
Joining Dataflow with Predicates

Jeffrey Fischer
UC Los Angeles

fischer@cs.ucla.edu

Ranjit Jhala
UC San Diego

jhala@cs.ucsd.edu

Rupak Majumdar
UC Los Angeles

rupak@cs.ucla.edu

ABSTRACT
Dataflow analyses sacrifice path-sensitivity for efficiency and
lead to false positives when used for verification. Predicate
refinement based model checking methods are path-sensitive
but must perform many expensive iterations to find all the
relevant facts about a program, not all of which are naturally
expressed and analyzed using predicates. We show how to
join these complementary techniques to obtain efficient and
precise versions of any lattice-based dataflow analysis us-
ing predicated lattices. A predicated lattice partitions the
program state according to a set of predicates and tracks
a lattice element for each partition. The resulting dataflow
analysis is more precise than the eager dataflow analysis
without the predicates. In addition, we automatically infer
predicates to rule out imprecisions. The result is a dataflow
analysis that can adaptively refine its precision. We then
instantiate this generic framework using a symbolic execu-
tion lattice, which tracks pointer and value information pre-
cisely. We give experimental evidence that our combined
analysis is both more precise than the eager analysis in that
it is sensitive enough to prove various properties, as well as
much faster than the lazy analysis, as many relevant facts
are eagerly computed, thus reducing the number of itera-
tions. This results in an order of magnitude improvement
in the running times from a purely lazy analysis.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs.

General Terms: Languages, Verification, Reliability.

Keywords: Dataflow analysis, model checking, predicate
abstraction, counterexample analysis.

1. INTRODUCTION
Dataflow analysis is an efficient and heavily used tech-

nique for static program analysis. It has been applied ex-
tensively for compiler optimizations and more recently, to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

verify properties of software. Dataflow analyses can be clas-
sified as eager or lazy as follows.

Classical dataflow analyses [22, 11] are eager: they start
with a fixed set of facts, and obtain the least solution to a
system of equations which determines which facts are guar-
anteed to hold at various program points. In order to be ef-
ficient, such analyses sacrifice precision in two ways. First,
by ignoring correlated branches, dataflow facts are propa-
gated across infeasible program paths. Second, by merging
at join points, dataflow facts from different paths are uni-
fied, leading to further over-approximation. In the context of
verification, this imprecision is manifested as false positives,
where owing to its over-conservative nature, the analysis is
unable to prove the property of interest. Often, the very
large number of false positives overwhelms the programmer
and thus renders the analysis useless.

In contrast, recent work has looked at lazy analyses
wherein there is a specific property that is to be verified.
The lazy analysis proceeds by using a very simple and coarse
lattice, which is then iteratively refined using false positives
until the property of interest is either proved or disproved
[3, 9, 5, 20, 8]. Lattices based on predicate abstraction [1, 18]
are particularly suited to lazy analyses. Here, the dataflow
facts correspond to predicates over program variables. By
using relevant predicates, the analysis can soundly prune
away infeasible paths as well as avoid joining along paths
that must be analyzed in isolation. The lattice is refined by
adding predicates that rule out false positives arising from
the analysis using the smaller (coarser) set of predicates [19].

There are two difficulties with the lazy, predicate refine-
ment based analyses. First, all the relevant information
about the program must be expressed as, and reasoned
about, using predicates over program variables. While this
framework is very expressive in theory, in practice the anal-
ysis is restricted to predicates that automatic decision pro-
cedures can reason about efficiently. For example, it is cum-
bersome and inefficient to encode information about heap
structures using predicates, and in these settings, other rep-
resentations are more amenable to easy manipulation. Sec-
ond, all the information that is relevant to the property must
be found through several iterations, each of which eliminates
some false positives. This is expensive due to the number of
iterations, and due to the cost of the procedure by which re-
finement is done. A well chosen eager analysis, on the other
hand, would be be able to deduce many of the relevant facts,
in a single pass.

The first contribution of this paper is to show how to
combine the complementary strengths of the lazy and eager

approaches to obtain efficient, path sensitive dataflow anal-
yses. The main technical innovation is the use of predication
to refine any lattice-based dataflow analysis.

For any lattice L and a set of predicates P , the elements
of the predicated lattice LP are maps from P to L. Intu-
itively, the predicated lattice partitions the set of program
states using the predicates, and tracks a different lattice ele-
ment (from L) for each individual partition (predicate). The
transfer function for the predicated lattice is computed au-
tomatically from the transfer function of L and the transfer
function for the set of predicates [18]. The operator used
to combine the dataflow facts at join points is a predicated
join: given two maps, the predicated join maps each predi-
cate p to the L-join of the arguments’ images of p. Thus, if
along two paths different predicates hold, the result of the
predicated join is that the L-elements resulting from the two
paths are separately tracked, giving a more precise result.
In addition, by using predicates, the analysis is able to avoid
the loss of precision that arises from propagating dataflow
information over infeasible paths.

Our analysis begins with the user supplied dataflow lat-
tice and any initial set of predicates. As in lazy schemes,
the set of predicates is refined using false positives until the
property of interest can be proved or disproved, or until the
residual false positives are small. The refinement algorithm
is a modification of the counterexample refinement step in
software model checking [19] that adds predicates which ei-
ther rule out infeasible paths or keep the lattice elements
separate at a join point. As a result, we are able to obtain
a path-sensitive version of any eager, lattice-based dataflow
analysis.

The second contribution of this paper is to demonstrate
the effectiveness of predicated lattices by instantiating the
above framework with a symbolic execution lattice that cap-
tures dataflow facts needed in the verification of typestate
properties. The symbolic execution lattice tracks an ab-
stract heap through the program execution. This enables
us to precisely track typestate values through the program
execution. The symbolic execution lattice precisely tracks
aliasing relationships between variables. In particular, it
introduces value-tagged may-pointers that track the values
stored at a pointer dereference even though the particular
pointer target is unknown. Value-tagged may-pointers are
similar to the restrict annotation [2] and allow strong up-
dates during the dataflow analysis to be performed auto-
matically.

We have implemented the symbolic execution lattice and
the predicated dataflow analysis algorithm in our software
model checker Blast [20]. In particular, we have imple-
mented a predicated lattice based on the symbolic execu-
tion lattice. We show the performance of this algorithm
using two sets of experiments on Windows device drivers.
The typestate property deals with correct handling of I/O
requests, and is a finite state machine with 22 states. We
show that the predicated dataflow analysis requires signif-
icantly fewer refinement steps to prove a program correct,
which in turn, translates to much faster running times. For
our largest benchmark, the new algorithm runs in about
five minutes, whereas the lazy predicate abstraction algo-
rithm takes almost an hour and a half. The reason for this
dramatic speedup is that the lazy technique performs sev-
eral iterations in order to add predicates that track certain
status values needed to prove the property, while the (ea-

ger) symbolic execution lattice is able to capture all that
information and thus significantly decreases the number of
refinements. Second, we show that additional refinements
beyond those obtained from the specification typestate au-
tomaton are necessary for this property: in particular, the
algorithm of [13] would generate false positives on each of
those benchmarks. Hence, we believe our approach opens
the way to precise and efficient dataflow analyses that enjoy
the strengths and eliminate the weaknesses of lazy and eager
techniques.

Related Work. Our work is related to qualified dataflow
analysis [21, 15, 16], where an a priori fixed set of quali-
fications are used to make dataflow analysis more precise.
Restricted forms of predicates have been used as qualifiers:
these have either been tailored for specific analyses [30, 29],
or use restricted control flow tests from the program [6, 23].
For example, [23] only considers predicates whose values do
not change over the regions they are tracked. In contrast,
our refinement scheme can generate well-scoped predicates
that are not syntactically present in the program [19]. Re-
fining join points have been considered in [13], where a fixed
set of specification states are used to distinguish lattice el-
ements at join points. Their analysis lattice is very similar
to our symbolic execution lattice (but they do not tag may-
pointers with values). However, the analysis can produce
false positives if these states are not enough to distinguish
different control flow paths of the program. In fact, for the
drivers we have considered in our experiments, we found
that specification-based distinguishing is not precise enough
to prove properties associated with the specification. Our
work is a generalization of [13], where the set of predicates
can be expanded as needed based on previous counterex-
amples, and the predicates are not fixed to be specification
states.

Predicated lattices are a special case of reduced cardinal
powers of lattices (also called tensor product), which is the
set of all monotone functions from the first lattice to the
second [12, 25]. However, abstract interpretation with a
reduced cardinal power lattice does not deal with successive
automatic refinements of lattices, nor does that work address
implementation issues.

Counterexample-guided abstraction refinement [5, 9, 20]
has been a successful paradigm to check control properties
of software. In this approach, an initially coarse model of a
program is checked and then made more precise based on er-
rors found in the abstraction which cannot be realized in the
original program. The main abstraction mechanism is pred-
icate abstraction [18]. However, predicates are awkward to
express certain properties of program state, especially heap
properties. Our work presents a generalization of predicate-
based software model checking to software model checking
over more general abstract structures. In particular, our
symbolic execution lattice can be used to merge predicate-
based software model checking with shape analysis [27], thus
enabling precise model checking of heap-manipulating pro-
grams.

Several tools perform precise symbolic execution on a sub-
set of program paths [10, 7, 24, 31], checking the typestate
properties along each path. While very precise, this ap-
proach is inherently unsound, since there are infinitely many
execution paths, not all of which are checked. Thus, if the
analysis does not find bugs, the program may or may not
have bugs.

Example() {
FILE *out;
int flag;

1: out->is open := 1;
2: assert(out->is open=1);
3: out->is open := 0;

.

.

.
4: if(flag)
5: out->is open := 1;

6:
.
.
.

7: if(flag)
8: assert(out->is open);
}

1

2

3

{out−>is_open=1}

4

5

6

[flag=0]
[flag!=0]

7

8

out−>is_open:=0

out−>is_open=1

out−>is_open:=1

[flag=0]
[flag!=0]

{out−>is_open=1}

Figure 1: An program and its CFA

Organization. The rest of the paper is organized as fol-
lows. In Section 2, we recall the basic dataflow analysis
framework. In Section 3, we define predicated lattices, pred-
icated dataflow analysis algorithms, and automatic refine-
ment schemes. In Section 4, we describe a specific symbolic
execution lattice that can be used to precisely analyze safety
properties of software. In Section 5, we describe an imple-
mentation of the algorithm and experimental results.

2. DATAFLOW ANALYSIS
We illustrate our analysis on a small imperative language

with integer variables and references. For simplicity, we de-
scribe the intraprocedural analysis. Our techniques gener-
alize to interprocedural analysis in a standard way [26].

2.1 Syntax and Semantics
Operations. In the sequel, X denotes the set of program
variables. Our programs are built using operations Ops
which are of two kinds:
(1) An assignment operation is of the form l := e; which
assigns the value of the expression e to the variable l,
(2) An assume operation is of the form assume(p); if the
boolean expression p evaluates to true , then the program
continues, and otherwise the program halts. Assumes are
used to model branch conditions.

Control Flow Automata. We model a program as a con-
trol flow automaton (CFA) C = (PC , pce, E), which is a
rooted, directed graph with:
(1) a set of control locations (or program counters) PC
which includes a special entry location pce ∈ PC ,
(2) a set of edges E ⊆ PC×Ops×PC . We write (pc, op, pc ′)
or pc

op
−→pc′ to denote the edge from pc to pc′ labeled op. A

CFA is the control flow graph of a program; its nodes cor-
respond to program locations, and its edges correspond to
the commands that take the program from one location to
the next. A path to a location pc is a sequence of edges
pce

op
1−−→pc1 . . .

op
n−−→pcn where pcn = pc.

Example 1: [CFA] Figure 1 shows a C function Example,
and its CFA. The function Example opens and writes to a
file pointer out. For ease of exposition, we model opening by
setting the is open field to 1, and we model writing via the

assertion that the file must be open. After writing, the file
is closed, modeled by setting the is open field to 0. Then,
conditionally on the variable flag, it opens the file pointed
to by out. This is modeled by the if block on lines 4 and
5 that sets the field is open if flag is true. Assume that
the intervening statements in line 6 do not modify any of
these variables. Finally, in lines 7 and 8, the function writes
to the file pointed to by out conditioned on flag. This is
modeled by the assertion on line 8 that states that only
open files can be written. The CFA for Example is shown on
the right in Figure 1. The vertices of the CFA correspond
to locations of the C function. The edges are labeled by the
instructions that are executed as control moves from the
source to the target location. The edges labeled with boxes
are assignments; those labeled with brackets correspond to
assumes. We write assertions in curly braces. 2

States and Transitions. A state is a type-preserving val-
uation for the variables X. Let S denote the set of all states.
For a state s and variable x, let s(x) denote the value of the
variable x in state s. This is extended naturally to obtain
values of expressions and predicates over X. Each operation
op corresponds to a transition relation

op
; ⊆ S×S as follows.

We say that s
op
;s′ if:

s
′ =

(
s if op ≡ assume(p) and s |= p

s[l 7→ s.e] if op ≡ l := e

The elements of transition relations are called transitions.
A path pco

op
1−−→pci . . .

op
n−−→pcn in the CFA is feasible if there

exists a sequence of states s0, . . . , sn such that for all 1 ≤
i ≤ n, we have si−1

op
i

;si.
We lift the transition relation to sets of states r via the

strongest postcondition operator SP defined as: SP(r, op) =
{s′|∃s ∈ r.s

op
;s′}. We extend SP to sequences of operations

as: SP(r, op1; . . . ; opn) = SP(SP(r, op1), op2; . . . ; opn). Fi-
nally, we define the set of reachable states Reach(r, pc) from
the location pc to be the union of all SP(r, op1; . . . ; opn)
such that there exists a path pce

op
1−−→pc1 . . . pcn−1

op
n−−→pc in

the CFA C.

2.2 Lattice-based Dataflow Analysis
We now define a dataflow analysis framework for the CFA

program representation.

Lattices. A semi-lattice L = (Θ,⊥,>,t,v, cSP, [[·]]) for
variables X comprises a (possibly infinite) set Θ of lat-
tice elements, elements ⊥ and > of Θ, a total function
t : Θ × Θ → Θ called the join, a preorder v⊆ Θ × Θ,

a monotone total function cSP : Θ × Ops → Θ called the
transfer function, and a total function [[·]] : Θ → 2S called
the concretization, such that for all elements θ, θ′ ∈ Θ and
every label op ∈ Ops, we have:

[[⊥]] = ∅ and [[>]] = S
[[θ t θ′]] ⊇ [[θ]] ∪ [[θ′]]

[[cSP(θ, op)]] ⊇ SP([[θ]], op)

A lattice element θ is an abstract representation of the set
[[θ]] corresponding to its concretization, and the transfer
function is an over-approximation of the strongest postcon-
dition [11].

Dataflow Analysis via Fixpoints. A dataflow analy-
sis computes an over-approximation of the set of reachable
states of a program by computing fixpoints over a lattice of

abstract program states. Given a tuple I = 〈C,L〉 compris-
ing a CFA C and a lattice L, the dataflow problem is to find
a map D from the CFA locations PC to lattice elements
such that:

> = D(pce) (1)

and, for each pc ∈ PC

G

pc′
op
−→pc∈E

cSP(D(pc′), op) v D(pc) (2)

We call such maps solutions for the dataflow problem I.
There is a pointwise partial-order on solutions as follows:
Let D1 and D2 be solutions for two (possibly different)
dataflow problems 〈C,L1〉 and 〈C,L2〉. We say D1 � D2

if for each pc ∈ PC , we have [[D1(pc)]]1 ⊆ [[D2(pc)]]2. For
every dataflow problem, we are typically interested in the
least solution w.r.t. �. Such solutions are guaranteed to ex-
ist and can be found by computing the least fixpoint of the
above set of equations [11]. The height of a lattice Height(L)
is the cardinality of the largest strictly ascending chain of
elements of the lattice.

Proposition 1. For every dataflow problem I = 〈C,L〉:

1. For every solution D, we have that for each pc ∈ PC
the set Reach([[>]], pc) ⊆ [[D(v)]],

2. The least solution for I can be computed in time linear
in |E| × Height(L).

2.3 Typestate Inference by Dataflow Analysis
To demonstrate latticed-based dataflow analysis, we apply

this framework to typestate inference. Typestates [28] or
flow-sensitive type qualifiers [17, 2] are used to refine types
with flow-sensitive properties that may differ across program
locations. As an example, we consider the type FILE used for
I/O operations on files. Files must be used in specific ways:
a file must be opened before it is accessed (read or written),
and a file cannot be accessed after it is closed. To model
the state of the file, we introduce typestates closed, open,
which denote that a file is closed or open, respectively, and
> denoting a file is in an unknown state. Upon allocation, a
file is in a closed state. The function call fopen sets it to an
open state, and the fclose sets an open file to closed. The
fprintf function writes to an open file, and raises an error if
the argument file is closed. The typestate inference problem
is to find the typestates of each file at each program location.
With this information, we can ascertain if, at each program
point where a file is written, its typestate is open and if not,
we know a runtime error may occur at that location.

Given a set of typestates, we define a lattice whose ele-
ments are maps from variables of type FILE to typestates
mapping a file to its state, together with a special element
⊥. The concretization function is defined in the standard
way. The top element maps every file variable to >. The
join of two maps θ1 and θ2 is the map λx.(f(x) tF g(x)),
where qtF q′ is q if q = q′ and > otherwise. We have θ1 v θ2

if for every variable f we have θ2(f) either equals θ1(f) or

>. Finally, cSP(θ, op) is (1) θ[f 7→ O] if op is a call fopen(f),
(2) θ[f 7→ C] if op is a call fclose(f), and (3) θ otherwise.
To solve the typestate verification problem, we compute the
least solution of the dataflow problem corresponding to the
above-defined typestate lattice. At any location where f is

pc Typestate Predicated Typestate

1 ∗out:C true :[∗out:C]
2 ∗out:O true :[∗out:O]
3 “” “”
4 ∗out:C true :[∗out:C]
5 “” (flag 6= 0):[∗out:C]
6 ∗out:> (flag 6= 0):[∗out:O], (flag = 0):[∗out:C]
7 “” “”
8 “”” (flag 6= 0):[∗out:O]

Figure 2: Dataflow Solutions: Locations, Typestate
Lattice Solution, Predicated Typestate Lattice So-
lution (Each p not shown in domain maps to ⊥)

read or written, if the dataflow solution maps f to O (resp.
C or >), then we know a runtime error cannot (resp. may)
occur at that location.

Example 2: [Typestate Verification] In function
Example, we model the function call fopen (resp. fclose)
by setting the is open bit of a structure FILE to 1 (resp.
0), and we model file accesses with an assertion that the
passed file structure has the is open bit set to 1. To verify
the assertions, we compute the least solution of the dataflow
problem corresponding to the CFA and the typestate lattice.
The least solution at location 2 maps out to the typestate O;
and hence we are guaranteed that the assertion at location
2 is never violated at runtime. Unfortunately, the solution
is a conservative over-approximation of the reachable states.
In our example, the least solution at location 8 maps the file
out to the state > because there are two paths to the node 8;
on one path the file out is in state O (along the “then” branch
of the conditional on location 4), and on the other, out is in
state C (along the “else” branch at location 4). Hence, the
dataflow analysis at location 8 “joins” the values flowing in
along the two paths, i.e., maps out to O tF C, which is >,
which flows to location 8. Hence, based on this analysis, we
can only conclude that out may possibly be in the C state
on line 8, and thus we conclude that a runtime error may
occur at location 8. However, this is a false positive, since
no actual program execution can cause the assertion to fail.
The dataflow analysis loses information at locations where
control-flow merges (i.e., join points), and does not realize
that the conditional flag ensures that out is always in state
O at line 8. 2

3. PREDICATED DATAFLOW ANALYSIS
We now describe how to obtain a more precise solution for

any lattice-based dataflow analysis by using first-order pred-
icates over the program variables to refine the information
provided by the lattice.

Predicate Abstraction. Let P be a finite set of quantifier-
free first-order boolean predicates over the program vari-
ables X such that the disjunction of all the predicates of
P is a valid formula. The P -abstract transition relation
;P ⊆ P×Ops×P , is defined as: p

op
;P p′ if there exists states

s, s′ satisfying predicates p, p′ respectively, such that s
op
;s′.

We say a path pc0

op
1−−→pc1 . . .

op
n−−→pcn is P -feasible if there

exist p0, . . . , pn ∈ P such that for each 1 ≤ i ≤ n, we have
pi−1

op
i

;P pi, and P -infeasible otherwise. There are standard
techniques for computing ;P using predicate transformers

(i.e., the strongest postcondition [14]) and decision proce-
dures [18].

Example 3: [Predicate Abstraction] Consider the set of
predicates P = {flag = 0, f lag 6= 0}. For the assume oper-
ation op = assume(flag! = 0) corresponding to the “then”
condition of the branch at location 4, we have the sin-
gle P -abstract transition: (flag 6= 0)

op
;P (flag 6= 0). For

the assignment operation op = flag := 1, we have the
two P -abstract transitions: (flag = 0)

op
;P (flag 6= 0) and

(flag 6= 0)
op
;P (flag 6= 0). 2

3.1 Joining Lattices with Predicates
Our main technique for more precise dataflow analysis is

the predicated lattice construction from a lattice and a set
of predicates. For a finite set of predicates P , and a lattice

L = (Θ,⊥,>,t,v, cSP, [[·]]), we define the predicated lattice

LP as the tuple (ΘP ,⊥P ,>P ,tP ,vP , cSPP , [[·]]P) where:

1. ΘP is the set of maps P → Θ, and ⊥P is the map λp.⊥
and >P the map λp.>,

2. θ1 tP θ2 is the map λp.(θ1(p) t θ2(p)),

3. θ1 vP θ2 iff for all p ∈ P , we have θ1(p) v θ2(p),

4. [[θ]]P = [[t{θ(p) | p ∈ P}]], and

5. cSPP (θ, op) = λp′.(
F

{cSP(θ(p), op) | p
op
;P p′}).

It is easy to check that the above satisfies the conditions
on lattices, and that Height(LP) is |P | × Height(L). This
is an instance of a reduced cardinal power of lattices [12].
Given a predicated lattice LP , the dataflow problem 〈C,LP 〉
can be solved by the fixpoint iteration algorithm that finds
the least solution for Equations (1) and (2). The following
theorem states that the resulting dataflow facts become no
less precise when the set of predicates is increased.

Proposition 2. For every dataflow problem I = 〈C,L〉,
and set of predicates P ,

1. the least solution DP of IP = 〈C,LP 〉 can be computed
in time linear in |E| × |P | × Height(L),

2. for every P ′ ⊇ P , the least solution DP ′ � DP , and,

3. if P is the trivial set {true}, then DP equals the least
solution for I.

Example 4: [Predicated Lattices] Consider the program
from Figure 1. We use the predicated lattice obtained from
the set of predicates P = {flag = 0, f lag 6= 0}, and the
typestate lattice of Section 2.3 to verify the assertions in
the program of Figure 1. The dataflow solution for this
predicated lattice is shown in Figure 2, in the third col-
umn. Notice that at location 6, the join point, the predi-
cated lattice solution maps the predicates (flag = 0) which
holds along the “else” branch to the typestate lattice element
where ∗out is still closed, and the predicate (flag 6= 0) which
holds along the “then” branch to the typestate lattice ele-
ment where ∗out is open. By keeping the information along
the two branches separate, our analysis is precise enough to
prove the assertion. In this example, we assume that the
predicates are provided in advance. In the next section, we
show how they can be inferred. 2

3.2 Predicate Refinement
There are two sources of imprecision in a dataflow anal-

ysis. The first is that the analysis considers all program
paths, instead of just those paths that are feasible. The sec-
ond is the information lost at join operations. Both sources
are essential: they guarantee the computability of the least
solution for lattices of finite height.

Even with predicated lattices, the dataflow solution may
be imprecise if the set of predicates P is inappropriate. In
such cases, we would like to automatically refine the analysis
to rule out the over-conservative (imprecise) solutions which
yield false positives, and repeat the process until the least
solution is sufficiently precise. In our case, the refinement is
done by enriching the set P with new predicates and using
the resulting predicated lattice.

To find the new predicates, we adapt standard predicate
refinement techniques [19] to this setting, as briefly outlined
below. Given a dataflow solution, if we find it is precise
enough (e.g., to verify a typestate property) then we are
done. Otherwise, either we can find a feasible execution that
violates the typestate property, or we can determine that the
analysis is too imprecise. In the latter case, we determine
whether the imprecision is because the analysis considered
an infeasible path or because of a join. In the first case we
infer new predicates P ′ such that path is P ′-infeasible. In
the second case, we find two paths that join at some location
such that both paths are feasible, and the lattice element
obtained at the end along either path is precise enough, but
the solution obtained by joining the lattice elements at the
common location leads to imprecision. In this case, we infer
new predicates P ′ that separate the paths, i.e., such that
the predicates that hold along the prefixes leading to the
join point are disjoint, as a result of which the subsequent
predicated join does not join the lattice elements, leading to
a more precise solution.

The predicated lattice construction and the refinement
scheme outlined above gives us an algorithm for adaptive
path sensitive dataflow analysis. The input to the algorithm
is a dataflow problem I = 〈C,L〉 and optionally a set of
predicates P . In each step, we compute the least fixpoint
solution of the dataflow problem 〈C,LP 〉 and check if the
solution is precise enough to answer all our queries. If not,
we perform the refinement step to either ascertain a real
error in the program, or augment the set of predicates P
with new predicates. The process is iterated with this new
set of predicates.

Example 5: Consider the program of Figure 1. The least
dataflow solution obtained using the predicated lattice cor-
responding to the trivial set of predicates {true} is identical
to the least solution obtained using the typestate lattice,
shown in the second column in Figure 2. At location 8 this
solution maps the variable out to > and hence the assertion
cannot be proved.

At 4 the dataflow solution maps out to C, as the file is
closed at 3. The lattice value C flows from this location along
the “else” branch at location 4; at location 6 it becomes >
due to the merge which then flows along the “then” branch
at 7 causing the imprecision. The reason for this imprecision
is that the dataflow considers the infeasible path correspond-
ing to the “else” branch at location 4 and the “then” branch
at location 7. The join at 6 is not the cause as even with-
out the join, we would have the imprecise typestate C at the

A = {null, errp} ∪ N (Address)
P = {must(A), may(U, 2A)} (Pointer)
U = Z ∪ P ∪ {>} (V alue)
Θ = (N → U) ∪ {⊥} (Lattice element)

Figure 3: Types

assertion. Using techniques described in [19] we infer the
predicates {flag = 0, f lag 6= 0}, which in the next iteration
gives the least solution shown in the third column in Fig-
ure 2, which is precise enough to prove the assertion. 2

4. SYMBOLIC EXECUTION LATTICE
We now instantiate the generic predicated lattice frame-

work from the previous section by describing a particular
lattice for performing dataflow analysis of programs for a
wide range of typestate properties.

Statement syntax. We precisely define the set of oper-
ations of the imperative language. For clarity, we describe
only a subset of the full C grammar here (our implementa-
tion supports the full C syntax). The grammar for expres-
sions is defined as follows:

(Expressions) e ::= e ⊕ e | l | i
(Lvalues) l ::= ∗l | v

for variables or heap cells v, integer constants i, and arith-
metic operations ⊕.

There are four types of operations: assignments, alloca-
tion, deallocation, and assume predicates. An assignment
l := e assigns an expression e to the lvalue l. An alloca-
tion l := new e allocates memory initialized with the value
e, and assigns the lvalue l to point to the new memory. A
deallocation operation del l deallocates memory pointed to
by the lvalue l. An assume predicate is either an arithmetic
comparison of two arithmetic expressions (assume(e1 ∼ e2),
where ∼∈ {=, 6=,≤,≥,<, >}), or pointer equality between
pointer-valued expressions (assume(e1 = e2) or assume(e1 6=
e2)). The concrete semantics of the language is given in the
standard way, using a store of variables and a heap. We as-
sume that the program halts if a null pointer is dereferenced
or if deallocated memory is accessed. We assume in the
following that our programs are type-safe, that is, integers
and pointers are not mixed in expressions. This allows us
to remove error conditions from the operational semantics.

4.1 Lattice Elements
Lattice of values. A lattice element will represent an ab-
straction of the store and the heap. Figure 3 shows the
entities used in defining a lattice element.

The memory (store and heap) is abstracted as a set of
(logical) region names N. Each region name represents the
contiguous area of memory associated with a program vari-
able or a heap pointer dereference. The elements of N are
the program variable names V and a countable set of heap
addresses H that stand for dynamically allocated memory.
A heap region in H is created whenever new memory is al-
located and destroyed whenever memory is deallocated.

An address is used to refer to a region name. An address
is either a region name from N, or a special symbol null

Pointer p addr(p) deref(θ, p)
must(ρ) {ρ} θ(ρ)
may(v, A) A let A′ = addr({θ(ρ) | ρ ∈ A}) in

v if v 6= >
may(A′) if v = > ∧ A′ 6= ∅
> if v = >∧ A′ = ∅

Table 1: Semantics for pointer dereferencing

(the null address) that does not point to a valid region, or
a special symbol errp that refers to an erroneous address
(e.g., an address that has been freed).

Addresses are referred through pointers. The symbolic
execution lattice supports two types of pointer values:

• Must Pointers represent pointers which have a single,
specific target address. A must pointer corresponds
directly to a pointer in the concrete program state and
is parameterized by an address. We write must(ρ) to
represent a definite pointer to the address ρ.

• May Pointers represent pointers whose target is not
precisely known because of imprecision in the analysis.
A may-pointer is parameterized by a value and a set of
addresses; for a value u and a set of addresses s ⊆ A,
may(u, s) denotes a pointer that may point to any one
address in s, but when dereferenced, has the value u.
When assigning through a may-pointer, the values at
each target address are invalidated and the assigned
value stored in the may-pointer itself. This permits a
precise value to be returned for future dereferences of
the pointer.1

The set of pointers is denoted P. A value is either an
integer, a pointer, or > (denoting unknown value). We de-
fine some helper functions on pointers that will be useful in
defining the abstract semantics. The function addr : U → 2A

returns, for a pointer p, the set of addresses p can point
to, and returns the empty set for a non-pointer value. It
is naturally extended to sets of values by union: addr(U) =
∪u∈Uaddr(u). Table 1 shows the definitions of addr and deref

(described below) based on case analysis on the type of p.
We define the operators v and t on the lattice data values

u1, u2 ∈ U. The v operator induces a partial ordering on
data values. Any integer value is less than >, and two dis-
tinct integers are incomparable. Pointers are ordered based
on their sets of potential targets. A pointer p1 is less than or
equal to pointer p2 if the target address set for p1 is a subset
of the target address set for p2 (or the target addresses are
the same but the value at p1 is less than or equal to the
value at p2). Any other pair of unequal values are incompa-
rable. Formally, u1 v u2 iff (1) u1 = u2, or (2) u2 = >, or
(3) u1 = must(ρ) and u2 = may(v, {ρ} ∪ A), for any set A
of addresses, or (4) u1 = may(v1, A), u2 = may(v2, A ∪ A′),
and v1 v v2, for sets A and A′ of addresses.

The t operator returns the least upper bound of two val-

1Note that we do not model must-pointers with may-
pointers whose target is a singleton. This is because sin-
gleton may-pointers can be created when modeling arrays
and heap regions, which are represented using summary re-
gions (see Section 4.3).

ues based on this partial ordering. Formally, for u1, u2 ∈ U:

u1 t u2 ≡

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

u1 if u1 = u2

> if (u1 = > ∨ u2 = >)

may(u′, A1 ∪ A2) if u1 = may(u′, A1) ∧

u2 = may(u′, A2)

may(>, A1 ∪ A2) if u1, u2 ∈ P ∧ u1 6= u2 ∧

A1 = addr(u1) ∧

A2 = addr(u2)

> otherwise

Abstract states. An abstract state θ is either (1) a partial
mapping N → U from the set of region names N to the set of
values U, or (2) the element ⊥. The set of abstract states,
denoted Θ is the set of all lattice elements. For an abstract
state θ, let dom(θ) denote the set of names in the domain
of θ. For ρ ∈ dom(θ), we write θ(ρ) for the image of ρ
under θ. The function deref : Θ×P → U, defined in Table 1
returns a value pointed to by a pointer p. For an abstract
state θ, a region ρ, and value u, we write θ[ρ 7→ u] for the
abstract state that maps ρ to u, and agrees with θ on all
other regions. We write θ ∪ {(ρ, u)} for the abstract state
with domain dom(θ)] {ρ} (i.e., ρ is a fresh name), that
maps ρ to u, and agrees with θ on dom(θ). We write θ \ {ρ}
for the restriction of θ to dom(θ) \ {ρ}.

Each abstract state θ represents a set of concrete data
states [[θ]] defined as:

[[θ]] ≡
n

s ∈ S | ∀ρ ∈ dom(θ).
“
s(ρ) ∈ val(θ(ρ))∧

(θ(ρ) = may(u, A) ⇒ ∃a ∈ A.s(a) v u)
”o

where

val(u) ≡

8
><
>:

{u} if u ∈ Z

addr(u) if u ∈ P

U if u = >

A lattice element restricts the set of concrete data states to
those where, for each region ρ defined by the mapping θ, the
associated value is one of the possible values represented by
θ(ρ). In addition, if the value is a may-pointer may(u, A), a
target of the pointer (from the set A) must contain the value
u. The lattice element ⊥ represents the empty set: [[⊥]] = ∅.
The element > is the function that maps all region names
to >.

Ordering and join. The partial ordering v on values is
extended to lattice elements by defining θ1 v θ2 iff for all
names ρ ∈ N, we have θ1(ρ) v θ2(ρ) (where, for i = 1, 2,
we assume θi(ρ) = > for any ρ 6∈ dom(θi)). Notice that
this definition ensures that θ1 v θ2 iff [[θ1]] ⊆ [[θ2]]. The join
θ1tθ2 of lattice elements θ1 and θ2 is defined as the function
λρ.θ1(ρ) t θ2(ρ), where (for i = 1, 2) we assume θi(ρ) = >
for all ρ 6∈ dom(θi).

4.2 Abstract Semantics
The operation cSP(θ, l) returns a lattice element θ′ which

is an over-approximation of SP([[θ]], l). The semantics of the
post operation are defined using evaluation rules below.

Expression evaluation. Table 2 lists the semantics for
evaluating an expression e in an environment θ. The evalu-
ation rules are given as a big step semantics with the evalu-
ation operator eval : Exp×Θ → U, that takes an expression

and a lattice element and produces a value. We write e ;θ u

to denote eval(e, θ) = u, and we omit the subscript θ when
it is clear from the context. The rules are standard. Ad-
ditionally, we define the operator addrOf : Exp × Θ → A,
that takes an lvalue and an abstract state and returns its
address. The evaluation rules for addrOf are similar to eval,
and are omitted.

Assignments and allocation. Table 3 defines the ab-
stract post operation for statements. Since assignment
statements may change the heap, the abstract lattice must
consistently approximate the concrete store through assign-
ments. We use two helper functions invalidate : Θ × 2A ×
U → Θ and ptsTo : A → 2P to do this. The function
invalidate(θ, s, u) returns θ[∧ρ∈addr(s)ρ 7→ eval(θ, ρ)t u]. The
function ptsTo(ρ) returns the set of all pointers that may be
pointing to the address ρ.

Rule 1 defines the semantics of assignments where the
lvalue is a variable. Such an assignment adds a new mapping
between the variable and the evaluated value of the target.
Rules 2 and 3 define the semantics of assignments where
the target expression is a pointer dereference. Rules 4 and
and 5 define the semantics of allocation and deallocation of
memory.

Rule 3 is of particular interest as it provides strong up-
date semantics when updating through an imprecise pointer.
When the target expression evaluates to a may-pointer
whose address set is s, a mapping is added between addrOf

applied to the assignment’s target expression and a may-
pointer which points to s, but has the assignment’s source
expression as its target value. For soundness, the values
at all addresses in s are invalidated (integers set to > and
pointers converted to may-pointers, adding any pointers ref-
erenced by e2). Using may-pointers provides a mechanism
for the dataflow analysis to infer some local non-aliasing,
similar to restrict [2], without programmer annotations.

Assumes. Rules 6-7 in Table 3 define the semantics for
assume predicates. If the predicate evaluates to false (rule
6), the resulting lattice element is ⊥, indicating an inconsis-
tency. This indicates that the path is infeasible. If an in-
equality does not evaluate to 0, the store remains unchanged
(rule 7).

In addition, we implement strengthening of the lattice af-
ter certain assume statements. If an equality e1 = e2 does
not evaluate to 0, the values of the two expressions are in-
spected. If e1 evaluates to the address ρ, and e2 evaluates
to a value u v θ(ρ) in the value ordering, a new mapping is
created between the region ρ and the value u, that is, the
new lattice is θ[ρ 7→ u]. The less-than comparison is used
to ensure that the mapping for ρ is changed only when the
new value is more precise. Otherwise, the store is left un-
changed. For example, if the current lattice maps variable x
to >, and encounters the assume assume(x = 0), then after
the assume, the new lattice maps x to 0.

Proposition 3. For any operation op ∈ Ops and any

lattice element θ, we have [[cSP(θ, op)]] ⊇ SP([[θ]], op).

Theorem 1. The set of abstract states, together with the

constants >, ⊥, functions t, cSP, [[·]], and relation v forms
a semi-lattice.

Rule Expression e Condition eval(θ, e)

1 v θ[v]
2 ∗l l ; p : P deref(θ, p)
3 i ∈ Z i

4 e1 ⊕ e2 e1 ; i1 : Z ∧ e2 ; i2 : Z i1 ⊕ i2
5 e1 ⊕ e2 (e1 ; >∨ e2 ; >) >
6 e1 ∼ e2 e1 ; i1 : Z ∧ e2 ; i2 : Z ∧ i1 ∼ i2 1
7 e1 ∼ e2 e1 ; i1 : Z ∧ e2 ; i2 : Z ∧ i1 6∼ i2 0
8 e1 ∼ e2 (e1 ; >∨ e2 ; >) >
9 e1 = e2 e1 ; must(a1) ∧ e2 ; must(a2) ∧ a1 = a2 1
10 e1 = e2 e1 ; p1 : P ∧ e2 ; p2 : P ∧ (addr(p1) ∩ addr(p2) 6= ∅)∧ >

(p1 6= must(a1) ∨ p2 6= must(a2))
11 e1 = e2 e1 ; p1 : P ∧ e2 ; p2 : P ∧ (addr(p1) ∩ addr(p2) = ∅ 0

Table 2: Expression evaluation

Rule op Conditions cSP(θ, op)

1 v := e e ; u : U θ[v 7→ u]
2 ∗e1 := e2 e1 ; must(ρ) ∧ ρ 6= null ∧ ρ 6= errp ∧ e2 ; u : U θ[ρ 7→ u]
3 ∗e1 := e2 e1 ; may(u′, s) ∧ e2 ; u invalidate(θ, s, u)[addrOf(∗e1) 7→ may(u, s)]
4 l := new e e ; u (θ ∪ {(ρ, u)})[addrOf(l) 7→ must(ρ)], ρ fresh

5 del l cSP(θ, l := errp)
6 assume(e1 ∼ e2) (e1 ∼ e2) ; 0 ⊥
7 assume(e1 ∼ e2) (e1 ∼ e2) ; 1 ∨ (e1 ∼ e2) ; > θ

Table 3: Abstract semantics cSP(θ, op)

4.3 Dynamic Allocation
Our definition so far provides a lattice that can represent

potentially infinite heaps, since we allow dynamic allocation
of memory. We cannot bound the size of the domain of
region names if we have memory allocation (see rule 5 in
Table 3). In order to write a dataflow analysis based on this
lattice, we must abstract the heap to a finite structure. We
take the standard approach of summarizing heap cells based
on an equivalence relation on dynamically allocated regions.

Formally, we extend the set of addresses with summary
addresses S,

A = {null, errp} ∪ N ∪ S.

Summary addresses denote equivalence classes of dynami-
cally allocated heap names. Formally, let E be a partition on
regions with a finite index. Intuitively, summary addresses
are E-equivalence classes denoting sets of dynamically allo-
cated regions. If the E-equivalence class ρ̂ has exactly one
region, then ρ̂ behaves like a regular address, and we al-
low must-pointers to it, and strong updates on it. If the
E-equivalence class ρ̂ has more than one possible region,
then ρ̂ behaves as a set of addresses, and we only allow
may-pointers to it, and all updates are weak. We extend
the ordering and join operations to take care of summary
addresses, using addr(ρ̂) = addr(ρ̂′) if ρ̂ and ρ̂′ denote the
same E-equivalence class, and addr(ρ̂)∩ addr(ρ̂′) = ∅ if they
denote different E-equivalence classes.

We alter the abstract semantics of the allocation com-
mand l := new e in the following way. Let e ;θ u, and let

ρ̂ be the E-equivalence class of u. Then cSP(θ, l := new e) is
the lattice element

θ
′[addr(l) 7→ summary(u, ρ̂)]

where θ′ equals θ[ρ̂ 7→ θ(ρ̂) t u] if ρ̂ ∈ dom(θ) and θ′ equals
θ∪{(ρ̂, u)} otherwise; and summary(u, ρ̂) returns may(u, {ρ̂})
if the E-equivalence class ρ̂ has more than one possible re-
gion, and returns must(ρ̂) if ρ̂ represents exactly one region.
We now give two examples of partitions E.

1. Merge. Consider the partition of dynamically allo-
cated regions that merges all dynamically allocated
regions at the same CFA edge (i.e, any two regions
allocated at the same site are equivalent, while any
two regions allocated at different sites are not equiv-
alent). This is the standard abstraction in program
analysis (see, e.g., [17]).

2. Merge modulo predicates. Let P be a set of pred-
icates, and consider the set of functions from P to the
set {0, 1,>} that map each predicate to a truth value
0 (false), 1 (true), or > (unknown). Consider the par-
tition that merges all dynamically allocated regions at
the same CFA edge that agree on the predicate map-
ping. This is the 3-valued abstraction in shape analysis
[27].

Example 6: Consider the program Example2 in Fig-
ure 4(a). The program allocates memory dynamically in a
variable x inside a loop, initialized with 0, sets ∗x to 1, and
asserts that ∗x is 1. It then sets ∗x to 0. Figure 4(b) shows
the least fixpoint solution of the dataflow problem for the
CFA of Example2 with the symbolic execution lattice. Since
the dataflow fact at location 4 maps x to may(1, {ρ̂}), we
have that ∗x = 1 at this location. Thus the assertion holds.
Notice that the may-pointer preserves the information that
∗x is 1, even though the abstract location ρ̂ is mapped to

Example2() {
1: while (...) {
2: x := new 0;
3: *x := 1;
4: assert(*x=1);
5: *x := 0;

}
}

1 x 7→ errp
2, 3 x 7→ may(>, {ρ̂ : P}), ρ̂ 7→ >
4, 5 x 7→ may(1, {ρ̂ : P}), ρ̂ 7→ >

Figure 4: (a) A program and (b) the least fixpoint
dataflow solution

> (since ρ̂ represents multiple dynamically allocated loca-
tions, some of which contain value 0, and others value 1).
In contrast, a dataflow analysis that merges all dynamically
allocated memory locations, and tracks values of abstract
locations (e.g., [17]) cannot prove the assertion on line 4,
since the abstract location ρ̂ is mapped to >, and we only
know that x may point to ρ̂. 2

5. EXPERIMENTS
We have implemented the predicated lattice framework

with the symbolic execution lattice in the Blast software
verification tool [20].

Implementation Details. The formalization of the sym-
bolic execution lattice presented in Section 4 did not include
arrays and structures, key components of most non-trivial
C programs. The implementation models both arrays and
structures.

Array values are represented by a single summary node
computed by taking the join of all array elements. In C, a
program variable may be explicitly declared as an array or
any contiguous area of memory can be treated as an array
through the use of pointer arithmetic. As a result, a lattice
element must track whether each region is an array (type in-
formation is not sufficient). We extend the set of addresses
to include offsets from a base address. Pointer arithmetic is
modeled conservatively, so after a pointer arithmetic opera-
tion, we assume that the resulting pointer can point to any
part of the array.

To represent structures, we extend the set of lattice ele-
ments by allowing nesting. A nested lattice element repre-
sents a C structure. The names and values of a nested lattice
element represent the structure’s field names and field val-
ues respectively. C structures are modeled precisely by the
lattice: each member of a structure is treated as an indepen-
dent subregion. The array property of a region is inherited
by its members, if a structure is stored in an array region,
all of its members are treated as arrays as well.

Since the lattice tracks alias information, we use it to an-
swer aliasing queries during the analysis. For example, this
is useful in disambiguating function-pointer calls at analysis
time: for a function pointer whose value is may(F), we only
call the functions in the set F .

In our implementation, we modify the abstraction of dy-
namically allocated memory locations from the merge strat-
egy as follows. We partition dynamically allocated regions
according to allocation site. Within each partition, we again
partition regions into two sets: the latest allocated region,
and the set of all previously allocated regions. This is not a
(time invariant) partition of regions as defined above. How-
ever, at each point of the execution, this defines a partition
of the heap. With this strategy, the abstract post computa-

tion is more involved, since at each allocation, the last allo-
cated region must be merged with all the regions allocated at
that site before it, and some must pointers (pointing to the
last allocated region) have to be modified to may pointers
after the merge. We omit the implementation details.

Kernel API in Windows drivers. We checked a set
of Microsoft Windows device drivers for a typestate prop-
erty related to the proper handling of I/O requests. The
property is a finite-state automaton with 22 states [4]. The
source code for these drivers ranged from 14,000 to 138,000
lines of (preprocessed) C code. These experiments were run
on a Dell PowerEdge 1800 with two 3.6Ghz Xeon processors
and 5 GB of memory. We summarize the results in Table 4.
The first two columns give the name of the driver and the
number of CFA nodes in the reachable call graph. There are
three sets of numbers: results of running a pure predicate ab-
straction based algorithm implemented in the Blast model
checker [20] without the symbolic execution lattice from Sec-
tion 4, running the predicated dataflow algorithm with the
symbolic execution lattice, and running the counterexample-
guided abstraction refinement algorithm with the lattice
when the specification predicates are provided to the algo-
rithm (ESP mode). There are four numbers for each of the
first two sets: the number of iterations (‘Iter’), the num-
ber of refinements (‘Ref’), the total number of predicates
added (‘Pred’), and the time taken in seconds. The final
numbers (‘Spec’) shows the number of refinements and ad-
ditional predicates added when we start with all the speci-
fication predicates.

The number of iterations is the number of abstract post
computations that were computed. The number of refine-
ments can be more than the number of predicates, since we
use a localized predicate discovery algorithm [19], and the
same predicates may be found at different program locations
in different refinement steps.

The algorithm with the lattice outperforms the older ver-
sion of Blast in all cases. The number of refinement steps
and correspondingly, the number of predicates, are signifi-
cantly lower, since the symbolic execution lattice can rule
out many infeasible paths directly. This translates to faster
running times.

Finally, we ran the predicated dataflow algorithm, giving
the set of predicates from the specification as the initial set
of predicates. These predicates constitute the state of the
specification automaton. The ESP algorithm [13] would run
a predicated dataflow analysis over this fixed set of predi-
cates; any additional refinement required would show up
as a false positive in their analysis. For this more compli-
cated safety property, we show that the predicated lattice
with the specification predicates is not precise enough: for
all the examples, the algorithm has to perform additional
refinement steps. This shows that ESP would flag false pos-
itives in all these examples. In the ‘Spec’ column, we provide
the additional number of refinement steps performed in each
case (column ‘Ref’) and the additional number of predicates
found beyond the specification predicates (column ‘Preds’).
The number of refinements when the specification predicates
were given is different from the case when no predicates are
initially supplied. This is because different sets of infeasible
paths are considered for refinement in the two cases.

Acknowledgments. This research was supported in part
by the grant NSF CCR-0427202.

Program CFA No lattice Lattice Spec
nodes Iter Ref Preds Time (s) Iter Ref Preds Time (s) Ref Preds

diskperf 549 34035 164 154 831 4860 33 31 21 47 47
cdaudio 968 22964 68 95 517 6080 27 25 18 145 108
floppy 1039 21859 125 123 422 5624 42 42 35 54 60
parclass 1663 71480 177 185 3325 8630 38 42 89 103 116
parport 2518 113420 184 212 5829 43135 37 49 314 146 163

Table 4: Experimental Results for Windows drivers

6. REFERENCES
[1] T. Agerwala and J. Misra. Assertion graphs for verifying

and synthesizing programs. Technical Report 83, University
of Texas, Austin, 1978.

[2] A. Aiken, J.S. Foster, J. Kodumal, and T. Terauchi.
Checking and inferring local non-aliasing. In PLDI 03:
Programming Language Design and Implementation, pages
129–140. ACM, 2003.

[3] R. Alur, A. Itai, R.P. Kurshan, and M. Yannakakis. Timing
verification by successive approximation. Information and
Computation, 118(1):142–157, 1995.

[4] T. Ball and S.K. Rajamani. Personal communication.
[5] T. Ball and S.K. Rajamani. The SLAM project: debugging

system software via static analysis. In POPL 02: Principles
of Programming Languages, pages 1–3. ACM, 2002.

[6] R. Bodik, R. Gupta, and M.L. Soffa. Refining dataflow
information using infeasible paths. In FSE 97: Foundations
of Software Engineering, LNCS 1301, pages 361–377.
Springer, 1997.

[7] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer
for finding dynamic programming errors. Software Practice
and Experience, 30:775–802, 2000.

[8] S. Chaki, E.M. Clarke, A. Groce, and O. Strichman.
Predicate abstraction with minimum predicates. In
CHARME 03: Correct Hardware Design and Verification,
LNCS 2860, pages 19–34. Springer, 2003.

[9] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV 00:
Computer-Aided Verification, LNCS 1855, pages 154–169.
Springer, 2000.

[10] E.M. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In TACAS 04: Tools and
Algorithms for the Construction and Analysis of Systems,
LNCS 2988, pages 168–176. Springer, 2004.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for the static analysis of programs by
construction or approximation of fixpoints. In POPL 77:
Principles of Programming Languages, pages 238–252.
ACM, 1977.

[12] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In POPL 79: Principles of
Programming Languages, pages 269–282. ACM, 1979.

[13] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive
program verification in polynomial time. In PLDI 02:
Programming Language Design and Implementation, pages
57–68. ACM, 2002.

[14] E.W. Dijkstra. A Discipline of Programming.
Prentice-Hall, 1976.

[15] M. Dwyer and L. Clarke. A flexible architecture for building
dataflow analyzers. In ICSE 96: International Conference
on Software Engineering, pages 554–564. ACM, 1996.

[16] M.B. Dwyer, L.A. Clarke, J.M. Cobleigh, and
G. Naumovich. Flow analysis for verifying properties of
concurrent software systems. ACM Transactions on
Software Engineering Methodology, 13(4):359–430, 2004.

[17] J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type
qualifiers. In PLDI 02: Programming Language Design and
Implementation, pages 1–12. ACM, 2002.

[18] S. Graf and H. Säıdi. Construction of abstract state graphs
with PVS. In CAV 97: Computer-aided Verification, LNCS
1254, pages 72–83. Springer, 1997.

[19] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L.
McMillan. Abstractions from proofs. In POPL 04:
Principles of Programming Languages, pages 232–244.
ACM, 2004.

[20] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy abstraction. In POPL 02: Principles of Programming
Languages, pages 58–70. ACM Press, 2002.

[21] L.H. Holley and B.K. Rosen. Qualified data flow problems.
IEEE Transactions on Software Engineering, SE-7:60–78,
1981.

[22] Gary Kildall. A unified approach to global program
optimization. In POPL 73: Principles of Programming
Languages, pages 194–206. ACM, 1973.

[23] B. Murphy. Frameworks for precise program analysis. PhD
thesis, Stanford University, 2001.

[24] M. Musuvathi, D.Y.W. Park, A. Chou, D.R. Engler, and
D.L. Dill. CMC: A pragmatic approach to model checking
real code. In OSDI 02: Operating Systems Design and
Implementation. ACM, 2002.

[25] F. Nielson. Expected forms of data flow analyses. In
Programs as Data Objects, LNCS 217, pages 172–191.
Springer, 1985.

[26] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL 95:
Principles of Programming Languages, pages 49–61. ACM,
1995.

[27] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In POPL 99: Principles of
Programming Languages, pages 105–118. ACM, 1999.

[28] R.E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
Trans. Software Eng., 12(1):157–171, 1986.

[29] P. Tu and D. Padua. Automatic array privatization. In
Compiler Optimizations for Scalable Parallel Systems
Languages, pages 247–284, 2001.

[30] M.N. Wegman and K. Zadek. Constant propagation with
conditional branches. ACM Transactions on Programming
Languages and Systems, 13:181–210, 1991.

[31] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In POPL 05: Principles of Programming
Languages, pages 351–363. ACM, 2005.

