Generic Refinement Types

NICO LEHMANN, University of California, San Diego, USA

COLE KURASHIGE, University of California, San Diego, USA

NIKHIL AKITI, University of California, San Diego, USA

NIROOP KRISHNAKUMAR, University of California, San Diego, USA
RANJIT JHALA, University of California, San Diego, USA

We present Generic Refinement Types: a way to write modular higher-order specifications that abstract
invariants over function contracts, while preserving automatic SMT-decidable verification. We show how
generic refinements let us write a variety of modular higher-order specifications, including specifications
for Rust’s traits which abstract over the concrete refinements that hold for different trait implementations.
We formalize generic refinements in a core calculus and show how to synthesize the generic instantiations
algorithmically at usage sites via a combination of syntactic unification and constraint solving. We give
semantics to generic refinements via the intuition that they correspond to ghost parameters, and we formalize
this intuition via a type-preserving translation into the polymorphic contract calculus to establish the soundness
of generic refinements. Finally, we evaluate generic refinements by implementing them in FLux and using it for
two case studies. First, we show how generic refinements let us write modular specifications for Rust’s vector
indexing API that lets us statically verify the bounds safety of a variety of vector-manipulating benchmarks
from the literature. Second, we use generic refinements to refine Rust’s DIESEL ORM library to track the
semantics of the database queries issued by client applications, and hence, statically enforce data-dependent
access-control policies in several database-backed web applications.

CCS Concepts: « Theory of computation — Type structures; Logic and verification; « Software and its
engineering — Software verification.

Additional Key Words and Phrases: Rust, liquid types, refinement types, polymorphism

ACM Reference Format:
Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala. 2025. Generic Refinement
Types. Proc. ACM Program. Lang. 9, POPL, Article 49 (January 2025), 29 pages. https://doi.org/10.1145/3704885

1 Introduction

Modularity is a wonderful principle that helps one read or write programs. However, it can be a
real pebble in one’s shoe when it comes to automatically verifying them. To enable reuse across
multiple clients in different contexts, modular specifications must abstract over concrete invariants
that hold at those contexts. For example, consider a modular specification for a HashMap library
that aims to statically ensure that every lookup uses a previously defined key. Such a library must
export contracts for insert, lookup and contains_key methods that abstract over the predicate
characterizing the map’s valid keys:

Authors’ Contact Information: Nico Lehmann, University of California, San Diego, San Diego, USA, nlehmann@ucsd.edu;
Cole Kurashige, University of California, San Diego, San Diego, USA, ckurashige@ucsd.edu; Nikhil Akiti, University of
California, San Diego, San Diego, USA, nakiti@ucsd.edu; Niroop Krishnakumar, University of California, San Diego, San
Diego, USA, nkrishnakumar@ucsd.edu; Ranjit Jhala, University of California, San Diego, San Diego, USA, rjhala@ucsd.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART49

https://doi.org/10.1145/3704885

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

HTTPS://ORCID.ORG/0009-0003-6838-3714
HTTPS://ORCID.ORG/0009-0003-6699-0430
HTTPS://ORCID.ORG/0009-0009-4608-7256
HTTPS://ORCID.ORG/0009-0001-8638-6201
HTTPS://ORCID.ORG/0000-0002-1802-9421
https://doi.org/10.1145/3704885
https://orcid.org/0009-0003-6838-3714
https://orcid.org/0009-0003-6699-0430
https://orcid.org/0009-0009-4608-7256
https://orcid.org/0009-0001-8638-6201
https://orcid.org/0000-0002-1802-9421
https://doi.org/10.1145/3704885

49:2 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

pub struct HashMap<K, V>[valid: K -> bool] {...}

impl<K: Eq + Hash, V> HashMap<K, V> {
pub fn new() -> Self[|k| falsel;

pub fn lookup(&Self[@valid], key: K{ valid(key) }) -> &V;
pub fn contains_key(&Self[@valid], key: K) -> bool[valid(key)1;

pub fn insert(self: &strg Self[@valid], key: K{ !valid(key) }, v: V)
ensures self: Self[|k]| valid(k) || k == key];
}

Sadly, the need to abstract invariants over contracts implicitly requires higher-order specifications
which preclude decidable verification. For example, the contract for contains_key says that for all
predicates valid that characterize the defined keys of the map Self, the output bool is equal to
the value of the predicate for the input key. To verify a client, we must instantiate the predicate
appropriately at the client call-sites, which is only feasible when working interactively with a proof
assistant conversant in higher-order logic, and so, outside the realm of decidable verification.

Higher-Order Specifications via Generic Parameters In this paper, we show a way to reconcile
modular higher-order specifications with automatic and SMT-decidable verification, by carefully
combining two key observations. Our first observation, following Vazou et al. [28], is that the
higher-order invariants can be viewed as refinement parameters, analogous to type parameters.
Unfortunately, in the system of Vazou et al. [28], parameters are instantiated at call-sites via
Horn constraint solving which comes with rather onerous terms and conditions: the refinement
parameters may only appear positively inside refinements, i.e., only under conjunctions, but not
disjunctions or negations. This positivity prerequisite severely restricts the expressiveness of
specifications. For example, we cannot write the contracts for contains_key or insert for the
HashMap shown above! Following Economou et al. [10], we show how to circumvent this restriction
by the second observation that base-sorted (e.g., int or bool valued) refinement parameters can be
automatically instantiated at usage sites via syntactic unification—regardless of whether they appear
positively or negatively—as long as they appear in a value-dependent position. Our key insight
is that the same syntactic unification technique can be generalized to instantiate higher-sorted
(e.g., function valued) refinement parameters, and doing so lets us write modular higher-order
specifications, like for HashMap above, while preserving automatic verification.

In this paper, we combine these two observations to develop Generic Refinement Types, via the
following concrete contributions.

1. Formalization First, we formalize generic refinement types in a core calculus Ag, which extends
the simply typed A-calculus with generic refinement types (§ 4). Our calculus starts with an index-
style formulation where base types (e.g., int, bool) are indexed by logical values that track the
exact value of the inhabitant [32, 33]. For example, the signature Va : Z. int[a] — bool[a > 0]
corresponds to a function that determines whether its input int is strictly positive using a as
a refinement parameter that holds the logical value of the input integer. In A, we extend (base-
sorted) refinement parameters with two kinds of (function-sorted) generic arguments that permit
quantification over invariants in contracts. The first kind, are Horn generics that get instantiated
via Horn constraint solving but which must satisfy the positivity prerequisite [28]. The second
kind, are Hindley generics that get instantiated via syntactic unification [10] as long as they appear
in a value-dependent position. We develop the first algorithmic system for type checking programs
with Horn and Hindley generics thus reconciling modular specification with decidable verification.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:3

2. Translation Second, we give a semantics to generic refinements by showing how (well-typed)
Ag programs have a type-preserving translation into the polymorphic contract calculus F7; of
Sekiyama et al. [24] (§ 5). Informally, generic refinements are viewed as ghost parameters that
must be passed to functions, whose values are automatically synthesized during algorithmic
type checking. We formalize this intuition by defining an intermediate calculus Ag with explicit
refinement instantiations which are elaborated by the algorithmic typing rules. We then prove that
the elaboration is type-preserving, i.e., that if the algorithmic system gives a term in A a type,
then there is a corresponding term in Ag with the appropriately elaborated type (theorem 5.1).
Finally, we show how the elaborated terms of Ag can be translated to Ff;, again in a type-preserving
fashion, which lets us use the soundness of F{; to establish the soundness of A (theorem 5.2).

3. Association Rust libraries pervasively use traits to abstract over concrete implementations of
various groups of related operations, e.g., accessing collections like vectors, slices, or (hash)maps,
iteration, or building DSLs. We show how generic refinements enable modular specifications for trait
methods, via Associated generic refinements which abstract over the specific concrete refinements
that hold for particular implementations of the trait (§ 2). Following Wadler and Blott [30]’s classic
observation that typeclasses can be translated to dictionaries, we illustrate how associated generics
can be translated to Hindley generics, thereby showing how the latter is a foundation for the former.

4. Evaluation We evaluate generic refinements by implementing our core functional model, that
focuses on Hindley parameters, as an extensionin to FLUX, a refinement type verifier for Rust, and
then carrying out two case studies (§ 6). In the first case study, we show how generic refinements
scale up to modularly specify vector bounds checking. Their use allows us to abstract over the
condition of when an index is in bounds into a generic refinement that is then implemented as the
usual bounds-check for the vector. We show how this modular specification lets us statically verify
the bounds safety of a variety of vector manipulating benchmarks from [16]. In the second case
study, we use generic refinements to refine Rust’s DIEseL ORM library to track the semantics of
the database queries issued by client applications, and hence, statically enforce data-dependent
access-control policies in database-backed web applications [17].

2 Overview

We start with a high-level overview of generic refinements that begins by recapitulating prior
work as Horn generic refinements (§ 2.1). Then, we describe the expressiveness limitations of Horn
generics and show how they are addressed via Hindley generic refinements (§ 2.2). Next, we show
how generic refinements scale up to permit modular specification and verification of code using
Rust’s traits via Associated generic refinements (§ 2.3). Finally, we illustrate how Hindley generics
are a lower-level foundation for associated generic refinements, by demonstrating how the standard
typeclasses-as-dictionaries translation [30] reduces associated generics to Hindley generics (§ 2.4).

2.1 Horn Generic Refinements

Vazou et al. [28] introduced a mechanism for abstracting or generalizing over refinements via type
signatures with refinement parameters which can be automatically instantiated by solving Horn
constraints. We recast this idea as Horn generic refinements, which we illustrate with an example.
Problem: Multiple Mutable Borrows Rust’s borrowing discipline can sometimes be a straitjacket
that makes certain programs rather uncomfortable to write, most notably, when we require multiple
mutable references into objects stored in a collection. For example, suppose we represent particles
using a type Particle that provides a method interact, which takes mutable references to two
particles and updates them based on their interaction:

struct Particle {...3}; impl Particle { fn interact(&mut self, other: &mut Self) }

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:4 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

fn sim_bad(vec: &mut Vec<Particle>) { fn sim(vec: &mut { Vec<Particle>[@n] | @ < n }) {
let n = vec.len(); let n = vec.len();
for i in @..n { for i in @..n {
let mut mi = Multildx::new(vec);
let a = &mut vec[i]; let a = mi.get(i);
for j ini + 1..n{ for j in i +1..n { // mi: Multildx<Particle>[p]
let b = &mut vec[jl; let b = mi.get(j); // p = |k| 0<=k< i || j<=k<n
a.interact(b); a.interact(b);
} }
} }
3 3

Fig. 1. AParticle simulation that requires multiple mutable borrows: the left version is rejected by Rust’s
borrow checker, but the right version is accepted.

We might now wish to implement a simulator that computes the interaction of a collection of
Vec<Particle> as a simple nested loop as shown on the left in Fig. 1. Sadly, Rust’s borrow checker
will fuss about the second mutable borrow (at the let b =) as at that point we already have a
mutable borrow a that is alive (as required at the call to interact) and so we cannot have a second
mutable borrow from the same collection vec.

Solution: A Horn Generic API for Multiple Borrows Fig. 2 shows how Horn generics let
us implement an API that allows for multiple mutable borrows while still ensuring the key non-
aliasing invariant, namely, there is a unique borrow of any object. First, we define a MultiIdx
struct that wraps the Vec and (temporarily) takes ownership of the underlying memory. Second,
we parameterize MultiIdx with a generic argument available: int -> bool which is a predicate
over int that describes the set of indices of the underlying vector that are available to be (mutably)
borrowed. (We use the hrn modifier to declare the generic as Horn.) Third, our API ensures that the
only way to create a Multildx is using the constructor MultiIdx: :new which takes a vector vec and
returns a Multildx whose available predicate says that every slot i satisfying 0 <= i < vec.len
is available to be mutably borrowed. Finally, to actually borrow a reference to an element in the
collection, a client can use the method get. This method is parametric on the available predicate
(declared with @av) and checks that the requested idx is indeed available, and then returns a mutable
reference to the underlying cell after “updating” self to ensure that (subsequently) the position idx
is excluded from the set of available borrows. The specification uses a strong reference, the details
of which are not important. It suffices to say that, by leveraging Rust’s borrow checker, FLux can
do a sound strong update on the type of the reference after the function call [16].

Implementing this API requires internal use of unsafe code, but we can encapsulate it under a
(refined) safe interface. The key observation that makes this sound is that by wrapping a mutable
reference to the Vec, MultiIdx can prevent clients from using operations that can modify the
underlying storage to invalidate outstanding borrows (e.g., by calling push).

Using the MultiIdx API The following example shows how we can use this API. The comments
on the right illustrate how the type of mi is strongly updated after the first call to get. FLUX rejects
the second borrow at 0 as that index is not available after the first call mi.get (0).
fn test_multi_index(vec: &mut Vec<Particle>{v: v.len == 5}) {
let mi = MultiIdx::new(vec); // mi: Multildx[|i| @ <= i < 5]
let a0 = mi.get(0); // mi: MultiIdx[|i| 0@ <= i <5 && i != 0]

let al = mi.get(0);

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:5

struct Multildx<'a, T>[hrn available: int -> bool];

impl<'a, T> MultiIdx<'a, T> {
fn new(vec: &'a mut Vec<T>]) -> Self[|i| @0 <= i && i < vec.len];

fn get(self: &strg Self[@av], idx: usize{ av(idx) }) -> &'a mut T
ensures self: Self[|i]| av(i) && i != idx];

Fig. 2. An API for Multiple Mutable Borrows using a Horn generic refinement to track available positions.

A Verified Particle Simulator We can now write the Particle simulator quite naturally as shown
in Fig. 1. FLux statically guarantees that each object is borrowed at most once, by automatically
instantiating the available generic argument for mi, as shown on the right in the comments. In
particular, FLux infers that the inner loop has the invariant that all the indices excluding those from
i to j are available, thereby verifying that the mb.get(j) call can safely return a mutable borrow b
that can then be used to call interact.

2.2 Hindley Generic Refinements

In general, generics are only ergonomic when they can be automatically instantiated [22]. In the
case of Horn generics, automatic inference comes at a steep price: the refinement arguments (like
av in the signature of get in Fig. 2) can only appear positively inside refinements, meaning they can
only appear under conjunctions, but not disjunctions or negations. This positivity prerequisite lets
the type checker automatically instantiate the generic arguments by solving Horn constraints [28],
but severely limits the expressiveness of APIs that can by specified with Horn generics.

Next, let us see how to relax the posititivity prerequisite and expand expressiveness via Hindley
generic refinements, which use syntactic unification to automatically instantiate generic arguments
at usage sites. Hindley generic arguments can appear negatively—under a disjunction or negation—
as long as they appear in a value-dependent position (a notion identified by Economou et al. [10],
and detailed in § 3.2) which lets us use them to specify a broader class of APIs.

Querying Databases using ORMs An object-relational mapping (ORM) library let programmers
interact with databases in a type safe manner using a high level API for constructing and executing
database queries. An ORM starts off by letting the programmer describe the schema of their database
tables. Suppose we are building a shopping list application that maintains the list of items each
user needs to purchase, together with their price and description. The programmer describes the
schema for a table as shown on the left in Fig. 3, after which the ORM library generates a struct
to represent rows of the items table as a Rust value. An ORM provides a convenient way to build
queries that can be used to read and update the database. To do so, the ORM uses a type Field<R, V>
whose inhabitants represent the V-valued field of a row R. For example, from the table description
on the left in Fig. 3, the ORM will automatically generate the definitions shown on the right which
represent the database columns, i.e., the fields of each row of the database. Next, as shown in Fig. 4,
the ORM also has a type Query<R> which is parameterized by the type of the row R that the query
returns, and a set of generic (table-independent) functions that allow the construction and execution
of queries. For example, we can use eq or 1t to build atomic queries that compare the value of a
particular field or column (of the row) to some value val, and then, we can compose queries with
boolean connectives like and, or and not to construct complex queries that span multiple fields.
Finally, the ORM includes a method run that executes the query on the actual database, to get back
a collection of rows of type R.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:6 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

table! { struct Item {
items(id) {
id -> usize, id: usize, const item_id . Field<Item, usize> = ... ;
price -> 132, price: 132, const item_price : Field<Item, i32> = ...
owner -> usize, owner: usize, const item_owner : Field<Item, usize> = ... ;
descr -> String, descr: String, const item_descr : Field<Item, String> = ... ;
} }
3

Fig. 3. (L) Specifying a database table using an ORM, (C) ORM-generated struct representing each row, (R)
ORM-generated Fields representing each column.

impl<R, V> Field<R,V> { impl<R> Query<R> {
fn eq(self: Field<R,V>, val:V) -> Query<R>; fn and(self: Query<R>, g: Query<R>) -> Query<R>;
fn 1lt(self: Field<R,V>, val:V) -> Query<R>; fn or(self: Query<R>, q: Query<R>) -> Query<R>;
fn gt(self: Field<R,V>, val:V) -> Query<R>; fn not(self: Query<R>) -> Query<R>;
3 fn run(self: Query<R>) -> Vec<R>;
}

Fig. 4. (L) Methods to build atomic queries from a field. (R) Methods to compose queries and run them.

ORM clients Client or application code can now use the ORM’s API to build SQL queries and
execute them to get back plain Rust values that can be consumed by the rest of the application. For
example, Fig. 5 shows a Rust function that finds all the items belonging to owner whose price is
below a certain cost. To do so, the code uses the query combinators to build a query g that is the
conjunction of two sub-queries, which respectively check that the item belongs to owner and that
the price is less than cost, and then runs the query to iterate over all the returned items.

Problem: Verifying Invariants of Query Results When verifying web-applications built using
the ORM, we need to track the invariants of the rows returned by various queries, to check, e.g.,
that the values being sent back to the user adhere to some desired security policy [17]. In our
setting, suppose that we wish to verify that every item returned by g.run() indeed has a price that
is less than some cost. To do so, we must precisely track the semantics of the query combinators
like eq, 1t and and, and compose them appropriately to track the desired invariants of q and hence
item. However, for modularity, the types we assign to these combinators must be database agnostic
so that we can use the same API across different applications and DB tables.

Solution: A Hindley-generic API for Database Queries We solve this problem by refining the
ORM'’s Field and Query types with generic arguments that track the semantics of the respective
objects, and then refine the API for constructing and executing a Query so that the refinements for
the sub-queries compose to yield compile-time invariants for the resulting database rows.
Refined Fields First, we refine the Field struct with a Hindley generic (declared with the hdl
modifier) proj which represents the map from the row R to the specific field’s value v

struct Field<R, V>[hdl proj: R -> V]l { ... }

Now, when the table from Fig. 3 is generated, the individual Field constants now get refined as

const item_id . Field<Item, usize >[|r] r.id 1] e
const item_price : Field<Item, i32 >[|r| r.price] el
const item_owner : Field<Item, usize >[|r]| r.owner] = ... ;

const item_descr : Field<Item, String >[|r]| r.descr] e

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:7

fn get_items(owner: usize, cost: i32) {

let g1 = item_owner.eqg(owner); // q1: Query<Item>[|i| i.owner == owner]

let g2 = item_price.lt(cost); // q2: Query<Item>[|i| i.price < cost]

let g = gl.and(q2); // q: Query<Item>[|i| i.owner == owner && i.price < cost]
for item in q.run() { // item: Item{i: i.owner == owner && i.price < cost}

assert(item.price < cost);

Fig. 5. Example of a client of the query API. The comments show the types of subqueries in the refined API.

Refined Queries Next, we refine Query with a generic argument that characterizes its result.

struct Query<R>[hdl inv: R -> bool]l { ... }

impl<R> Query<R>{ fn run(self: Query<R>[@q]) -> Vec<R{r: q(r)}>; }

Crucially, the run method guarantees that each row returned by query.run() will satisfy the
invariant q that the query is refined with.

Atomic Queries We can now refine the types of the primitive query constructors to precisely
track the semantics of the primitive queries
impl<R, V> Field<R, V> {
fn eq(self: Field<R, V>[@projl, val: V) -> Query<R>[|r| proj(r) == vI;
fn 1t(self: Field<R, V>[@projl, val: V) -> Query<R>[|r| proj(r) < vI;
fn gt(self: Field<R, V>[@projl, val: V) -> Query<R>[|r| proj(r) > vI;
}

Thanks to the types of the fields item_owner, item_price and the query constructors eq and gt
above, FLUX assigns the sub-queries q1 and g2 in Fig. 5 the refined types shown in comments.

Composing Queries Next, we can refine the query combinator API to track the types of the
constructed queries:
impl<R> Query<R> {
fn and(self: Query<R>[@q1], rhs: Query<R>[@g2]) -> Query<R>[|r| ql(r) && g2(r)];
fn or(self: Query<R>[@q1], rhs: Query<R>[@q2]) -> Query<R>[|r| q1(r) || q2(r)1;
fn not(self: Query<R>[@q]) -> Query<R>[|r| !q(r)1;
}

Crucially, as they are no longer subject to the positivity prerequisite, the Hindley generic arguments
can appear negatively under a disjunction or negation (as long as they also appear in a value-
dependent position as detailed in § 3.2), which lets us use them to compose the invariants of
sub-queries, to precisely track the invariants of the composed query.

Thus, using the type of and and the types of q1 and g2, FLux infers that q (from Fig. 5) has the
type shown next to it in comments. This lets FLUux determine that q.run() returns a vector of items
each of which satisfies the condition in the assert.

2.3 Associated Generic Refinements

Generic refinements scale up to provide a modular way to abstract specifications over Rust’s widely
used traits, and which mirrors Rust’s own associated types mechanism.

Safe Vector Indexing Rust’s Vec<T>is a workhorse type used ubiquitously to store and manipulate
collections of objects. Vector-bounds safety is one of the oldest use cases for refinement types [32],

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:8 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

and so we might expect it would be straightforward to do vector-bounds checking with FLux, e.g.,
to verify that the access vec[1i] is safe in the following snippet, i.e., i is between @ and vec.len().

fn sum(vec: &Vec<i32>) -> i32 {
let mut res = 0; let mut i = 0;
while i < vec.len() {
res += vecl[i];
i+=1;

res

}

Trait-based Indexing Unfortunately, it is rather tricky to even specify vector access safety, because
Rust uses traits to make the indexing operation vec[i] extensible. The standard library defines a
trait Index—shown below on the left—that is parameterized by the type Idx used as the actual index.!
The trait has an associated type Output, which represents the result of the indexing operation. Thus,
the trait method index takes the value being indexed (self), the generic index (idx) and returns a
reference to Self::Output. The actual vec[i] operation inside sum uses a particular implementation
of the Index trait for Vec<T> using usize indices—shown below on the right—where the associated
type Output is specialized to T.

trait Index<Idx> { impl<T> Index<usize> for Vec<T> {

type Output; type Output = T;

fn index(&self, idx: Idx) -> &Self::Output; fn index(self: &Vec<T>, idx: usize) -> &T {...}
} }

Problem: Specifying Safe Vector Indexing The indirection introduced by the trait leaves us
with a conundrum: where do we specify that the index should be within bounds? One possibility is
to refine the signature of the index method in the trait implementation block:

impl<T> Index<usize> for Vec<T> {
fn index(self: &Vec<T>, idx: usize{idx < self.len}) -> &T { ... }
}

Now, the type checker could use the fact that the vec[i] operation in sum actually calls the above
method to use the refined API and thus enforce index safety. However, this route is unsound in
general as it is easy to bypass the check. For example, consider the below “wrapper” function to
index any container C with a usize:

fn get<C: Index<usize>>(c: C, i: usize) -> &C::Output { c[i] }

The above definition of get would typecheck. However, we could completely bypass the (static)
bounds check by replacing the v[i] in sum with get (v, i)! Thus, our only viable option is to somehow
refine the definition of the Index trait. However, here we face a vexing puzzle. At the trait definition,
the underlying container and index are both generic: we do not even know we are talking about
vectors or usize indices, so how can we possibly refine the index method to require something so
specific as an arithmetic bound?

Solution: Associated Generic Refinements We solve this conundrum by generalizing Horn-
and Hindley- generics to the trait setting as associated generic refinements. At the trait-level, associ-
ated generic refinements abstract over different requirements for the different implementations.
These generics can then be instantiated at the implementation-level, to the respective concrete
requirements. Let us see how associated generics allow us to specify safe vector indexing.

1We present a slightly simplified account, the actual implementation uses another trait S1iceIndex elided for clarity.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:9

trait Index<Idx> {
type Output;
reft in_bounds(v: Self, idx: Idx) -> bool;
fn index(self: &Self[@v], idx: Idx { Self::in_bounds(v, idx) }) -> &Self::Output;

impl<T> Index<usize> for Vec<T> {
type Output = T;
reft in_bounds(v: Self, idx: Idx) -> bool { idx < v.len }
fn index(self: &Vec<T>, idx: usize) -> &T { ... }

Fig. 6. Specifying Safe Vector Indexing via an Associated Generic Refinement.

First, as shown at the top of Fig. 6, at the definition of trait Index, we extend Rust’s notion of
an associated (generic) type (e.g., Output) to define an associated (generic) refinement in_bounds that
is declared to be a binary predicate over Self (the generic container) and idx (the generic index).
The associated generic in_bounds as a trait-level is an analog of the Horn generic available (§ 2.1),
or Hindley generic proj, inv, q1 and g2 (§ 2.2). The concrete definition of in_bounds will be filled
in at usage sites, in this case, the different implementations of Index. However, we can use the
generic in_bounds in type specifications for the trait’s methods, akin to the use of the associated
type Self::Output. In particular, we can refine the type of the index method to require that the idx
passed in be such that Self::in_bounds(v, idx) holds, i.e., that the index idx is “within bounds”
for the container v.

Second, as shown in the bottom of Fig. 6, at the implementation of Index—where we “know”
that the indexing is specialized to Vec<T> with usize indices—we provide the actual concrete
implementation of in_bounds (for this instance) which specifies that idx < v.len. Now, when
type checking sum, FLUX can use rustc’s trait normalization machinery to instantiate the generic
in_bounds in the precondition of index with the refinement in the actual implementation used at
that call-site, thereby enforcing bounds safety!

Note that the associated generic eliminates the unsoundness introduced by wrappers like get, as
the generic precondition on the trait’s index method ensures that the definition of get does not
typecheck as is. Instead, we would have to write

fn get<C: Index<usize>>(c: C, i: usize{ C::in_bounds(c, i) }) -> &C::Output { c[i] }

and the moment we do so, the occurrence of get(v, i) in sum would again instantiate the generic
refinement in_bounds to the instance for Vec at that call-site, thus enforcing bound safety.

2.4 Associated Generics are Hindley Generics

We conclude the overview by sketching how the classic typeclasses-as-dictionaries translation [30]
can be used to reduce Associated generics to Hindley generics, thereby showing the latter pro-
vides a solid foundation for the former. We illustrate the translation using the Index trait and the
implementation for Vec<i32> as an example (Fig. 6).

1. Translate trait into struct First, we translate the Index trait into a trait-struct IndexTrait
where the trait’s (1) associated types (e.g., Output) become extra type parameters, (2) methods
(e.g., index) become fn-valued fields of the struct, and (3) associated refinements (e.g., in_bounds)
translate to a Hindley generic for the struct.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:10 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

// trait Index translated into struct IndexTrait
struct IndexTrait<Self, Idx, Output>[hdl in_bounds: (Self, Idx) -> bool] {
index: fn(self: &Self[@v], idx: Idx { in_bounds(v, idx) }) -> &Output;

2. Translate impl into instance Next, given the concrete (monomorphic) trait implementation
of Index<usize> for Vec<i32>, we translate it into an impl-instance impl_index_vec_i32 that is an
instance of the corresponding trait-struct. The imp1’s (1) associated types (e.g., Output) are specialized
to the concrete types (e.g., 132), (2) method implementations (e.g., index) are translated into concrete
function values (e.g., the actual lookup function), and crucially, (3) associated refinements (e.g.,
in_bounds) are instantiated with the concrete refinement.

// impl Index<usize> for Vec<i32> translated as instance

let impl_index_vec_i32: IndexTrait<Vec<i32>, usize, i32>[|v,idx| idx < v.len] = IndexTrait {
index: |self: &Vec<i32>, idx: usize{ idx < self.len }| -> &i32 { ... }

b

3. Translate trait bounds into explicit function parameters We translate functions that use a
trait bound into functions taking an explicit parameter. This is illustrated below with the function
get where the C: Index<...>bound (on the left) is translated into an explicit parameter c_trait of
the correponding IndexTrait type instantiated with appropriate generics (on the right). Crucially,
notice that the associated generic in_bounds for the trait bound translates into the Hindley generic
for the trait-struct parameter. The actual use of the index method in the body is translated into a
call to the index field of the c_trait struct, and the in_bounds(c, i) precondition on i translate to
a call of the Hindley generic.

// get function with a trait bound // get translated to use a trait-struct
fn get<C: Index<usize>>(fn get_tx<C, Output>(
c_trait: &IndexTrait<C, usize, Output>[@in_bounds],
c: C, c: &C,
i: usize{ C::in_bounds(c, i) } i: usize { in_bounds(c, i)}
) > &C::O0utput {) —> &0Output {
c[i] (c_trait.index)(c, i)
} }

4. Translate bound instances by passing impl-instances Finally, we translate a call to get,
like the one shown below on the left, into a version like the one on the right that explicitly passes
impl_index_vec_1i32 as the argument to the translated trait-bound parameter c_trait.

// sum client that uses get // sum translated to use impl-instance
fn sum(vec: &Vec<i32>) -> i32 { fn sum_tx(vec: &Vec<i32>) -> i32 {
let mut res = 0; let mut res = 0;
let mut i = 0; let mut i = 0;
while i < vec.len() { while i < vec.len() {
res += get(vec, i); res += get_tx(impl_index_vec_i32, vec, i);
i+=1; i+=1;
Iy b
res res
} 3

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:11

Base o, = Z int Mode p = hdl hindley
| B bool | hrn horn
Sort o u= o base Scheme 1 = 1 type
| op — op func. | Vao0.n generalization
Reft. r u= z|tt|ff|a atom Expr. e = x variable
| rAr|rvr|-r bool | ¢ constant
| rer|rer arith | op(es,...,e,) operation
| Aa:o.r|rr func. | Ax.e lambda
Type t© == {b[r]|r} refinement | e(er,....en) application
| {a.bla]|r} existential | e:7 ascription
| o7 function PCtx. T = -|Lx:t
RCtx. © = -[0,a:;,0|0,r

Fig. 7. Syntax of Ag. An operation @ is either + or —. A relation > is either = or >.

At this point, FLux instantiates the Hindley generic for get_tx with the concrete refinement
associated with impl_index_vec_i32, and hence, checks the precondition on the index i, namely
that i < vec.len.

3 A Core Calculus of Generic Refinements

Next, we formalize the key aspects of generic refinement types in a core calculus Ag, an extension
of the simply typed A-calculus with generic refinements.

3.1 Syntax

Fig. 7 summarizes the syntax of Ag. We stratify the syntax into two layers: refinements (and their
sorts), and expressions (and their types). Our approach is generic over an underlying SMT decidable
logic used for refinements. Since our system is syntactic in nature, we fix a logic of linear arithmetic
and uninterpreted functions for illustration.

Sorts A base sort oy, is either an integer (Z) or a boolean (B). A sort o generalizes base sorts to
also include function sorts. We distinguish between base and function sorts as, to preserve SMT-
based decidable checking, our algorithmic system will require that generic refinements are only
instantiated with refinement-level functions that take in base-sorted arguments (§ 3.2).

Refinements The simplest refinement is an atom which is either an integer literal z, the boolean
literals tt (true) or ff (false), or a refinement variable a. Further, we can combine refinements using
the boolean connectives A, V, and -, or the arithmetic operators =, +, —, and >. Finally, A also
includes refinement applications r r and refinement abstractions Aa : o. r. For example, the ensures
clause in the signature for get in Fig. 2 uses a refinement abstraction Ai : Z. available i V —(i = idx),
where available and idx are refinement variables.

Types Ag is parameterized by a family of base types b. For illustration, we assume we have int
and bool as base types. A refinement type {b[r;] | o} instantiates a base type b with a refinement
ry attaching a constraint r,. Unlike a traditional refinement type system, this syntax does not bind
a variable. Refinement variables are introduced via refinement generalization or existential types
(discussed next). When writing {b[r;] | r2}, the intuitive meaning of r; is a predicate that must be
true. Meanwhile, A does not have an opinion on the meaning of the refinement application b[r].
We only assume a base type b has a corresponding sort b, and must be applied to refinements of
that sort. Syntactically, the meaning of a generic refinement is given by its API as we discuss later

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:12 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

in this section. In § 5, we give a semantic interpretation of generic refinements via a translation into
the polymorphic contract calculus [24]. A also has function types ¢ — 7, and a limited form of
existential types {a. b[a] | r}, denoting a refinement type {b[a] | r} where a has been existentially
quantified. Finally, we write b[r] as short for {b[r] | tt} and b as short for {a. b[a] | tt}.

Schemes A scheme 1 is a type 7 over which various refinement variables a have been quantified
(i.e., bound). We use two inference modes—hrn and hdl—to respectively denote whether a given
refinement variable a is a Horn generic refinement (§ 2.1) or a Hindley generic refinement (§ 2.2).
Note that unlike many formulations of refinement types, we use generic refinements and quan-
tification instead of dependent function binders. For example, in a system like the one in [14], we
can write a dependent function type (x : int) — {v: int | v < x} denoting a function that takes
an integer x and returns some other integer less than x. In Ag, the same function is specified via
the scheme that generalizes the input integer with a refinement variable a; that is then used to
constrain the output integer:

Yai ha1 Z. int[al] - {az. int[az] | a < al}

Expressions Finally, the expressions e of Ag include variables x, base constants ¢ (including
numbers, booleans, etc.), application of primitive operations op(ey, ..., e,), lambda abstractions
Ax. e, applications e(ey, .. ., e,), and type ascriptions e : 7. Each constant ¢ has a corresponding
type ty(c). Similarly, each operation op has a scheme given by scheme(op). The set of constants
and operations constitute the API defining the meaning of generic refinements. For example, given
the base type int and its corresponding sort int, = Z, we define int[r] by defining the type of
numeric constants and arithmetic operations as follows:

ty (0) = int[0]
ty(42) = int[42]
scheme(+) := Vaima Z az:pa Z. int[a;] — int[ay] — int[a; + as]

scheme(/)

Yai wa1 Z, az w1 Z- intlai] — {int[az] | az # 0} — int[ai/a;]

Similarly, we can define the Query type discussed in § 2.2 assuming it is indexed by a row sort and
giving schemes for the operations in its AP, e.g.:

scheme(and) := Va;:pa row — B, asma row — B.
Query[a;] — Query[az] — Query[Aas: row. a; as A a; as]

3.2 Well-formedness

Ag has refinement-level A-abstractions and applications, but the system carefully controls where
they occur to ensure that type checking only generates decidable, first-order SMT validity queries.
We achieve this by ensuring that types are well-formed, meaning, intuitively, that (I1) Horn generic
variables, i.e., bound as Va:p,, 0. 17, only appear in 7 under top-level conjunctions where they can be
instantiated via constrained Horn clauses at application sites; (I2) refinement variables a are either
base-sorted, or are functions that take base-sorted inputs; (I3) refinement abstractions do not appear
arbitrarily nested but are only used as generic arguments where they can be eliminated as part of
constraint generation; and (I4) Hindley generic variables, i.e., bound as Va:q 0. 1, appear in 5 in
a value-dependent position that guarantees they can be syntactically instantiated via unification
at application sites. These invariants are enforced by the well-sortedness and well-formedness
judgments whose syntax-directed rules are summarized in Fig. 8 and Fig. 9.

Refinement Contexts A refinement context © is a sequence of refinement bindings a:, o and
refinement constraints r (used during type-checking). We write ©(a) = (y, o) to extract the mode

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:13

Well-sorted Refinements

WS-HRN WS-HDL
©r, r 10, O(a)=(hrn o, — B) 0(a) = (hdl o) WS-INT WS-TT
OFrt ar :B Oty a :0 OFrp z :Z OFry tt :B
WS-AND WS-Or WS-Not
WS-FF Oty r1 :B Orp rp 1B OFr, r1 :B OFr; rp :B OFr, r :B
Or, ff :B Ory, riArg : B OFry, 11V : B OFrp —r :B
WS-REL WS-Opr WS-Arp
OFr, 11 :0p OFy 13 :0y OFr, 1 :Z OFr, 1 :Z Or, rli(fb—’%’, OFr, 12 :0y
OFrp ripary :B Or, 11 ®ry :Z Oy rlrzzaé

Fig. 8. Well-Sorted Refinements

p and sort ¢ associated to a variable. When tracking variables introduced by A-abstractions we
omit the mode from the binding as it is not relevant. Formaly, we assume it has mode hdl.

Well-sorted Refinements The well-sortedness judgment © -, r : ¢ says that a refinement r has
sort o at level ¢ in a refinement context ®. The judgment is parameterized by a level £ which is one
of T (at the top-level, not under a disjunction, or negation), or L (any other position). Fig. 8 shows
the rules that establish the well-sortedness judgment. The majority of the rules use the syntax of
boolean and arithmetic operators to ensure that the operands are well-sorted, until they hit the
base cases for B or Z literals, or a variable. WS-HRN restricts variables bound with hrn mode to be
applied to a refinement at the top-level (I1). On the other hand, a refinement variable with hdl
mode is allowed at any level (WS-HDL). WS-aPp allows refinement abstractions to be well-sorted
as long as the input parameter is of base sort (I2). Note that lambda abstractions are not well-sorted
under these rules, but can appear in a generic application as discussed next (I3).

Well-formed Generic Application The judgment © +, b[r] [Z] (ignore p and E for now)
states that the generic application b[r] is well-formed. This essentially means that r is well-sorted
with sort b, (WF-oTHER). Additionally, we allow first order refinement abstractions to be used as
generic arguments (WF-Lam). Finally, we further require variables to be used at the appropriate
mode (WF-vAR- and WEF-vaRr+). Each base type b is associated with a mode b,, and it can only be
instantiated with variables bound with that mode.

—

Well-formed Types The type well-formedness judgment © +, 7 type [Z] says that the type
7 is well-formed under ® with variables E used in value-dependent position, when occurring
under polarity p (either + or —). We call value-dependent a position that is tied to a value known at
call-sites. Variables used in these positions are called value-dependent. A value-dependent variable
is guaranteed to be unifiable when calling a function (I4). Our value-dependent notion is related to
the value-determined notion of Economou et al. [10], however, they are concerned with indexes
being uniquely determined by their use, in a semantic sense, whereas we take a more syntactic
view where our primary focus is in automatically instantiating refinement generics at call-sites.
Fig. 9 summarizes the rules establishing the well-formedness judgment. WF-REFT checks that a
refinement type {b[r1] | 2} is well-formed by checking the application b[r] is well-formed and
the constraint r; is bool-sorted. In the case where r; is a refinement variable, the generic application
judgment will add the variable to the set of value-dependent variables if the type occurs negatively

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:14 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Well-formed Generic Application Or: b[r] [E]
WF-LaAM WF-OTHER
WEF-vAR- WE-vAR+ be =0p — 0;, reaAr+la:o.r
0O(a) = (by, bs) 0O(a) = (by, bs) ©a:opkr 1 0, Orr r : by
O+Fr_ bla] [a] O+, bla] [] OFr: blAa:op. 7] [] Or. b[r] []
Well-formed Types O . 7 type [E]
WE-REFT WF-EXISTS
Otr: blr] [E] OFrr r; :B O,a:pa1 bsFr r : B
O k. {b[r1] | 2} type [E] ©+t. {a bla] | r} type[]
WF-FUuN

O, 7 type [E1] O, 1, type [E;]

OFr, 71 > 1 type [E; UEy]

Well-formed Schemes O+ n sch[E]
WE-Ty WF-HRN WF-HDL
©F, T type [E] ©,amm o F 1 sch [E] ©,apgroF 1 sch[E] aeE
O+ 7 sch[E] OF Vaipm 0.7 sch[E] O+ VYampq 0.1 sch[ZE]

Fig. 9. Well-Formed Types and Schemes

(WF-vARr-). For existential types {a. b[a] | r}, the rule WF-Ex1sTs checks that r is bool-sorted in
the refinement context ® extended with a binding for a. Finally, for function types 7; — 13, the rule
WF-Fun recursively checks the input and output types are well-formed after flipping the polarity
for the input type, and states the set of value-dependent variables is the union of the sets returned
for the input and output types.

Well-formed Schemes The scheme well-formedness judgment ©® + 7 sch [E] says that the
scheme 7 is well-formed under © with value-dependent variables E. Fig. 9 summarizes the rules
establishing the judgment. In the base case, the rule WF-Ty checks that the scheme 7 is well-formed
in a positive polarity. In the case where the scheme quantifies over a constraint-generic refinement
variable Va:pq 0. 1, the rule WF-HRN recursively checks the scheme 7 after suitably extending
the refinement context with a. Rule WF-HDL is similar, but additionally checks that variables of
hdl mode are in the set of value-dependent variables.

Example 1: Ill-formed Horn Generics With respect to Horn generics, the main purpose of
well-formedness is to ensure they do not appear under a negation or disjunction. For example,
consider the following (incorrect) scheme for the or operator.

Va1 then row — B, ay :pen row — B. Query[a;] — Query[as] — Query[Aas: row. a; as V ay as]

This definition is ill-formed because the application a; as (resp. a; as) appears under a disjunction.
Concretely, when checking the body of the lambda the level starts at T (WF-Lam) and then switches
to L after going through the disjunction (WS-ORr). Consequently, the application of the Horn

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:15

Refinements r == ---|ad|k(ry,....,r)
SMT Terms z|tt|ffla| (t,....tn) | it
EAEL|EVE| -ttt |tDE| T
Predicates p tlr(t,..ot) | pAD
Constraints ¥ = p|YA¥Y|Va:0.¥Y|¥Y=>Y
Evar context A |Ad:o|Ad:o=r

Fig. 10. Syntax of Constraints and Environments for Algorithmic Typing

parameter is not accepted because WS-HRN only accepts applications of Horn parameters when
the level is T.

Example 2: Ill-formed Hindley Generics The definition above would be well-formed with
Hindley generics because they are allowed under a disjunction. However, Hindley generics must
appear in a value-dependent position which imposes a different trade off. Intuitively, this means
they are used in a generic application in input position. For instance, consider a function that
computes the maximum between two integers. We may wish to abstract over some predicate p
satisfied by both inputs and specify that the output also satisfies it. We could try to define this by
abstracting over p with a Hindley generic:

Vp:na1 Z — B. {a. int[a] | p a} — {a. int[a] | p a} — {a. int[a] | p a}

This definition is ill-formed because p is not used in a generic application in any of the inputs.
Concretely, the parameter p does not appear in the set E of value-dependent variables because
WF-vAR- never applies.

4 Algorithmic Typing

The key challenge that generic refinements pose is that of instantiating the generic refinement
parameters at call-sites. (Requiring the programmer spell those out would make the system rather
too tiresome to use.) Next, we present an algorithmic type checker for Ag that automatically
synthesizes the instantiations of generic refinements.

All the rules in the algorithmic system presuppose well-formedness of their inputs. This ensures
that generic refinements, both Hindley and Horn, can be automatically instantiated at function
calls. Note that well-formedness is not required for soundness (§ 5.3) but to guarantee predictable
inference. We could have instead chosen to fail “lazily” at call-sites if generics refinements cannot
be instantiated.

4.1 Inference Variables and Constraints

We extend the syntax of refinements with two types of inference variables (Fig. 10) used to instantiate
parameters in the two possible modes (hdl and hrn).

Instantiating Hindley Parameters The first kind of variables are evars a: existential refinement
variables [10] that stand for the unknown indices that a hdl-generic refinement parameter can be
instantiated with at a call-site, not dissimilar to existential variables used in Rocq [4]. Specifically,
the algorithmic typing rules introduce evars at call-sites, and use Evar Contexts A (Fig. 10) to track
their sorts (a :) and optionally, the refinement r they have been solved to (@ : o=r).

Instantiating Horn Parameters The second kind of variables are Horn variables k that represent
unknown relations (predicates) over different refinements. Horn variables are used at call-sites to
instantiate hrn-generic refinement parameters, which cannot be directly solved via unification

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:16 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Subtyping O;A1F 11 <:Tp 4Ay3Y
<:EQ <:FUN
O;AF r = [Alry: by AW OAF T <im HAY A F <ty 4A";Y,
O;AF {b[r1] | tt} <: {b[rz] | tt} 4 A"; ¥ O A o o<t o> 1A Y AY,
<:REFT/L <:REFT/R
O,r; A+ {b[r] |t} <:7 4 A} ¥ O;A+ T<:{b[r1] | tt} 1A ¥
O;AF {b[r1] |2} <it ANy => ¥ O;AF t<:{b[r1] | r2} AA;[A]ra AW
<:EXISTS/L <:EXISTS/R
©,a:pq1 bo; A+ {bla] |r} <:t 40 ¥ O;A,d:bs+ T<:{bld] |r[a/a]} AN G:bs=r";¥
O;AF {a.bla] |r}<:T AA;Va:b,. ¥ O;AF t<:{a.bla] |r} A1AF
Refinement Equivalence OAF ri=rp:0 AN ¥
=INST =BASE
rground A2 Ap,d:o’,A; Va € dom(A).ry # é
O;AF r=d:0 4A1,d4:0'=r, Ay tt O;AF ri=ry:op AATI=12
=K/L =K/R =FUN _ , ,
YixM) o Ar =k YEkE) =AY = () ©.a:0pAF ra=raio, 1ALY

;A k(r)=r":B 1A ¥ ;A r'=xk(r):B 1A ¥ ;A + rlzrzzab—mrl', 4 A;Va:op. ¥

Fig. 11. Subtyping and Refinement Equivalence

as they require a fixpoint computation. Our algorithmic typing rules instantiate hrn parameter
by following the recipe of liquid typing [6, 23] introducing a fresh Horn variable to represent the
unknown predicate. Using applications x(ry, ..., r,) of unknown predicates, the system builds a
Horn Constraint ¥ whose solution yields a valid instantiation of the generic refinement parameters.
Note that constraints ¥ are built from a restricted set of SMT terms ¢ that do not contain refinement
A-abstractions. The type checking rules guarantee that abstractions are eliminated from refinements
when generating the constraint. Moreover, note that invariant (I1), ensured by well-formedness
(§ 3.2), guarantees that we get a valid Horn constraint by verifying that applications of hrn
parameters only appear at the top-level, and not under negations or disjunctions.

4.2 Subtyping

Ac uses an algorithmic subtyping judgment of the form ©; A; + 7; <: 7, 4 A; ¥ which says that
the type y is a subtype of 1,, in the refinement context © using the evar context A;, with the evar
context updated to A, if the Horn constraint ¥ is satisfiable.

Subtyping Rules Fig. 11 shows the syntax-directed rules that establish the subtyping judgment.
The rule <:FUN is the usual one for function types that recurses contra-variantly on inputs and
co-variantly on outputs, conjoining the constraints ¥; and ¥, that are generated by each. In rule
<:REFT/L, the predicate r, appears on the left, and it is then added as an assumption that can be
used to prove the rest of the constraint ¥. Dually, in rule <:REFT/R, r, appears on the right and has

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:17

to be proven. Thus, it is conjoined with the constraint ¥. Note that we substitute in 7, all solved
evars in A’ with their solution (written [A’]r;). This is to ensure that evars are eagerly resolved,
which we maintain as an invariant of the system. Rule <:EXISTS/L adds the existential variable to
the context by universally quantifying over it in the resulting constraint. The dual rule, <:EXISTS/R,
must find a suitable refinement to instantiate the refinement variable on the right. To this end, the
variable is replaced by an evar whose solution must be found by the recursive invocation of the
rule as specified by the output evar context in the premise. Finally, the rule <:EQ delegates the work
of checking generic arguments to the refinement equivalence judgment.

Refinement Equivalence The judgment ©;A + r; =1y : 0 4 A; ¥ checks if two refinements are
equivalent at sort ¢. For function sorts (=FUN), we verify that the equivalence holds extensionally
by quantifying over the input variable and ensuring that the refinements applied to this variable are
equivalent at the output sort. To check for equivalence at bool when Horn variables are involved,
we generate a double implication (<: /L and <: k/R) ensuring the constraint is a well-formed Horn
constraint. The rule =INST instantiates an evar a that is still not solved in A by unifying it with a
ground refinement r that does not contain any evars. Finally, =BAsE kicks in when r; is not an evar,
in which case it generates a constraint requiring r; and r; to be equal.

4.3 Typing

Finally, A uses a bidirectional algorithmic typing judgment inspired by the system of Economou
et al. [10]. The rules establishing the judgments are shown in Fig. 12. The type checking judgment
O;T;AF e <15+ A; VY says that under refinement context ®, program context I' (Fig. 7), and evar
context A, the expression e has the scheme 7 outputing context A’ if the constraint ¥ is satisfiable.

T-ABs checks a lambda abstraction Ax. e against a function type 71 — 72 by checking that the
body e has type 72 in the program context I' extended with a binding x : 7;. The subsumption
rule T-SuB is mostly standard. We only draw attention to the fact that the output constraints of
the synthesis and subtyping judgments are conjoined in the generated constraint. The last rule,
T-ForalL, checks the expression e against a generic scheme by extending the refinement context
and universally quantifying over the refinement variable in the generated constraint.

The synthesis judgment ©;T' - e = 5 4 ¥ says that under refinement context ® and program
context I' the expression e synthesizes scheme 5 if the constraint ¥ is satisfiable. T-VAR says that
variables x get their types from the program context I', and similarly T-CoN says that base constants
c are assigned their builtin types ty(c), and this happens unconditionally, i.e., with the trivial Horn
constraint tt. As usual, the ascription rule T-asc allows switching to check mode.

The interesting action happens in the rules that check applications for functions and primitive
operations, as that is where we have to instantiate (i.e., synthesize) the generic refinements for the
callee using evars or Horn variables. T-App checks an application e(ef, ..., e;,) by first synthesizing
a scheme 7 for the callee e and then invoking the function application judgment to check that when
1 is applied to the arguments e, . . ., e;, in an empty evar context, the result is the type 7 and another
empty evar context, which will, informally speaking, ensure that all the evars in 5 are instantiated
to ground refinements. The Horn constraint for the application is then the conjunction of the
constraints ¥;—generated by the callee’s typing—and ¥,—generated by the application judgment.
The rule T-Op is similar, but uses the builtin scheme for op as the callee’s scheme.

Function Applications Fig. 12 shows the rules for establishing the function application judgment
O;T;AF [n](e) > 74 A;¥ which says that when the scheme 7 is applied to the arguments € in

the evar context A, the result is the type 7, with the evar context updated to A’, if the Horn constraint
¥ holds. (Recall that the evar contexts are used to track which evars need to be instantiated, denoted
by d : o, and which have already been solved, denoted by d : c=r.) We establish the application

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:18 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Type Checking ;A e =n4AY

T-Sus
O:Tre =04 OAF Ty <imy AA;T,

O;IAF e & %A,;‘ljl/\\l’z

T-ForALL
©,a;, 0;T;AF e =040 Y

O;T;AF e & Vazy, o.ndN;Ya:o0. ¥

T-ABs

Type Synthesis

T-Var
T'(x)=r1

;T x =>4ttt

O:x:t;AF e 154N ¥

O:T;AF Mx.e =11 > 14N ¥

T-Con

O;TF ¢ = ty(c) 4tt

' e =>n4Y

T-Asc
-+ e =np44Y

O;T+ e:n =47

T-Arpr

' e =>n4¥Y 15 F [l]](e{,...,e;l) >714%

O;T+ e(ef,....en) =74V A,
T-Or
scheme(op) =13 ©;T;-+ [n](er,....en) >74V¥
O;T+ op(er,....en) = 74Y
Typing Applications O;T;AF [n](e) >1t4AN;¥
FA-HDL

FA-REs
O;T;Ad:0r [nla/al (e »>14AN,d:0=r;¥

O;T;AF [Vapqro.nl(e) >t4A;¥ ;AR [7]() > t4A5tt

FA-HRN FA-Fun
k fresh vars(®) =d’ r=2Aa:o0.x(a,a’)

O;T;A+ [nlr/a] 1(e) >4 A;¥

O:T;AF e =40V
O;T;A F [[A]r](e¢)) > 4A”;Y,

;A + [Vapym o.n](e) > r4A%Y O;T;AF [11 > 2](ee)) > 4N [A]¥] AP,

Fig. 12. Algorithmic Typing for Expressions and Applications

judgment using four rules directed by the syntax of 7. FA-HDL accounts for Hindley generics
a:nhd1 0 by substituting a with a fresh evar a that is added (unsolved) to the evar context in which
the (substituted) scheme is checked. Crucially, the rule also requires that in the resulting evar
context, d is solved to some refinement r. FA-HRN handles Horn generics a:,, 0 by creating a
fresh Horn variable k, and replacing a with a Horn application Aa : . k(a, @’) in the scheme 7.
FA-Fun kicks in after the generics have been instantiated, and checks that the (first) argument e
has the expected input type 7y, by first typing e as 7, then checking 7 is a subtype of 71, and finally

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:19

checking the rest of the arguments e’ against the output 7,. Finally, FA-REs applies when we have
checked all the arguments and simply says the result is the (residual) scheme 7.

Example To illustrate the rules, let us recall the example in Fig. 5 and see how Hindley generics are
instantiated when combining the subqueries with the and method. As described in § 3.1, we model
the Query type assuming it is indexed by a row sort and giving the and operation the scheme:

Vai tha1 row — B, ay:pa1 row — B. Query[a;] — Query[ay] — Query[Aas: row. a; as A ay as]
Now, consider the application and(q1, ;) where ¢q; and g, have the types shown in Fig. 5.

q1 : Query[Ar: row. itemr = owner]
q2 : Query[Ar: row. price r < cost]

To check the function application, we begin by using FA-HDL twice to eliminate refinement
parameters generating two evars, d; and d,, for the corresponding parameters a; and a,. This leaves
us with the following residual:

Query[d;] — Query[ds] — Query[Aas: row. d; as A dy as]

Then, we use rule FA-FuN to check the first argument ¢;. This requires checking the subtyping
Query[Ar: row. item r = owner] <: Query[d]. By unifying the indices (=INST) we can solve d; to
Ar: row. item r = owner. A subsequent application of FA-FUN solves d; to Ar: row. price r < cost.
Substituting the solution to d; and d, in the output type gives us:

Query[Aas: row. (Ar: row. item r = owner) as A (Ar: row. price r < cost) as]
Finally, we eliminate the lambdas by applying beta reduction to obtain:
Query[Aas: row. item as = owner A price as < cost]

We note that well-formedness (§ 3.2) guarantees that lambdas can always be eliminated via beta re-
duction ensuring we only generate first-order SMT validity queries. Moreover, the value-dependent
restriction ensures that all evars can be solved after checking the arguments in a function call.

5 Semantics of Ag

In § 3, we described how we can define the meaning of generic refinements via the set of primi-
tive constants and operations on base types. Next, we give a semantic interpretation of generic
refinements by noting that we can think of them as ghost variables whose values are automatically
synthesized at function calls. We formalize this notion by translating A into the polymorphic
contract calculus Ff; of Sekiyama et al. [24]. For space restrictions, we only give a high-level de-
scription of the translation and its properties. The complete definitions and proofs can be found in
the accompanying technical appendix [18].

5.1 Refinement Elaboration

To translate Ag into F; we first define an intermediate calculus Ag where refinement instantiations
are explicit. Expressions e in Ag follow the syntax of A with the difference that applications are
instantiated with an explicit list of refinements:

Expressions e := x|c|Ax:7r.e|op(r)(e)|e(r)(e)|e:r

Next, we extend the algorithmic checking and sysntehsis judgments into elaboration judgments
that insert refinement instantiations at function calls.

A Fes=sn4A5Y we OT'te=>n4¥Y we

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:20 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Solution of Horn Vars The elaborated expresion e may contain unsolved Horn variables. A Horn
constraint solution X is a list of refinements to be substituted for Horn variables: ¥ == - | 3, r/k.
The operation [X]e applies the substitution X to an expression e. Using the algorithm in [6] we
can write a procedure Solve :: ¥ — X U 1 that given a constraint ¥ either returns a solution or
determines the constraint to be unsatisfiable. We additionally extend the Solve procedure to take a
refinement context © as follows:

Solve(®, a:0; ¥) := Solve(O;VYa:o. ¥) Solve(®,r;¥) := Solve(®;r = ¥)

Solve(:;¥) := Solve(¥)

Solution of Hindley Vars To handle evars, we define an extension relation for evar contexts
O+ A —> A’ that intuitively stipulates that A’ has more solved variables than A. Aditionally, we
say that an evar context is complete, written Q, if it only contains solved evars.

Properties of the Algorithmic System The checking ©;T + e < 5 and synthesis ;T +- e < 7
judgments of Ag mostly mirror the rules of the algorithmic system but instead of generating a
constraint, they rely on a declarative subtyping judgment ®© + 7; <: 7,. We show that the algorithmic
system is sound with respect to the declarative system.

THEOREM 5.1 (SOUNDNESS OF ALGORITHMIC TYPING).
(1) Ife;Tre=n4Y > e and Solve(O; ¥ A V') =3 then [2]0; [Z]T + [Z][Q]e = [Z][Q]n
(2) IfO;T;Are=n-N;¥ ~w eandSolve(@; ¥ AY') =3 and O + A" —> Q then

[Z]6; [Z]T F [Z][Qle < [Z][Qln

The algorithmic system is fundamentally not complete because the Horn constraint solver is
not complete [6]. Following Economou et al. [10], we could prove completeness for the solution of
Hindley variables by relying on the well-formedness of types, which gurantees Hindley variables
can be unified at call-sites. However, we do not consider this aspect fundamental to our approach,
and we are considering relaxing the definition of value-dependent to allow parameters that cannot
be solved locally.

5.2 Translation Into Fﬂ

Finally, we define the semantics of generic refinements by translating Ag into the polymorphic
contract calculus Ff} [24]. Ff; is parametric over a family of base types B, constants, and primitive
operations. We instantiate the system to include sorts as base types and refinements as expressions.
Refinement constants (integers and booleans) and operations (arithmetic and boolean connectives)
are included as primitive constants and operations in Fj. Thus, we give meaning to refinements
via their operational behavior in Ff;. Additionally, we include base types b as part of base types in
F{, and constants and operations in Ag as constants and operations in Ff.
We translate schemes and types in A into types in Ff as follows:

(Vx:o.n) = (x:0)— (n) ({a.bla] | r}) = bx{a:b,|r}
({olrl Ir2}) = bx{x:(r]e, | 2} (rDoy—oy (x:0p) = (r x)o;
(n—-n) = (n) > () (Mo, = {x:op|x=r}

Most notably, a generic application b[r] is translated into a pair carrying a ghost value. The ghost
value, which can be of function type, must be (extensionally) equal to r as denoted by (r|),. This
translation is naturally extended to refinement contexts () and program contexts (I').

Finally, we translate expressions e in Ag to expressions M in F{; via an elaboration judgment
©;T + e : 7 ~ M that inserts explicit casts as F{; does not have subsumption. We show the
translation is type preserving.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:21

THEOREM 5.2 (TYPE PRESERVING TRANSLATION).
(1) If©;T + e = 1 ~»> M then (©), (T) Fg M : (4)
(2) If ;T + e = 5 ~> M then (O), (T) Fa M : (1)

5.3 Soundness

The dynamic semantics of A is defined by the translation into F}. As mentioned in § 5.2, the
translation inserts casts whenever subsumption is required in Ag. Since these casts may fail at
runtime, the type-preserving translation alone does not guarantee the soundness of Ag. However,
since the translation only inserts casts between types related by subtyping—verified statically via
SMT based implication—these casts should, in principle, never fail.

Following Vazou et al. [28], we can formalize this intuition using the upcast lemma from the
contract calculus [24]. This lemma states that casts related by subtyping are essentially a no-op (they
are logically related to the identity function) and therefore cannot fail. Unfortunately, Sekiyama et al.
[24] only conjectured, but did not prove, the upcast lemma. The lemma was proved for an earlier
system [3] which had meta-theoretical issues that Ff] later resolved. Sekiyama et al. [24] speculated
that the upcast lemma would hold for F{; as well, given that the definition of parametricity remained
unchanged, but did not check it because it was not their focus. Assuming the upcast lemma holds,
we can combine theorem 5.2 and the type soundness theorem of F; to conjecture soundness for A
ensuring well-typed translated programs will never raise an error.

CoNJECTURE 5.3 (TYPE SOUNDNESS). Suppose -;+;-+ e <=1+ -;¥ ~ e and Solve(¥) =3 and
5ok [Zle & [Z]np w M. IfM —* M’ and M does not reduce, then M’ is a value.

6 Implementation and Case Studies

We implemented the inference rules from § 4 as an extension to FLux [16]. To evaluate the effec-
tiveness of our approach, we conducted two case studies: one demonstrating the use of generic
refinement to verify safe vector access, and the other verifying invariants in database queries

Implementation The core calculus A described in previous sections, describes a simple model of
generic refinements in a pure setting. Our actual implementation in FLux has to account for all of
Rust’s imperative features, including references, mutable state, and lifetimes. Fortunately, previous
work on FLux already shows how Rust’s type system can be used to cleanly separate the imperative
features and define refinements on pure values (indices) [16]. As refinement generics operate largely
on indices—they can be thought of as function valued indices—the separation from the previous
work carries over directly, allowing us to implement generic refinements as an extension to the
kinds of indices that were previously handled by FLux.

6.1 Vector Bounds

The Rust standard library provides a vector type, Vec, which is widely used across Rust code bases.
In [16], the authors describe a way to implement a new RVec type that wraps Vec, and refine its
API to ensure, at compile time, that reads and writes stay within the vector’s bounds. However,
to use RVec the programmer would have to replace all the instances of Vec with RVec, which is a
non-trivial task, and makes that approach a non-starter in practice. Our first case study uses generic
associated refinements to refine the Vec type, thereby allowing the programmer to use the standard
library’s vector type while using FLUX to get compile-time bounds checking.

Specification We follow the lightweight specification from [16] and index each Vec with an integer
len that represents the vector’s length. Vector reads v[i] and writes v[i] = e are desugared by the
Rust compiler roughly into calls index(v, i) and *index_mut(v, i) = e where index and index_mut

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:22 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

VEcTors LOC Spec Time (s) Queries LOC Spec Time (s)
std: :vec 65 - — RDIESEL 434 — —
bsearch 25 0 0.18 conf 251 50 0.92
dotprod 12 1 0.14 wishlist 176 43 0.68
fft 162 7 0.51 course 271 49 0.91
heapsort 42 3 0.22 voltron 185 25 0.51
simplex 143 14 0.50
kmeans 85 8 0.37
kmp 48 2 0.35

Fig. 13. Experimental results using Generic Refinements for checking std: : vec bounds and RDIesEL database
queries. LOC is the number of lines of Rust source code, Spec is the number of lines for function specifications,
Time (s) is the time in seconds required to verify the code (trusted code does not have time). The LOC
reported for std: : vec and RDIESEL are a combination of the intertwined specifications and Rust code.

are methods of the trait Index and IndexMut respectively that are implemented by the vector type.
We use associated refinements to specify the preconditions for these methods, as described in § 2.3.

API Coverage Our benchmarks focus on a subset of the Vec API, including new, push, pop, len,
index and index_mut. While we have not extensively tested the entire API, many other methods,
such as as_slice, insert, and split_off, can be supported without problems. Some operations
that involve more advance features (e.g, pop_if) are not currently supported but could be added
with future extensions to FLux. Finally, for some operations that depend on the specific values
stored in the vector, which our lightweight specification does not track, we cannot specify the
exact length after the call. For example, we cannot specify the exact length of a vector after a call
to dedup, but we can say that the length is at least less than on equal.

Verification The left table in Fig. 13 summarizes the results of using associated refinements to verify
uses of Vec in a suite of loop- and vector-heavy benchmarks from [16] which does bound checking
using a bespoke RVec type. The LOC denotes non-comment source lines, and SPEC denotes the
lines of function contracts. (There are no loop invariants needed as FLux infers them automatically
via liquid typing.) The verification is quite efficient, with the most complex benchmark taking well
under a second to verify.

6.2 Database Access Control via Refined Diesel

Database-backed web applications use ORM libraries like Rust’s DIESEL library [26] to dynamically
generate queries to access and update sensitive user information. Our second case study is an
implementation of RDIESEL, a library that uses generic refinements to statically track the semantics
of database queries enabling the verification of security properties of web applications in the style
of the STorM framework [17]. We present this case study by first sketching the Dieser API § 6.2.1,
then showing how we refine it to statically track the semantics of queries § 6.2.2, and finally, how
we can use the refinements to specify and verify access control policies § 6.2.3.

6.2.1 The DieseL Query DSL. In § 2.2 we saw a simple DSL where every Query<R> evaluated to a
bool valued result on an R-typed row. This simplification meant that atomic comparisons eq and gt
could only be performed on program values, but not other fields of the database, and that the DSL
disallowed arithmetic on database fields, making it impractical for real-world applications.

Typed Queries via Traits To support such use-cases, Rust’s DieseL. ORM framework [26] im-
plements a typed query DSL that allows for—and statically tracks—different types of sub-query

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:23

results. Instead of a single bool valued struct Query<R>, DIESEL defines a trait Expr<Rr, V> that
represents queries over the row R that evaluate to a value of type V.

trait Expr<R, V> { ... }

Program values can be “lifted” up into queries by implementing the Expr trait for the underlying
values, e.g., to treat 132 and usize values as Expr<R, 132> and Expr<R, usize> DIESEL implements

impl<R> Expr<R, i32> for i32 { ... }
impl<R> Expr<R, usize> for usize { ... }

Representing Rows and Fields As discussed in Section § 2.2, a schema defined by table!{ ... }
automatically generates a struct that represents a row in the underlying table. However, rather
than representing fields as values of a single type Field, it generates a distinct struct for each
field. Along with this, it provides a suitable implementation of Expr, thereby representing each field
at the type level. As discussed in § 2.2, a table!{ ... } schema automatically generates a struct
representing a row in the underlying table. However, instead of representing fields as values of a
single type Field, it represents them at the type level by generating a distinct struct for each one
together with suitable implementation of Expr.

struct ItemId; impl Expr<Item, usize> for ItemOwner { ... }
struct ItemOwner; impl Expr<Item, usize> for ItemId { ...}
struct ItemPrice; impl Expr<Item, i32> for ItemPrice { ... }
struct ItemDescr; impl Expr<Item, String> for ItemDescr { ... }

Query Composition The indirection of the trait Expr allows DIESEL to build a typed Query
DSL by defining separate structs for different kinds of queries, and suitably constraining the Expr
implementations for those structs:

struct Add<A, B> { lhs: A, rhs: B } impl<R, A, B> Expr<R, 132> for Add<A, B>

fn add<A, B>(a: A, b: B) -> Add<A, B>; where A: Expr<R, i32>, B: Expr<R, i32>;

struct Eq<V, A, B> { lhs: A, rhs: B, ... }; impl<R, V, A, B> Expr<R, bool> for Eqg<V, A, B>
fn eg<V, A, B>(a: A, b: B) -> Eq<V, A, B>; where A: Expr<R, V>, B: Expr<R, V>;

struct Gt<V, A, B> { lhs: A, rhs: B, ... } impl<R, V, A, B> Expr<R, bool> for Gt<V, A, B>
fn gt<v, A, B>(a: A, b: B) -> Gt<V, A, B>; where A: Expr<R, V>, B: Expr<R, V>;

struct And<A, B> { lhs: A, rhs: B } impl<R, A, B> Expr<R, bool> for And<A, B>

fn and<A, B>(a: A, b: B) -> And<A, B>; where A: Expr<R, bool>, B:Expr<R, bool>;

Each of Add, Eq, Gt and And contain two sub-expressions corresponding to the fields 1hs and rhs.
Crucially, the corresponding impl blocks ensure that only “well-typed” queries have valid Expr
implementations. For example, Add requires that the two sub-queries are i32-valued, producing an
132 valued Expr; Eq and Gt require the two sub-queries are V-valued, producing a bool valued Expr
and And requires two bool valued sub-queries, producing a bool valued result.?

6.2.2 Refining the DieseL API. Database-backed applications manipulate sensitive user data by
dynamically generating and executing read and write queries via the ORM’s (i.e., D1ESEL’s) DSL
API. Next, let us see how we refine the API to implement RD1esEL which precisely tracks query
semantics in a modular, type-directed fashion.

2We might think of this approach as using trait machinery to implement one of the classic use-cases for Generalized
Algebraic Data Types [2, 31].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:24 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Generic Refinements for Expr As DIESEL’s queries are all abstracted by the Expr trait, in RDIESEL
we track the semantics of each (implementation) of Expr using an associated refinement eval that
specifies what the Expr evaluates to. The implementations of Expr for program values specify that
the associated refinement equals that value. Similarly, the RD1ESEL implementations of Expr for the
(generated) type-level fields, stipulate that the associated refinement eval returns the corresponding
element of the row.

trait Expr<rR, V> { reft eval(e: Self, r: R) -> V; }

// Implementation of Expr for program values

impl<R> Expr<R, 132> for i32 { impl<R> Expr<R, usize> for usize {
reft eval(val: int, _: R) -> int { val } reft eval(val: int, _: R) -> int { val }
3 3
// Implementation of Expr for type-level fields
impl Expr<Item, 132> for ItemOwner { impl Expr<Item, 132> for ItemPrice {
reft eval(_: Self, item: Item) -> int { reft eval(_: Self, item: Item) -> int {
item.owner item.price
¥ 3
} }

Generic Refinements for Expr Composition Next, RDIESEL uses Rust’s trait projection mecha-
nism to implement the associated refinement for the composition of queries. For example, for Gt
(resp. Eq) expressions, the associated refinement invokes the eval function for the Expr implemen-
tations of the two sub-expressions and checks if the first is greater than (resp. equal to) the second.
Similarly, for And expressions, the associated refinement conjoins the results of invoking eval on
the two sub-expressions.
impl<R, A:Expr<R, 132>, E2:Expr<R, i132>> Expr<R, 132> for Add<A, B> {
reft eval(e: Self, row: R) -> V { A::eval(e.lhs, row) + B::eval(e.rhs, row) }

}
impl<R, V, A: Expr<R, V>, B: Expr<R, V>> Expr<R, bool> for Gt<V, A, B> {
reft eval(e: Self, row: R) -> V { A::eval(e.lhs, row) > B::eval(e.rhs, row) }

}
impl<R, V, A: Expr<R, V>, B: Expr<R, V>> Expr<R, bool> for Eq<V, A, B> {
reft eval(e: Self, row: R) -> V { A::eval(e.lhs, row) == B::eval(e.rhs, row) }

}
impl<R, A: Expr<R, bool>, B: Expr<R, bool>> Expr<R, bool> for And<A, B> {
reft eval(e: Self, row: R) -> V { A::eval(e.lhs, row) && B::eval(e.rhs, row) }

6.2.3 Access Control Verification. Finally, let us see how RDIESEL lets us statically verify that the
database-backed applications manipulate sensitive user data according to application specific access
control policies that govern which users can read or write the database rows and columns.

Generic Access Control for Reads Building on the refined Expr trait, RDIESEL defines the method
select_where to read all the rows of a table that satisfy a query. The method takes in a Context<U>
carrying the database connection (the parameter U is discussed next) and a query Q implementing
Expr<R, bool>:

fn select_where<U, R, Q: Expr<R, bool>>(cx: &Context<U>, qry: Q) -> Vec<R{r: Q::eval(qry, r)}>

We use the associated generic for the query Q to refine the API to specify that select_where only
returns rows on which the query evaluates to true.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:25

Generic Access Control for Updates RDIESEL also provides an update_where method to write a
new value into the field (column) of each row that satisfies some query

fn update_where<F, U, R, Q>(cx: &Context<U>, qry: Q, fld: F, val: V)
requires forall row. Q::eval(qry, row) => F::allow_update(cx.user, row);
where

Q: Expr<R, bool>,

F: FieldPolicy<R, U>,

trait FieldPolicy<R, U> {
reft allow_update(user: U, row: R) -> bool;

}

Crucially, RD1ESEL refines the type of update_where to specify fine-grained access control policies
that restrict the sets of users who are allowed to write to a particular field of the database. To
this end, RDI1ESEL’s API requires fields to implement the FieldPolicy trait, which includes an
associated refinement that specifies whether a given user is allowed to update the (corresponding
field of) the given row. By tracking the current authenticated user in the Context, the update_where
method requires that every row returned by evaluating the query (i.e., every row that may get
updated) be one that the user is allowed to update, per the allow_update refinement specified in
the FieldPolicy.® Finally, we highlight that the API is generic on the type of the user U which can
be instantiated to a concrete user type by client applications.

Generic Access Control for Insert Similar to updates, RDI1ESEL defines a way to control which
users are allowed to insert rows in a table. In this case, the access is controlled by the RowPolicy
trait that must be implemented on the row type to specify when a user is allowed to insert a row
via the allow_insert associated refinement. The insert_row method, uses allow_insert to specify
that the authenticated user must be allowed to insert the row.

fn insert_row<F, U, R, Q>(cx: &Context<U>, row: R)
requires R::allow_insert(cx.user, row);
where

Q: Expr<R, bool>,

F: RowPolicy<R, U>,

trait RowPolicy<R, U> {
reft allow_insert(user: U, row: R) -> bool;

}

Example: Verifying Read Policies The function show_items in Fig. 14 retrieves all the items
that are owned by the user owner. The impl Expr for ItemOwner and ItemLevel in Fig. 14 have
their associated eval generic refinements respectively be the functions |_,item| item.owner and
|_,item| item.level. Hence, the impl Expr for the first qry on line 6 has the associated eval
refinement |_, item| item.owner == owner. Therefore, the items returned in line 8 are guaranteed
to be owned by the viewer. In the else branch, where the viewer is not the owner, the gry is conjoined
with a clause that checks the ItemLevel is PUBLIC. That is, the impl Expr for the second qry on line
10 has the associated refinement |_, item| item.owner == owner && item.level == PUBLIC, and
hence the items returned in line 12 are guaranteed to have their level set to PUBLIC. Consequently,
Frux statically verifies the read access control policy that says that every item read by the viewer
is either owned by them, or is marked PUBLIC.

3Both DieserL and RDIESEL allow simultaneously updating multiple fields via Changesets but we omit them for simplicity.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:26 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

1 fn show_items(1 fn update_item_descr(

2 cx:&Context<User>, 2 cx: &Context<U>,

3 owner: usize 3 item_id: ItemId,

4) A{ 4 descr: String

5 let viewer = cx.auth_user().id; 5) ¢

6 let qry = eq(ItemOwner, owner); 6 let updater = cx.auth_user().id;

7 let items = if viewer == owner { 7 let gqry = eq(ItemId, item_id);

8 select_where(cx, qry) 8 let gry_own = eq(ItemOwner, updater);

9 } else { 9 let qry = and(qry, qry_own);

10 let gqry = gry.and(10 update_where(cx, qry, ItemDescr, descr);
11 eq(ItemLevel, PUBLIC)); 11 3}

12 select_where(cx, qry) 12

13 }; 13

14 // READ POLICY 14 // UPDATE POLICY

15 for item in items { 15 impl FieldPolicy<Item, User> for ItemDescr {
16 assert(item.owner == viewer || 16 reft allow_update(u: User, i: Item) -> bool {
17 item.level == PUBLIC) 17 u.id == i.owner

18 } 18 }

19 } 19 3}

Fig. 14. Verifying read policies (L) and update policies (R) in web-applications.

Example: Verifying Update Policies Fig. 14 shows a function that updates the descr field of
a given item using the update_where API call. The update policy for the ItemDescr field states
that only the user who owns the item is allowed to update the field, i.e., the owner must be the
authorized user performing the field update. The gry on line 9 has the associated eval refinement
|_, item| item.id == item_id && item.owner == updater, and hence, every row matching the
above is indeed owned by the authorized user updater, thereby verifying the update satisfies the
policy. However, if the code omitted the lines 8 and 9 then FLux would reject the code as it would
allow a user other than the owner to update the item’s description.

6.2.4 Implementing Web Applications with RDieseL. We ported some of the web applications from
[17] to Rust using the RD1ESEL API and verified the same access control policies. Fig. 3 summarizes
the results. The specification size is modest, most of which correspond to boilerplate required to
implement the various traits. This size could be further reduced by providing a more concise syntax
via a procedural macro.

7 Related Work

Interactive Verifiers based on higher order logics like Rocq [4], Isabelle [20], Lean [7], and
dependently-typed languages like Agda [21], directly allow for quantifying over propositions, and
hence, can easily express the same specifications as generic refinements, which, ultimately are a
way to parameterize invariants or properties over a set of contracts (types). However, all these
systems require the programmer to explicitly instantiate the quantifiers at each usage site (and
then potentially interactively prove various facts about the instantiations).

Autoactive Verifiers like Dafny [19], F* [25], and Why3 [11], allow users to write Floyd-Hoare
style specifications using loop invariants, pre- and post-conditions, and then automatically ver-
ify those using SMT solvers. F* and Why3 additionally support higher-order specifications (i.e.,
quantifying over invariants). However, the SMT validity queries issued by these tools contain
universal quantifiers, and hence, fall outside the decidable logical fragments supported by SMT

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:27

solvers. Consequently, verification is undecidable in theory, and somewhat brittle in practice, as
the success of the automated verification hinges upon the particular SMT solver’s unpredictable
quantifier instantiation heuristics. Additionally, the higher order predicates must be explicitly
instantiated, which is unpleasant for the programmer. In contrast, Ag’s generic refinements are
carefully engineered to yield decidable SMT queries, and to be automatically instantiable at usage
sites via a combination of unification and horn constraint solving.

Rust Verifiers like Prusti [1], Verus [15], and Creusot [9] bring SMT-based, Floyd-Hoare style
verification to Rust, by cleverly exploiting Rust’s ownership type system to simplify reasoning
about state. Creusot [8] and Prusti [5] support modular specifications for traits by allowing users
to write ghost methods that describe additional properties of traits, which can then be used in
other contracts on the traits (much like our associated generic refinement in_bounds in Fig. 6).
However, none of them support quantifying over invariants in contracts in the style of Ag’s generic
refinement types. In contrast, we view generic refinements as a way to parameterize types and
contracts over invariants while preserving decidable checking and instantiation. As an added bonus,
generics generalize nicely to the trait setting with typeclass-as-dictionary interpretation as discussed
in§ 24.

Interactive Rust Verifiers like Aeneas [13] and RefinedRust[12], work by translating Rust pro-
grams into Lean or Rocq bringing the full power of interactive theorem proving to verifying Rust.
Consequently, these tools can also specify arbitrary higher-order contracts about Rust functions,
but this expressiveness comes at the cost of interactive proof.

Refinement Type based Verifiers like Liquid Haskell [29] support a feature called abstract
refinements [28] that are very closely related to Ag’s generic refinements. In particular, abstract
refinements are similar to Ag’s Horn generics (i.e., hrn parameters). Horn generics have limited
expressiveness as they have to appear only under top-level conjunctions which makes it impossible
to use them in more complex ways, e.g., under negations or disjunctions. LiquidHaskell also supports
bounded refinements [27] which allow for various ways to relate abstract refinements, but these
are significantly more complicated to write (as specifying the correct bounds can require some
substantial mental gymnastics), and slower to check (as instantiating the bounds requires solving
Horn constraints). In contrast, this work shows how indices [32] in particular, the bidirectional
synthesis (instantiation) technique of Economou et al. [10] can be used as foundation upon which
to build a means of quantifying over refinements, that permits simple specification, and decidable
and efficient instantiation and verification.

Acknowledgments

We thank the anonymous referees for their excellent suggestions for improving the paper. This
work was supported by NSF grants CNS-2327336, CNS-2155235, CNS-2120642 and generous gifts
from Microsoft Research.

References

[1] Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust Types for
Modular Specification and Verification. Proc. ACM Program. Lang. 3, OOPSLA, Article 147 (oct 2019), 30 pages.
https://doi.org/10.1145/3360573

[2] Lennart Augustsson and Kent Petersson. 1994. Silly Type Families. (1994). https://web.cecs.pdx.edu/~sheard/papers/
silly.pdf.

[3] Joao Filipe Belo, Michael Greenberg, Atsushi Igarashi, and Benjamin C Pierce. 2011. Polymorphic contracts. In
Programming Languages and Systems: 20th European Symposium on Programming, ESOP 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbriicken, Germany, March 26-April 3, 2011.
Proceedings 20. Springer, 18-37. https://doi.org/10.1007/978-3-642-19718-5_2

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

https://doi.org/10.1145/3360573
https://web.cecs.pdx.edu/~sheard/papers/silly.pdf
https://web.cecs.pdx.edu/~sheard/papers/silly.pdf
https://doi.org/10.1007/978-3-642-19718-5_2

49:28 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

(4]

[10]
[11]

(12

—

(13

[t

(14

=

(15

[

[16

—

[17

—

[18

—

[19

—

[20

—

[21

—

[22

—

[23]

[24

[l

[25]

Yves Bertot and Pierre Castran. 2010. Interactive Theorem Proving and Program Development: Coq’Art The Calculus of
Inductive Constructions (1st ed.). Springer Publishing Company, Incorporated.

Aurel Bily, Jonas Hansen, Peter Miiller, and Alexander J. Summers. 2022. Compositional Reasoning for Side-effectful Iter-
ators and Iterator Adapters. CoRR abs/2210.09857 (2022). https://doi.org/10.48550/ARXIV.2210.09857 arXiv:2210.09857
Benjamin Cosman and Ranjit Jhala. 2017. Local Refinement Typing. Proc. ACM Program. Lang. 1, ICFP, Article 26 (aug
2017), 27 pages. https://doi.org/10.1145/3110270

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem
Prover (System Description). In Automated Deduction - CADE-25, Amy P. Felty and Aart Middeldorp (Eds.). Springer
International Publishing, Cham, 378-388. https://doi.org/10.1007/978-3-319-21401-6_26

Xavier Denis and Jacques-Henri Jourdan. 2023. Specifying and Verifying Higher-order Rust Iterators. In Tools and
Algorithms for the Construction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings,
Part II (Lecture Notes in Computer Science, Vol. 13994), Sriram Sankaranarayanan and Natasha Sharygina (Eds.). Springer,
93-110. https://doi.org/10.1007/978-3-031-30820-8_9

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: A Foundry for the Deductive Verifica-
tion of Rust Programs. In Formal Methods and Software Engineering, Adrian Riesco and Min Zhang (Eds.). Springer
International Publishing, Cham, 90-105. https://doi.org/10.1007/978-3-031-17244-1_6

Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield. 2023. Focusing on Refinement Typing. ACM Trans.
Program. Lang. Syst. 45, 4, Article 22 (dec 2023), 62 pages. https://doi.org/10.1145/3610408

Jean-Christophe Fillidtre and Andrei Paskevich. 2013. Why3 - Where Programs Meet Provers. In Programming
Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture
Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 125-128. https:
//doi.org/10.1007/978-3-642-37036-6_8

Lennard Gaher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. 2023. Refined Rust: Towards
high-assurance verification of unsafe Rust programs. https://people.mpi-sws.org/~gaeher/slides/refinedrust_rw23.pdf
Son Ho and Jonathan Protzenko. 2022. Aeneas: Rust Verification by Functional Translation. Proc. ACM Program. Lang.
6, ICFP, Article 116 (aug 2022), 31 pages. https://doi.org/10.1145/3547647

Ranjit Jhala and Niki Vazou. 2021. Refinement Types: A Tutorial. Foundations and Trends® in Programming Languages
6,3-4 (2021), 159-317. https://doi.org/10.1561/2500000032

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno,
and Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. 7,
OOPSLA1 (2023), 286-315. https://doi.org/10.1145/3586037

Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. 2023. Flux: Liquid Types for Rust. Proc. ACM Program.
Lang. 7, PLDI, Article 169 (jun 2023), 25 pages. https://doi.org/10.1145/3591283

Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Polikarpova, Deian Stefan, and Ranjit Jhala.
2021. STORM: Refinement Types for Secure Web Applications. In 15th USENLX Symposium on Operating Systems
Design and Implementation (OSDI 21). USENIX Association, 441-459. https://www.usenix.org/conference/osdi21/
presentation/lehmann

Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala. 2025. Generic Refinement Types
- Technical Appendix. https://github.com/flux-rs/popl25

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR). https://doi.org/10.1007/978-3-642-17511-4_20

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. https://link.springer.com/book/10.1007/3-540-45949-9

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation.
Chalmers.

Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Trans. Program. Lang. Syst. 22, 1 (jan 2000),
1-44. https://doi.org/10.1145/345099.345100

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08). Association for
Computing Machinery, New York, NY, USA, 159-169. https://doi.org/10.1145/1375581.1375602

Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. 2017. Polymorphic manifest contracts, revised and resolved.
ACM Transactions on Programming Languages and Systems (TOPLAS) 39, 1 (2017), 1-36. https://doi.org/10.1145/2994594
Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure
distributed programming with value-dependent types. In Proceeding of the 16th ACM SIGPLAN international conference
on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, Manuel M. T. Chakravarty, Zhenjiang Hu,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

https://doi.org/10.48550/ARXIV.2210.09857
https://arxiv.org/abs/2210.09857
https://doi.org/10.1145/3110270
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-031-30820-8_9
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1145/3610408
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://people.mpi-sws.org/~gaeher/slides/refinedrust_rw23.pdf
https://doi.org/10.1145/3547647
https://doi.org/10.1561/2500000032
https://doi.org/10.1145/3586037
https://doi.org/10.1145/3591283
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://github.com/flux-rs/popl25
https://doi.org/10.1007/978-3-642-17511-4_20
https://link.springer.com/book/10.1007/3-540-45949-9
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/2994594

Generic Refinement Types 49:29

and Olivier Danvy (Eds.). ACM, 266-278. https://doi.org/10.1145/2034773.2034811

The Diesel Core Team. 2024. Diesel: A Safe, Extensible ORM and Query Builder for Rust. (2024). https://diesel.rs.

Niki Vazou, Alexander Bakst, and Ranjit Jhala. 2015. Bounded refinement types. In ICFP. https://doi.org/10.1145/

2784731.2784745

Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In Programming Languages

and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer

Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 209-228. https://doi.org/10.1007/978-3-

642-37036-6_13

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014. Refinement types for

Haskell. In Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg,

Sweden, September 1-3, 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 269-282. https://doi.org/10.

1145/2628136.2628161

[30] P. Wadler and S. Blott. 1989. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL °89). Association for Computing
Machinery, New York, NY, USA, 60-76. https://doi.org/10.1145/75277.75283

[31] Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded recursive datatype constructors. In Proceedings of the 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (New Orleans, Louisiana, USA) (POPL ’03).
Association for Computing Machinery, New York, NY, USA, 224-235. https://doi.org/10.1145/604131.604150

[32] Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through dependent types. SIGPLAN Not. 33,
5 (may 1998), 249-257. https://doi.org/10.1145/277652.277732

[33] Christoph Zenger. 1997. Indexed types. Theor. Comput. Sci. 187, 1-2 (nov 1997), 147-165. https://doi.org/10.1016/S0304-
3975(97)00062-5

[26
[27

—

[28

—

[29

—

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

https://doi.org/10.1145/2034773.2034811
https://diesel.rs
https://doi.org/10.1145/2784731.2784745
https://doi.org/10.1145/2784731.2784745
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/277652.277732
https://doi.org/10.1016/S0304-3975(97)00062-5
https://doi.org/10.1016/S0304-3975(97)00062-5

	Abstract
	1 Introduction
	2 Overview
	2.1 Horn Generic Refinements
	2.2 Hindley Generic Refinements
	2.3 Associated Generic Refinements
	2.4 Associated Generics are Hindley Generics

	3 A Core Calculus of Generic Refinements
	3.1 Syntax
	3.2 Well-formedness

	4 Algorithmic Typing
	4.1 Inference Variables and Constraints
	4.2 Subtyping
	4.3 Typing

	5 Semantics of G
	5.1 Refinement Elaboration
	5.2 Translation Into FH
	5.3 Soundness

	6 Implementation and Case Studies
	6.1 Vector Bounds
	6.2 Database Access Control via Refined Diesel

	7 Related Work
	Acknowledgments
	References

