X-states E , let kE be defined using the set G above

as:

kE = 1 + max
s∈GE

max
q∈Q

s.δ.q

137

This is well defined as GE is finite if T is finite-state. We shall show that if (T, ω) is safe

w.r.t. E , then (T, kE) is also safe w.r.t. E . The main idea used in the proof is stated by the

following lemma.

Lemma 2 Let T be a finite-state thread, and E be a set of T.X-states. For every s
·

;kEs′

if s 6∈ G≤
E then s′ 6∈ G≤

E .

Proof. Suppose that s
·

;kE s′. We shall prove the contrapositive, i.e., if s′ ∈ G≤
E then

s ∈ G≤
E . Assume that s′ ∈ G≤

E . Suppose that there exist r, r′ such that (1) r′ ∈ G≤
E ,

(2) r
·

;ωr′, and, (3) r ≤ s. Then (1),(2) coupled with the corollary of Lemma 1 implies that

r ∈ G≤
E , which together with (3) implies that s ∈ G≤

E , and we are done.

Hence, it suffices to show the existence of an appropriate r, r ′. For a counter map

δ : Q→ IN ∪ {ω}, and a location q ∈ Q, define the finitization bδcq : Q→ IN as:

bδcq.q
′′ =





δ.q′′ if δ.q′′ ∈ IN

kE + 1 if q′′ = q

kE o.w.

Suppose that s
(q,l,q′)
; kE s′. Then setting r = s[δ 7→ bs.δcq], and r′ = s′[δ 7→ bs′.δcq′], we

obtain r, r′ with the above properties. Condition (1) holds as since s′ ∈ G≤
E there exists

some t′ ∈ GE s.t. t′ ≤ s′. For those q′′ where s′.δ.q′′ is finite, t′.δ.q′′ is less than s′.δ.q′′, and for

those q′′ where s′.δ.q′′ is ω, the finitization keeps the value above that of the corresponding

value of t′.δ as every element in the range of t′.δ is less than kE , by the definition of kE .

We have (3) for the same reason. Notice that r ′.δ.q = r.δ.q − 1, r′.δ.q′ = r.δ.q′ + 1, and,

for all other q′′, the r′.δ.q′′ = r.δ.q′′, and so (2) follows from the definitions of the transition

relation for (T, ω). 2

Proof. (of Theorem 11). For the first case, we show that (T, kE) is safe w.r.t. E .

We can generalize Lemma 2 by induction on the length of σ that for all σ, s
σ
;kEs′

implies that if s 6∈ G≤
E then s′ 6∈ G≤

E . Use Lemma 1 to see that if (T, ω) is safe w.r.t. E ,

then G≤
E does not contain the initial state, i.e., (T, ω).s0 6∈ G

≤
E . Hence, (T, kE).s0 (which is

the same as (T, ω).s0) is not in G≤
E . From the above generalization, Reach.(T, kE)∩G≤

E = ∅.

Lemma 1 implies that G≤
E contains E , and so we can conclude that (T, kE) is safe w.r.t. E .

For the second case, let σ be the shortest counterexample to E for (T, ω). Then setting

k = |σ|+ 1 suffices. It is easy to check that the sequence of states of (T, ω), corresponding

138

to σ, and leading to E , there are always fewer than k threads at any location other than the

initial location T.s0.pc. Hence, the identical sequence, is a counterexample to E for (T, k).

2

We now give a counterexample-guided algorithm for the parameterized safety verifi-

cation problem for finite-state multithreaded programs (Algorithm 10). The algorithm

proceeds by iteratively refining the counter abstraction of the parameterized multithreaded

program, until either the program is proved safe, or a genuine counterexample is found.

The procedure ModelCheck takes two arguments, a finite-state program P and a set of

states E and checks whether P is safe w.r.t. E , by iteratively constructing the set Reach.P

until fixpoint, and checking if the result intersects E . If so, it simply returns, and if not, it

raises an exception which is the shortest P -trace that is an E-counterexample. This proce-

dure can be implemented using standard finite-state model checking techniques [CGP99].

The procedure to check if a counterexample is genuine simply compares the length of the

trace with the counter parameter, more sophisticated refinement schemes can also be used.

It is trivial to check that if the length of the trace is smaller than the counter parame-

ter, then the trace corresponds to a trace of (T, ω), and hence, by Proposition 12, to a

trace of ωω. The correctness and termination of the Algorithm 10 follow respectively from

Proposition 12 and Theorem 11.

Algorithm 10 Counter-Guided Symmetric Verification
Require: Finite-state thread T = (X ∪ {pc}, ;, {s0}), set of X-states E .
1: k := 0
2: while true do

3: try

4: ModelCheck.(T, k).E
5: return Safe

6: with (Exception(σ)) →
7: if |σ| ≤ k then

8: return Unsafe(σ)
9: else

10: k := k + 1
11: done

Theorem 12 [Termination and Correctness] When Algorithm 10 is given a finite-

state thread T and a set of error states E, it terminates. If it returns

1. Safe then T ω is safe w.r.t. E.

139

2. Unsafe(σ) then T ω is not safe w.r.t. E and σ is a counterexample to E for (T, ω).

It follows that for finite-state threads, if we use the trivial havocable abstraction struc-

ture, where each region is exactly a single state, then the algorithm 5.2.2 terminates.

5.8 Related Work

Data races are a major source of errors in concurrent programs. Race detection tools enable

the construction of robust concurrent systems by finding, or confirming the absence of, races.

The most popular approaches to the race detection problem, the “lock-set” and type-based

methods, exploit the fact that many programs use locks to prevent data races.

In the lock-set approach, one attempts to either statically [DS91; Ste93; EA03], or

dynamically[SBN+97; CLL+02], determine the set of locks that protect a variable, by track-

ing statically (by a data flow analysis) or dynamically (by instrumenting the program), the

set of locks always held by the thread when accessing the variable, and checking that this

set is not empty.

In the type-based approaches [FF01; BLR02], one expects the programmer to use type

annotations to indicate which locks protect which variables, and then the type-system en-

sures that if the program type checks, then there are no races. Programmers, however, often

use synchronization idioms that cause false positives for these tools (i.e., the tool reports a

possible race when there is none). Additionally, control flow information may be used for

more precision [vPG03].

For programs with complex state-based synchronization idioms, both the above methods

yield false positives, and one requires a more precise, path-sensitive analyis such as model

checking. Software model checkers like SLAM [BR00] and Blast [HJMS02] check sequential

programs. Bandera [CDH+00], Java Pathfinder [HP00], Feaver [Hol00], and 3VMC [Yah01]

check concurrent programs with a user supplied finite-state abstraction; the latter uses

first-order predicates which, if appropriately chosen, can model dynamic creation; Verisoft

[God97] and CMC [MPC+02] partially explore the concrete state space to find errors. Magic

[COYC03] uses predicate abstraction and bisimulation minimization to check programs

with finitely many threads communicating number of concurrent threads communicating by

message-passing. Since communication is explicit in the model, abstraction and bisimulation

140

minimization can be done independently of the other threads, i.e., reachability information

is not required. Calvin [FQS02] requires that a suitable abstract context is provided, and

then discharges the two verification tasks using ESC-based tools[FLL+02].

Our work is inspired by [Lub84] which is the earliest reference we found for using coun-

ters for symmetric programs, and the work of [EFM99] which we use for our completeness

result; both these papers, as well as other research on parameterized verification [DRB02;

BCR01] consider arbitrarily many threads, but assume a finite state abstraction for each

thread is given.

Assume-Guarantee (or Rely-Guarantee) reasoning, has been studied by several authors

[MC81; Jon83; AL91], as a way of decomposing large verification tasks. Recently, it has

received renewed attention [AH99; McM00] and has led to many proofs of complex hardware

designs well beyond the grasp of monolithic analyses [Eir98; HLQR99; JM01]. In recent work

[FQS02], it has been applied to the verification of multithreaded programs. In all of the

above, the appropriate environment assumptions must be supplied manually. It is similar

to reasoning with pre- and post-conditions for procedures.

141

Bibliography

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System

Design, 15(1):7–48, 1999.

[AIKY95] R. Alur, A. Itai, R.P. Kurshan, and M. Yannakakis. Timing verification by suc-

cessive approximation. Information and Computation, 118(1):142–157, 1995.

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical

Computer Science, 82(2):253–284, 1991.

[AM78] Tilak Agerwala and Jayadev Misra. Assertion graphs for verifying and synthe-

sizing programs. Technical Report 83, University of Texas, Austin, 1978.

[And94] L.O. Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen, 1994.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, 1986.

[BCC+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Mon-

niaux, and X. Rival. Design and implementation of a special-purpose static

program analyzer for safety-critical real-time embedded software. In The

Essence of Computation, Complexity, Analysis, Transformation: Essays Dedi-

cated to Neil D. Jones, Lecture Notes in Computer Science 2566, pages 85–108.

Springer-Verlag, 2002.

142

[BCH+04a] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak

Majumdar. The blast query language for software verification. In SAS 04:

Static Analysis Symposium, LNCS, pages XXX–YYY. Springer-Verlag, 2004.

[BCH+04b] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak

Majumdar. Generating tests from counterexamples. In ICSE 04: Software

Engineering, pages 326–335, 2004.

[BCR01] T. Ball, S. Chaki, and S. K. Rajamani. Parameterized verification of multi-

threaded software libraries. In TACAS 01: Tools and Algorithms for Construc-

tion and Analysis of Systems, LNCS 2031. Springer, 2001.

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of communication pro-

tocols with infinite state spaces using qdds. In CAV 96: Computer Aided

Verification, volume 1102 of Lecture Notes in Computer Science, pages 1–12.

Springer-Verlag, 1996.

[BGS97] R. Bodik, R. Gupta, and M. L. Soffa. Interprocedural conditional branch

elimination. In PLDI 97: Programming Language Design and Implementation,

pages 146–158. ACM, 1997.

[BH99] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-

channel systems with nonregular sets of configurations. Theoretical Computer

Science, 221(1–2):211–250, 1999.

[BHJ+] D. Blei, C. Harrelson, R. Jhala, R. Majumdar, G. C. Necula, S. P. Rahul,

W. Weimer, and D. Weitz. Vampyre: A proof generating theorem prover.

http://www.eecs.berkeley.edu/~rupak/Vampyre.

[BKM02] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on

Java predicates. In ISSTA 02: Software Testing and Analysis, pages 123–133.

ACM, 2002.

143

http://www.eecs.berkeley.edu/~rupak/Vampyre

[BLR02] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:

preventing data races and deadlocks. In OOPSLA 02: Object-Oriented Pro-

gramming, Systems, Languages and Applications, pages 211–230, 2002.

[BMMR01] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate

abstraction of C programs. In PLDI 01: Programming Language Design and

Implementation, pages 203–213. ACM, 2001.

[BPR01] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstractions

for model checking c programs. In TACAS 01: Tools and Algorithms for Con-

struction and Analysis of Systems, LNCS 2031, pages 268–283. Springer-Verlag,

2001.

[BPS00] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding

dynamic programming errors. Software-Practice and Experience, 30(7):775–

802, June 2000.

[BR] T. Ball and S.K. Rajamani. Personal communication. 2002.

[BR00] T. Ball and S. K. Rajamani. Boolean programs: a model and process for

software analysis. Technical Report MSR Technical Report 2000-14, Microsoft

Research, 2000.

[BR01] T. Ball and S. K. Rajamani. Automatically validating temporal safety proper-

ties of interfaces. In SPIN 2001: SPIN Workshop, LNCS 2057, pages 103–122.

Springer-Verlag, 2001.

[BR02a] T. Ball and S.K. Rajamani. Generating abstract explanations of spurious coun-

terexamples in C programs. Technical Report MSR-TR-2002-09, Microsoft

Research, 2002.

[BR02b] T. Ball and S.K. Rajamani. The SLAM project: debugging system software

via static analysis. In POPL 02: Principles of Programming Languages, pages

1–3. ACM, 2002.

144

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677–691, 1986.

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In CAV

94: Computer Aided Verification, volume 818 of Lecture Notes in Computer

Science, pages 55–67. Springer-Verlag, 1994.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for

the static analysis of programs by construction or approximation of fixpoints.

In POPL 77: Principles of Programming Languages, pages 238–252. ACM,

1977.

[CCGS03] S. Chaki, E.M. Clarke, A. Groce, and O. Strichman. Predicate abstraction

with minimum predicates. In CHARME 03: Correct Hardware Design and

Verification, LNCS 2860, pages 19–34. Springer, 2003.

[CDH+00] J. Corbett, M. Dwyer, John Hatcliff, Corina Pasareanu, Robby, S. Laubach,

and H. Zheng. Bandera : Extracting finite-state models from Java source code.

In ICSE 00: Software Engineering, pages 439–448, 2000.

[CE81] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for

branching time temporal logic. In Logic of Programs, LNCS 131, pages 52–71.

Springer-Verlag, 1981.

[CFR+91] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadek. Efficiently

computing static single assignment form and the program dependence graph.

ACM Transactions on Programming Languages and Systems, 13:451–490, 1991.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In CAV 00: Computer Aided Verification, LNCS 1855,

pages 154–169. Springer-Verlag, 2000.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. Mit Press, 1999.

[Cla76] L. Clarke. A system to generate test data and symbolically execute programs.

IEEE Transactions in Software Engineering, 2(2):215–222, 1976.

145

[CLL+02] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan.

Efficient and precise datarace detection for multithreaded object-oriented pro-

grams. In PLDI 2002: Programming Languages Design and Implementation,

pages 258–269. ACM, 2002.

[COYC03] S. Chaki, J. Ouaknine, K. Yorav, and E.M. Clarke. Automated compositional

abstraction refinement for concurrent C programs: A two-level approach. In

SoftMC 03: Software Model Checking, 2003.

[Cra57] W. Craig. Linear reasoning. J. Symbolic Logic, 22:250–268, 1957.

[CW02] H. Chen and D. Wagner. MOPS: an infrastructure for examining security

properties of software. In ACM CCS 02: Conference on Computer and Com-

munications Security, pages 235–244. ACM, 2002.

[CWD02] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In Usenix Security

Symposium, pages 171–190. Usenix, 2002.

[CYC+01] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of

operating system bugs. In SOSP 01: ACM Symposium on Operating System

Principles, pages 78–81. ACM Press, 2001.

[DC94] M. Dwyer and L. Clarke. Data flow analysis for verifying properties of concur-

rent programs. In FSE 94: Foundations of Software Engineering, pages 62–75.

ACM, 1994.

[DD01] S. Das and D.L. Dill. Successive approximation of abstract transition relations.

In LICS 01: Logic in Computer Science, pages 51–60. IEEE Press, 2001.

[DD02] S. Das and D.L. Dill. Counter-example based predicate discovery in predicate

abstraction. In FMCAD 02: Formal Methods in Computer-Aided Design, LNCS

2517, pages 19–32. Springer, 2002.

[DDP99] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In CAV

99: Computer-Aided Verification, LNCS 1633, pages 160–171. Springer-Verlag,

1999.

146

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[DLS02] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in

polynomial time. In PLDI 02: Programming Language Design and Implemen-

tation, pages 57–68. ACM, 2002.

[DM82] Lúıs Damas and Robin Milner. Principal type-schemes for functional programs.

In POPL, pages 207–212, 1982.

[DNS] D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover.

http://research.compaq.com/SRC/esc/Simplify.html.

[DRB02] G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards the automated verifi-

cation of multithreaded java programs. In TACAS 02: Tools and Algorithms

for the Construction and Analysis of Systems, pages 173–187. Springer, 2002.

[DS91] Annette Dinning and Edith Schonberg. Detecting access anomalies in programs

with critical sections. In ACM/ONR Workshop on Parallel and Distributed

Debugging, 1991.

[EA03] Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection of race

conditions and deadlocks. In SOSP 03: ACM Symposium on Operating System

Principles, pages 237–252. ACM Press, 2003.

[ECCH00] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using

system-specific, programmer-written compiler extensions. In OSDI 00: Oper-

ating System Design and Implementation. Usenix Association, 2000.

[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.

In LICS 99: Logic in Computer Science, pages 352–359. IEEE Press, 1999.

[Eir98] Asgeir P. Eiriksson. The formal design of 1m-gate asics. In FMCAD 98: Formal

Methods in Computer-Aided Design, LNCS 1522, pages 49–63. Springer-Verlag,

1998.

[Ern00] M. D. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis,

University of Washington, Seattle, 2000.

147

http://research.compaq.com/SRC/esc/Simplify.html

[Eva96] David Evans. Static detection of dynamic memory errors. In PLDI, pages

44–53, 1996.

[FD04] M.A. Fahndrich and R. DeLine. Typestates for objects. In ECOOP 04: Object-

Oriented Programming, LNCS 3086, pages 465–490. Springer, 2004.

[FF01] C. Flanagan and S.N. Freund. Detecting race conditions in large programs.

In PASTE 01: Program Analysis for Software Tools and Engineering, pages

90–96. ACM, 2001.

[FFA99] J. Foster, M. Fahndrich, and A. Aiken. A theory of type qualifiers. In PLDI 99:

Programming Languages Design and Implementation, pages 192–203. ACM,

1999.

[FIS00] A. Finkel, S. P. Iyer, and G. Sutre. Well-abstracted transition systems. In CON-

CUR 00: Concurrency Theory, LNCS 1877, pages 566–580. Springer-Verlag,

2000.

[FLL+02] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.

Extended static checking for Java. In PLDI 02: Programming Language Design

and Implementation, pages 234–245. ACM, 2002.

[Flo67] R.W. Floyd. Assigning meanings to programs. In Mathematical Aspects of

Computer Science, pages 19–32. American Mathematical Society, 1967.

[FORS01] J.-C. Filliâtre, S. Owre, H. Ruess, and N. Shankar. ICS: Integrated canonizer

and solver. In CAV 01: Computer-aided verification, LNCS, pages ???–???

Springer-Verlag, 2001.

[FQ02] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In

POPL 02: Principles of Programming Languages, pages 191–202. ACM, 2002.

[FQS02] C. Flanagan, S. Qadeer, and S.A. Seshia. A modular checker for multithreaded

programs. In CAV 02: Computer-Aided Verification, LNCS 2404, pages 180–

194. Springer, 2002.

148

[FS01] C. Flanagan and J.B. Saxe. Avoiding exponential explosion: generating com-

pact verification conditions. In POPL 01: Principles of Programming Lan-

guages, pages 193–205. ACM, 2001.

[FTA01] J.S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive Type Qualifiers. Tech-

nical Report CSD-01-1162, University of California, Berkeley, 2001.

[FTA02] J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In PLDI

02: Programming Language Design and Implementation, pages 1–12. ACM,

2002.

[GBR02] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using

constraint solving techniques. In ISSTA 98: Software Testing and Analysis,

pages 53–62. ACM, 2002.

[GLvB+03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The

nesC language: A holistic approach to networked embedded systems. In PLDI

2003: Programming Languages Design and Implementation, pages 1–11. ACM,

2003.

[GMS98] N. Gupta, A. Mathur, and M.L. Soffa. Generating test data for branch coverage.

In ASE 00: Automated Software Engineering, pages 219–228. IEEE, 1998.

[God97] P. Godefroid. Model checking for programming languages using Verisoft. In

POPL 97: Principles of Programming Languages, pages 174–186. ACM, 1997.

[GP02] E. Gunter and D. Peled. Temporal debugging for concurrent systems. In

TACAS 02: Tools and Algorithms for the Construction and Analysis of Sys-

tems, volume 2280 of LNCS, pages 431–444. Springer, 2002.

[Gri81] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[GS97a] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV

97: Computer Aided Verification, LNCS 1254, pages 72–83. Springer-Verlag,

1997.

149

[GS97b] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV

97: Computer-aided Verification, LNCS 1254, pages 72–83. Springer-Verlag,

1997.

[HCL+03] H.S. Hong, S.D. Cha, I. Lee, O. Sokolsky, and H. Ural. Data flow testing as

model checking. In ICSE 2003: Software Engineering, pages 232–243. ACM,

2003.

[HHK95] M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations

on finite and infinite graphs. In Proceedings of the 36rd Annual Symposium

on Foundations of Computer Science, pages 453–462. IEEE Computer Society

Press, 1995.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal

of the ACM, 40(1):143–184, 1993.

[HJM+02] T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and

W. Weimer. Temporal-safety proofs for systems code. In CAV 02: Computer-

Aided Verification, LNCS 2404, pages 526–538. Springer, 2002.

[HJM04] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race checking

by context inference. In PLDI 2004: Programming Languages Design and

Implementation, pages 1–12. ACM, 2004.

[HJMM04] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions

from proofs. In POPL 04: Principles of Programming Languages, pages 232–

244. ACM, 2004.

[HJMQ03] T.A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular ab-

straction refinement. In CAV 03: Computer-Aided Verification, Lecture Notes

in Computer Science. Springer-Verlag, 2003.

[HJMS02] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In

POPL 02: Principles of Programming Languages, pages 58–70. ACM, 2002.

150

[HJMS03] T.A. Henzinger, R. Jhala, R. Majumdar, and M.A.A. Sanvido. Extreme model

checking. In International Symposium on Verification, LNCS. Springer, 2003.

[HLQR99] T.A. Henzinger, X. Liu, S. Qadeer, and S.K. Rajamani. Formal specification

and verification of a dataflow processor array. In Proceedings of the Interna-

tional Conference on Computer-aided Design, pages 494–499. IEEE Computer

Society Press, 1999.

[HM00] T. A. Henzinger and R. Majumdar. A classification of symbolic transition

systems. In STACS 00: Theoretical Aspects of Computer Science, LNCS 1770,

pages 13–34. Springer-Verlag, 2000.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, 1969.

[Hol00] G.J. Holzmann. Logic verification of ANSI-C code with SPIN. In SPIN 00:

Spin Model Checking and Software Verification, LNCS 1885, pages 131–147.

Springer, 2000.

[HP00] K. Havelund and T. Pressburger. Model checking Java programs using Java

Pathfinder. Software Tools for Technology Transfer (STTT), 2(4):72–84, 2000.

[HSW+00] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System

architecture directions for networked sensors. In ASPLOS 2000: Architectural

Support for Programming Languages and Operating Systems, pages 93–104.

ACM, 2000.

[JBW+94] R. Jasper, M. Brennan, K. Williamson, B. Currier, and D. Zimmerman. Test

data generation and infeasible path analysis. In ISSTA 94: Software Testing

and Analysis, pages 95–107. ACM, 1994.

[JM01] Ranjit Jhala and Kenneth L. McMillan. Microarchitecture verification by com-

positional model checking. In CAV 01: Computer Aided Verification, LNCS

2102, pages 396–410. Springer, 2001.

151

[Jon83] C.B. Jones. Tentative steps toward a development method for interfering pro-

grams. ACM Transactions on Programming Languages and Systems, 5(4):596–

619, 1983.

[JV00] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In ISSTA 00:

Software Testing and Analysis, pages 14–25. ACM, 2000.

[JW04] Robert Johnson and David Wagner. Finding user/kernel pointer bugs with type

inference. In USENIX Security Symposium, pages 119–134. USENIX, 2004.

[Kil73] Gary A. Kildall. A unified approach to global program optimization. In POPL,

pages 194–206, 1973.

[Kin76] J.C. King. Symbolic execution and program testing. Communications of the

ACM, 19(7):385–394, 1976.

[KMM00] M. Kaufmann, P. Manolios, and J.S. Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, 2000.

[KPV03] S. Khurshid, C.S. Pasareanu, and W. Visser. Generalized symbolic execution

for model checking and testing. In TACAS 03: Tools and Algorithms for the

Construction and Analysis of Systems, LNCS, pages 553–568. Springer, 2003.

[Kra97] J. Krajicek. Interpolation theorems, lower bounds for proof systems, and inde-

pendence results for bounded arithmetic. J. Symbolic Logic, 62:457–486, 1997.

[Kur94] R.P. Kurshan. Computer-aided Verification of Coordinating Processes. Prince-

ton University Press, 1994.

[LAS00] T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analyses.

In SAS 02: Static Analysis Symposium, Lecture Notes in Computer Science

2280, pages 280–301. Springer-Verlag, 2000.

[Lub84] B.D. Lubachevsky. An approach to automating the verification of compact

parallel coordination programs i. Acta Informatica, 21:125–169, 1984.

152

[Man69] Z. Manna. The correctness of programs. Journal of Computer and Systems

Sciences, 3(2):119–127, 1969.

[MC81] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transactions

on Software Engineering, SE-7(4):417–426, 1981.

[McM93] K.L. McMillan. Symbolic Model Checking: An Approach to the State-Explosion

Problem. Kluwer Academic Publishers, 1993.

[McM97] K.L. McMillan. A compositional rule for hardware design refinement. In CAV

97: Computer-aided Verification, LNCS 1254, pages 24–35. Springer, 1997.

[McM00] Kenneth L. McMillan. A methodology for hardware verification using composi-

tional model checking. Science of Computer Programming, 37((1–3)):279–309,

2000.

[McM03] K.L. McMillan. Interpolation and SAT-based model checking. In CAV 03:

Computer-Aided Verification, LNCS 2725, pages 1–13. Springer, 2003.

[McM04] K.L. McMillan. An interpolating theorem prover. In TACAS 04: Tools and

Algorithms for the Construction and Analysis of Systems, LNCS 2988, pages

16–30. Springer, 2004.

[Mil78] Robin Milner. A theory of type polymorphism in programming. J. Comput.

Syst. Sci., 17(3):348–375, 1978.

[MMZ+01] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-

gineering an efficient SAT solver. In DAC 01: Design Automation Conference,

pages 530–535, 2001.

[Mor82] J. M. Morris. A general axiom of assignment. In Theoretical Foundations of

Programming Methodology, Lecture Notes of an International Summer School,

pages 25–34. D. Reidel Publishing Company, 1982.

[MP67] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expres-

sions. In Proc. Symposia in Applied Mathematics. American Mathematical

Society, 1967.

153

[MPC+02] M. Musuvathi, D.Y.W. Park, A. Chou, D.R. Engler, and D.L. Dill. CMC:

A pragmatic approach to model checking real code. In OSDI 02: Operating

Systems Design and Implementation. ACM, 2002.

[Mye79] G.J. Myers. The Art of Software Testing. Wiley, 1979.

[Nam01] K. Namjoshi. Certifying model checkers. In CAV 01: Computer Aided Verifi-

cation, LNCS 2102, pages 2–13. Springer, 2001.

[Nec97a] G.C. Necula. Proof-carrying code. In Principles of Programming Languages,

pages 106–119. ACM Press, 1997.

[Nec97b] G.C. Necula. Proof carrying code. In POPL 97: Principles of Programming

Languages, pages 106–119. ACM, 1997.

[Nel81] G. Nelson. Techniques for program verification. Technical Report CSL81-10,

Xerox Palo Alto Research Center, 1981.

[NL98] George C. Necula and Peter Lee. Efficient representation and validation of

proofs. In Thirteenth Annual Symposium on Logic in Computer Science, pages

93–104, Indianapolis, June 1998. IEEE Computer Society Press.

[NMRW02] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate

language and tools for analysis and transformation of C programs. In CC

02: Compiler Construction, Lecture Notes in Computer Science 2304, pages

213–228. Springer, 2002.

[NR01] G.C. Necula and S.P. Rahul. Oracle-based checking of untrusted software. In

POPL 01: Principles of Programming Languages, pages 142–154. ACM, 2001.

[OJ97] Robert O’Callahan and Daniel Jackson. Lackwit: A program understanding

tool based on type inference. In ICSE, pages 338–348, 1997.

[Pel01] D. Peled. Software reliability methods. Springer, 2001.

154

[Pel03] D. Peled. Model checking and testing combined. In ICALP 2003: Automata,

Languages and Programming, volume 2719 of LNCS, pages 47–63. Springer,

2003.

[Pfe97] F. Pfenning. Computation and deduction. Lecture notes, 1997.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual

Symposium on Foundations of Computer Science, pages 46–57. IEEE Computer

Society Press, 1977.

[Pud97] P. Pudlak. Lower bounds for resolution and cutting plane proofs and monotone

computations. J. Symbolic Logic, 62:981–998, 1997.

[PY03] M. Pezze‘ and M. Young. Software test and analysis: Process, principles, and

techniques. Manuscript, 2003.

[PZ01] D. Peled and L.D. Zuck. From model checking to a temporal proof. In SPIN

2001: SPIN Workshop, Lecture Notes in Computer Science 2057, pages 1–14.

Springer-Verlag, 2001.

[QS81] J. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, Fifth Interna-

tional Symposium on Programming, LNCS 137, pages 337–351. Springer-Verlag,

1981.

[RHC76] C. Ramamoorthy, S.B. Ho, and W. Chen. On the automated generation of

program test data. IEEE Transactions in Software Engineering, 2(2):293–300,

1976.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis

via graph reachability. In POPL 95: Principles of Programming Languages,

pages 49–61. ACM, 1995.

[RSY04] Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. Symbolic implementation of

the best transformer. In Bernhard Steffen and Georgio Levi, editors, VMCAI

155

2004: Verification Model Checking and Abstract Interpretation, LNCS 2937,

pages 252–266. Springer-Verlag, 2004.

[Sai00] H. Saidi. Model checking guided abstraction and analysis. In SAS 00: Static-

Analysis Symposium, pages 377–396. LNCS 1824, Springer-Verlag, 2000.

[SBD02] A. Stump, C.W. Barrett, and D.L. Dill. CVC: A cooperating validity checker.

In CAV 02: Computer-Aided Verification, LNCS 2404, pages 500–504. Springer,

2002.

[SBN+97] S. Savage, M. Burrows, C.G. Nelson, P. Sobalvarro, and T.A. Anderson. Eraser:

A dynamic data race detector for multithreaded programs. ACM Transactions

on Computer Systems, 15(4):391–411, 1997.

[Som98] F. Somenzi. Colorado university decision diagram package.

http://vlsi.colorado.edu/pub/, 1998.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data dalow anal-

ysis. In Program Flow Analysis: Theory and Applications, pages 189–233.

Prentice-Hall, 1981.

[SS99] H. Säıdi and N. Shankar. Abstract and model check while you prove. In CAV

99: Computer-aided Verification, LNCS 1633, pages 443–454. Springer-Verlag,

1999.

[Ste93] N. Sterling. Warlock: a static data race analysis tool. In USENIX Winter 1993

Technical Conference, pages 97–106, 1993.

[SY86] R.E. Strom and S. Yemini. Typestate: A programming language concept for

enhancing software reliability. IEEE Trans. Software Eng., 12(1):157–171, 1986.

[Tur36] Alan M. Turing. On computable numbers, with an application to the eintschei-

dungsproblem. In Proceedings of the London Mathematical Soceity, pages 230–

265, 1936.

156

http://vlsi.colorado.edu/pub/

[USW01] Jeffrey Foster Umesh Shankar, Kunal Talwar and David Wagner. Detecting

format string vulnerabilities with type qualifiers. In USENIX Security Sympo-

sium, 2001.

[vPG03] C. von Praun and T. Gross. Static conflict analysis for multi-threaded object-

oriented programs. In PLDI 2003: Programming Languages Design and Imple-

mentation, pages 115–128. ACM, 2003.

[Wad90] Philip Wadler. Linear types can change the world! In IFIP TC2 Working

Conference on Programming Concepts and Methods, 1990.

[Win93] G. Winskel. The formal semantics of programming languages: an introduction.

MIT Press, 1993.

[Yah01] E. Yahav. Verifying safety properties of concurrent Java programs using 3-

valued logic. In POPL 01: Principles of Programming Languages, pages 27–40.

ACM Press, 2001.

157

	Introduction
	Programs and Abstractions
	Labeled Transition Systems
	Symbolic Region Structures
	Symbolic Abstraction Structures
	Predicate Abstraction

	Imperative Programs
	From Imperative Programs to LTSs
	Predicate Abstraction for Imperative Programs

	The Safety Verification Problem

	Lazy Abstraction
	A Locking Example
	Verification

	Symbolic Reachability with Refinement
	Reachability with refinement
	Counterexample-driven refinement

	A Refine operator for Imperative Programs
	Overview
	Interpolants from Proofs
	The Algorithm

	Theoretical Issues
	Termination
	Finite predicate abstraction is undecidable

	Related work

	Applications
	Device Driver Verification
	Temporal-safety proofs from Reachability Trees
	Overview
	Verification Conditions
	VCs and Proofs via Lazy Abstraction
	Experiments

	Tests from Counterexample Traces
	Overview
	Testing Framework
	Test Suite Generation
	Experiments

	Multithreaded Programs: Context Inference
	An Example
	Threads
	Thread-Context Programs
	Verification by Abstraction
	The Algorithm

	Safety Verification of Multithreaded Programs
	Multithreaded Labeled Transition Systems
	Thread-Context Verification

	Abstractions
	Main Thread: Data Abstraction
	Environment Thread: Control Abstraction
	Context: Counter Abstraction
	Abstracting Thread-Context Programs

	Verification by Thread-Context Abstraction-Refinement
	Checking
	Inference

	Race Detection for Multithreaded Imperative Programs
	MLTSs from Imperative Programs
	Predicate Abstraction
	The Race Detection Problem
	Procedure

	Experiences
	Completeness of Counter Abstractions
	Related Work

