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Abstract
Dataflow analyses for concurrent programs differ from their single-
threaded counterparts in that they must account for shared mem-
ory locations being overwritten by concurrent threads. Existing
dataflow analysis techniques for concurrent programs typically fall
at either end of a spectrum: at one end, the analysis conservatively
kills facts about all data that might possibly be shared by multiple
threads; at the other end, a precise thread-interleaving analysis de-
termines which data may be shared, and thus which dataflow facts
must be invalidated. The former approach can suffer from impreci-
sion, whereas the latter does not scale.

We present RADAR, a framework that automatically converts a
dataflow analysis for sequential programs into one that is correct
for concurrent programs. RADAR uses a race detection engine to
kill the dataflow facts, generated and propagated by the sequen-
tial analysis, that become invalid due to concurrent writes. Our ap-
proach of factoring all reasoning about concurrency into a race de-
tection engine yields two benefits. First, to obtain analyses for code
using new concurrency constructs, one need only design a suitable
race detection engine for the constructs. Second, it gives analysis
designers an easy way to tune the scalability and precision of the
overall analysis by only modifying the race detection engine. We
describe the RADAR framework and its implementation using a pre-
existing race detection engine. We show how RADAR was used to
generate a concurrent version of a null-pointer dereference analy-
sis, and we analyze the result of running the generated concurrent
analysis on several benchmarks.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – Validation; F.3.2 [Seman-
tics of Programming Languages]: Semantics of Programming Lan-
guages – Program analysis
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1. Introduction
Advances in static algorithms for program optimization and error
detection have shown that compiler technology can dramatically
improve the reliability and performance of computer systems. Most
of these algorithmic advances are limited to sequential programs
and ignore the challenges introduced by concurrency, where the
need for static checking and potential for optimization are even
greater. The main difficulty with concurrent code is that for an
analysis to be sound, it must account for the concurrent interleaving
of multiple executions.

Consider the following scenario found in an old version of
the Linux kernel. A thread acquires the lock on a list to find an
array within the list. Once found, it releases the lock. It then reads
the array length once and iterates through the array. A sequential
analysis would unsoundly report the system safe – as the thread
first checks the array size before indexing the array. Unfortunately,
another thread can change the array size in the time between the
check and the index, thereby causing a memory error.

Currently, the problem of analyzing concurrent programs is ad-
dressed in one of the following ways. First, the programmer can
provide annotations (e.g. volatile) that alert the compiler to the
pieces of data that can be modified by concurrent threads. The com-
piler can then safely ignore these pieces of data – i.e., not perform
any analysis that depends on them. Unfortunately, this solution is
error-prone as the programmer can mistakenly forget annotations.
Second, the compiler could sidestep the need for annotations using
an escape analysis that determines if a piece of data is modified
by multiple threads [23]. However, the precision of these analy-
ses is inherently limited – even if the escape information is per-
fect, there are some critical pieces of shared data about which the
analysis can infer nothing, making it impossible, for example, to
statically prove the safety of dereferences of shared pointers or the
access of shared arrays. Third, to overcome this imprecision, one
can use custom concurrent analyses – tailored to specific problems
and models of concurrency – to infer specific kinds of information
[9, 13, 22]. These analyses can be precise, but one must painstak-
ingly retool a new analysis for each concurrent setting. Finally, one
could use model checking to infer facts by exhaustively exploring
all thread interleavings [2, 7, 11]. While this is an extremely precise
and generic approach, such analyses are unlikely to scale due to the
combinatorial explosion in the number of interleavings.

We present a solution to the problem of precisely analyzing
concurrent programs in a scalable way. Our solution is based on
two insights. First, the most common way for a programmer to
ensure a fact about a piece of shared data at any given point in a
thread is to ensure that no other thread can modify the data while
the first thread is still at that point. Our second insight consists of a
way of using race detection to determine when dataflow facts may
be killed by the actions of other threads. A data race occurs when



multiple threads are about to access the same piece of memory
and at least one of those accesses is a write. Since data races are
a common source of tricky bugs, several static analyses have been
developed to find races, or show their absence. Our insight is that
to determine whether the actions of other threads can invalidate,
or kill, a fact inferred about some data at some point, it suffices to
determine whether an imaginary read of the data at the point can
race with a write to that data by another thread.

We combine these insights in a framework called RADAR that
takes as input a sequential dataflow analysis and a race detection
engine, and returns as output a version of the sequential analysis
that is sound for multiple threads. RADAR combines our insights
as follows. It first runs the sequential analysis. At each program
point, after the transfer function for the sequential dataflow analysis
has propagated facts to the point, RADAR queries the race detector
to determine which facts must be killed due to concurrency. More
precisely, for each propagated fact, RADAR asks the detector if an
imaginary read, at that program point, of the memory locations
that the fact depends on can race with writes performed by other
threads. If the answer is yes (that is, if another thread may be
concurrently writing to one of the locations), then the dataflow fact
is killed. If the answer is no (that is, if no other threads can possibly
be writing to these locations), then the dataflow fact remains valid
in the concurrent setting.

RADAR’s approach of factoring all reasoning about concurrency
into a race detection engine is less precise than a custom analysis
that may also generate facts from concurrent writes. However,
RADAR yields two concrete benefits. First, to obtain analyses for
code using new concurrency constructs, one need only design a
suitable race detection engine for the constructs. Second, it gives
analysis designers an easy way to tune the scalability and precision
of the overall analysis by only modifying the race detection engine.

To sum up, the main contributions of our paper are as follows.

• We have designed a framework called RADAR that automatically
converts a sequential dataflow analysis into a concurrent one
using a race detection engine (Section 3).

• We have instantiated the RADAR framework with an existing
race detection engine called RELAY [29]. We describe this im-
plementation, which we call RADAR(RELAY) (Section 4).

• We have used RADAR(RELAY) to transform a sequential null-
pointer analysis into a concurrent null-pointer analysis. We de-
scribe the null-pointer analysis and evaluate the precision of the
resulting concurrent null-pointer analysis. We demonstrate that
RADAR(RELAY) easily scales to hundreds of thousands of lines
of code, and achieves good precision relative to some appropri-
ate upper and lower bounds (Section 5).

2. Overview
We begin with an overview of our technique using some simple
examples. First, consider the multithreaded program shown in Fig-
ure 1, which executes a single copy of the Producer thread and
a single copy of the Consumer thread. There is a shared, acyclic
list of structures named bufs, and a shared performance counter
perf ctr. To enable mutually exclusive list access, there is a lock
buf lock which is initially “unlocked”, i.e., not held by any thread.
The Producer (respectively Consumer) thread has a local refer-
ence px (respectively cx) used to iterate over the list bufs.

The Producer thread iterates over the cells in the list bufs. In
each iteration, it acquires the lock buf lock protecting the cell, and
resets the px→data to a new buffer initialized with the value 0 that
will hold the data that will be produced. Next, it obtains the value,
via a call to produce and once it is ready, the producer writes the
value into ∗px→data and moves onto the next cell.

The Consumer thread iterates over the cells in the list bufs.
In each iteration, it acquires the lock buf lock and if the pointer
cx→data is non-null, it consumes the data, resets the pointer to
free the buffer, and moves to the next cell in the list. Finally, the
consumer releases the lock.

We assume that the shared list contains no cycles and that it
starts off with all the data fields set to NULL. Thus, the net effect
of having the Producer and Consumer running in parallel is that
the producer walks through the list setting the data field of each
individual cell, and the consumer trails behind the producer, using
the data field in each cell and resetting it to NULL. Finally, notice
the Consumer thread initializes perf ctr without holding any
locks, and so the initialization races with the increment operation
at P5 in the Producer thread. However, we shall assume that the
programmer has deemed that the race is benign as it is on an
irrelevant performance counter.

2.1 Sequential Non-Null Analysis
Suppose we wish to statically determine whether any null-pointer
dereference occurs during the execution of the program in Figure 1.
To this end, we could perform a standard sequential dataflow analy-
sis, using flow facts of the form NonNull(l) stating that the lvalue
l is non-null, and flow functions that appropriately generate, prop-
agate, and kill such facts using guards and assignments.

Let us assume that new() returns a non-null pointer to a cell
initialized with 0. The set of facts in the fixpoint solution computed
by this analysis is shown on the left in Figure 1 (for the moment,
ignore the line crossing out a fact on the last line). At points P0
and P1, every lvalue may be null. At P2 and P3 px is non-null, and
everywhere else, the sequential analysis determines that the lvalues
px and px→data are non-null. Thus, the analysis determines that
at each program point where a pointer is dereferenced, the pointer
is non-null, and so all the dereferences are safe.

Sequential analysis is unsound, even without data races. In this
case, the above conclusion is sound: there are indeed no null-
pointer dereferences in the program. In general, however, a sequen-
tial non-null dataflow analysis may actually miss some null-pointer
dereferences. As an example, consider a scenario where the pro-
grammer who wrote Figure 2 mistakenly uses the intuition that the
system is safe as long as there are no data races on any of the shared
cells. Thus, to improve the performance of the program from Fig-
ure 1, the programmer writes the modified version of the Producer
thread shown in Figure 2, where buf lock is temporarily released
while the data is being produced to allow the Consumer thread to
concurrently make progress. The resulting system has no races, and
so the programmer may think that the system is safe.

However, this intuition turns out to be incorrect, and in fact
the programmer has actually introduced a null-pointer bug, even
though there are no races. This is because after the producer thread
has initialized px→data and released the lock, the consumer can
acquire the lock and reset the pointer. When the producer thread
re-acquires the lock after storing the data temporarily in t, the
dereference at P8 can cause a crash because the pointer is null.

Unfortunately, even though the new program has a null-pointer
bug, the sequential analysis returns exactly the same solution as for
the original program (shown on the left in Figure 2). That is, at
each point the same lvalues are deemed to be non-null, and thus the
sequential analysis would not discover the null-pointer bug.

2.2 The Problem: Adjusting for Multiple Threads
To address the above problem, we want to to automatically convert
a sequential dataflow analysis into one that is sound in the presence
of multiple threads. Doing this in a way that is also precise is not
trivial.
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Figure 1. Producer-Consumer program

Adjusted 
Analysis

buffer_list *bufs;
lock buf_lock;
int perf_ctr; 

φ
φ

px
px

y
thread producer1(){ 
P0: px = bufs;
P1: while (px != NULL){
P2: lock(buf_lock);
P3: px->data = new();px

px->data,px

px->data,px
px->data,px

P3:   px >data  new();
P4:   unlock(buf_lock);

P5:   perf_ctr++;  
P6:   t=produce();

px->data,px
px->data,px
px->data,px
px->data,px

P7:   lock(buf_lock);
P8:   *px->data = t; 
P9:   unlock(buf_lock);
PA:   px = px->next;

}

φ
φ
φ

cx

thread consumer1(){
perf_ctr = 0;

C0: cx = bufs;
C1: while(cx != NULL){
C2: lock(buf lock);

}

cx
cx

cx->data,cx
cx->data,cx

cx

C2: lock(buf_lock);
C3:   if(cx->data != NULL){
C4:     consume(*cx->data);
C5:     cx->data = NULL;
C6:     cx = cx->next;  

}
φ

}
C7:   unlock(buf_lock); 

}

Figure 2. Buggy version

buffer_list *bufs;
int flag;
int perf_ctr; 

Adjusted 
Analysis

thread producer2(){ 
P0: px = bufs;
P1: while (px != NULL){
P2: while(px->flag !=0){};
P3:   px->data = new();

φ
φ

px
px

y

p ();

P5:   perf_ctr++;  
P6:   t=produce();

px

px->data,px
px->data,px

P8:   *px->data = t; 
P9:   px->flag = 1;
PA:   px = px->next;

}

px->data,px
px->data,px
px->data,px

thread consumer2(){
perf_ctr = 0;

C0: cx = bufs;
C1: while(cx != NULL){
C2: while(cx->flag==0){};

}

φ
φ
φ

cx C2: while(cx >flag 0){};
C3:   if(cx->data != NULL){
C4:     consume(*cx->data);
C5:     cx->data = NULL;
C6:     cx = cx->next;

}

cx
cx

cx->data,cx
cx->data,cx

cx
}

C7:   cx->flag = 0;
}

φ

Figure 3. Flag-based version

Consider for example the simple solution of running an es-
cape analysis, and keeping only NonNull facts for those lval-
ues that do not escape the current thread. The px→data field
escapes the current thread, so the analysis would never infer
NonNull(px→data). Although this solution makes the analysis
sound in the face of concurrency (and in particular, it would find
the bug in Figure 2), it also makes the analysis imprecise: the re-
sulting concurrent analysis would not even be able to show that the
original program from Figure 1 is free of null-pointer bugs.

Alternatively, one may be tempted to run independent sequen-
tial analyses over blocks that are atomic in the sense of [16, 7] and
conservatively kill facts over shared variables at atomic block exit
points [3]. Intuitively, a block is atomic if for each execution of the
operations of the block where the operations are interleaved with
those of other threads, there exists a semantically equivalent execu-
tion where the operations of the block are run without interleaving.
Unfortunately, the body of the Producer loop from Figure 1 is
not atomic because of the benign race on the performance counter
perf ctr. This race splits the body of Producer into multiple
atomic blocks – the statements before, at, and after the racy incre-
ment. Thus, such an analysis would kill the NonNull(px→data)
fact at P5, and would be too imprecise to prove that the program
from Figure 1 is free of null-pointer bugs.

2.3 Our Solution: Pseudo-Race Detection
We now describe our solution to this problem, which allows us to
leverage existing race detection engines to build a sound concurrent
analysis that is strictly more precise than the previously mentioned
simple approaches. As discussed in Section 6, race detection is a
well-studied problem. For programs using lock-based synchroniza-
tion, there are scalable race detectors that infer the sets of locks that
protect each shared memory location and produce a race warning if
two threads access a shared cell without holding a common lock.

Adjust. Our first insight is that the facts that can soundly be inferred
to hold in the presence of multiple threads are the subset of facts es-
tablished via sequential analysis which are not killed by operations
of other threads. Thus, the multithreaded dataflow analysis can be
reduced to determining which facts inferred at a particular point by

the sequential analysis are killed by other threads. To determine if a
fact can be killed by a concurrently executing operation of another
thread, it suffices to check if another thread can concurrently write
any lvalue appearing in the flow fact.

Pseudo-Races. Our second insight is that to perform this check we
can insert pseudo-reads corresponding to the lvalues in the flow
fact at the program point, and query a race detection engine to
determine if any of the pseudo-reads can race with a write to the
same memory location. If such a pseudo-race occurs, then the fact
is killed; otherwise, the analysis deduces that the fact continues to
hold at the point even in the presence of other threads.

We have designed a framework called RADAR that combines
these two insights to convert an arbitrary dataflow analysis for se-
quential programs into one that is sound for multithreaded pro-
grams. During analysis, RADAR uses the sequential flow function,
but at each program point, it kills the facts over lvalues that have
pseudo-races at that point. This mechanism captures the following
informal idiomatic manner in which the programmer reasons about
multiple threads. Each thread performs some operation that estab-
lishes a certain fact in the programmer’s head, e.g. a null check
or initialization or an array bounds check. The programmer can
only expect that the fact continues to hold as long as other threads
cannot modify the memory locations. As a result, the programmer
uses synchronization mechanisms to “protect” the memory loca-
tions from writes by other threads as long as the information is
needed. Our technique of adjusting preserves only those facts that
the race detection engine deems to be protected from modification.

2.4 Multithreaded Non-Null Analysis
Let us consider the result of running the non-null analysis adjusted
using RADAR to account for multiple threads. The lines in Figures 1
and 2 show the facts generated by the sequential analysis that get
killed during the adjusting because of pseudo-races.

For both the correct and the buggy programs, in the Consumer
thread the adjusting has no effect because cx is thread-local, and
due to the held lock buf lock, there are no races on the pseudo-
reads of cx→data at program points C4 and C5.



Safety without Atomicity. In the correct Producer thread of Fig-
ure 1, the adjusting process has no effect on facts over (only) the
thread-local, and hence, race-free lvalue px. The initialization at
P3 causes the fact NonNull(px→data) to get generated at pro-
gram point P5. The adjusting does not kill this fact because the lock
buf lock held at P5 ensures there is no pseudo-race on px→data.
Similarly, the fact NonNull(px→data) generated at P3 is not
killed by the adjusting at P6−P9, as the held lock buf lock ensures
there are no races with the pseudo-read on px→data at any of these
points. As the lock is released at P9, the fact NonNull(px→data)
is killed by the adjusting at PA, as the pseudo-read can race with
the write in the Consumer thread. The adjusted analysis shows that
the dereferences in the program are safe, as px→data is soundly
inferred to be non-null at P8, where the dereference takes place.
Notice the adjusted analysis can soundly show that the program
does not cause any null-pointer dereferences, even though the pro-
ducer thread, even the loop-body, is not atomic, due to perf ctr
which may be accessed without any synchronization. By preserv-
ing the facts that are over protected lvalues, our adjusting technique
can ignore atomicity “breaks” caused by benign races on irrelevant
entities like perf ctr. Thus, our RADAR adjusting technique is
strictly more precise than running independent sequential analyses
over semantically atomic blocks.

Concurrency Errors without Races. In the buggy Producer
thread of Figure 2, the facts over the thread-local lvalues are not
killed by adjusting. However, notice that although the sequential
analysis would propagate the fact NonNull(px→data) to P5, the
adjusted version kills the fact since once the protecting lock is re-
leased at P4, the pseudo-read of px→data at P5 can race with the
write at C5 in a Consumer thread. As this fact is killed at P5, it does
not propagate in the adjusted analysis to P6− P9, as happens in the
sequential analysis. Thus, as a result of the adjusting, the derefer-
ence at P8 is no longer inferred to be safe as px→data may be null
at this point! Thus, our technique finds an error caused by multi-
threading that is absent from the sequential version of the program,
even though there are no data races in the program except on the
irrelevant perf ctr.

Beyond lock-based synchronization. Although we have used lock-
based synchronization to show how RADAR works, our adjusting
technique is applicable to any synchronization regime for which
race detection techniques exist, not just those based on locks. Con-
sider a version of the Producer-Consumer example, shown in Fig-
ure 3, which has finer-grained synchronization done with a flag
field in each of the structures in the cyclic list. Now, instead of
acquiring the lock, the Producer thread spins in a loop while
px→flag is non-zero, which indicates that the data in the struc-
ture has not yet been consumed. Once the flag is zero, the producer,
initializes the px→data field, writes the new data into it, and sets
the px→flag field to 1 indicating the data is ready. Dually, the
Consumer thread spins while the cx→flag field is zero, at which
point it consumes the data and resets the cx→data field. The result
of the adjusted analysis for this program is identical to the result for
the fixed program of Figure 2, as a more general race detection en-
gine (e.g. one based on model checking [11]) would deduce that
there were no pseudo-races on px→data in the locations P5− P9.
Once the flag is set at P9, the pseudo-read of px→data at PA can
race with the write at C5 in a Consumer thread, and so the adjust
kills the fact NonNull(px→data) at PA.

In the rest of the paper, we formalize the RADAR framework
and show how it converts sequential analyses into concurrent ones.

3. The RADAR Framework
This section presents the RADAR framework for concurrent
dataflow analysis in several steps. We start by presenting (in Sec-

tion 3.1) a basic version of RADAR. Although this basic version
lacks certain important features and optimizations (such as support
for function calls), it illustrates the foundation of our approach. We
then gradually refine the basic framework (in Sections 3.2 and 3.3)
by adding various optimizations and features.
Assumptions.We make two standard assumptions about the pro-
gram being analyzed and the system it is to be run on. First, we as-
sume that for each procedure, either we have its code or we have a
summary that soundly approximates its behaviors. As a result, our
framework can analyze incomplete programs (e.g. programs that
use libraries), since we can model the missing procedures using
summaries. Second, we assume that the shared memory system is
sequentially consistent [14] in that memory operations are executed
in the order in which they appear in the program.

3.1 Intraprocedural Framework
We start by presenting a basic framework for generating an in-
traprocedural concurrent dataflow analysis from an intraprocedural
sequential dataflow analysis.
Sequential Dataflow Analysis. We assume a Control Flow Graph
(CFG) representation of programs, where each node represents a
statement, and edges between nodes are program points where
dataflow information is computed. We use Node to represent the
set of all CFG nodes and PPoint the set of all program points. In
the program shown in Figure 1, the program point P3 is the point
just before executing the statement at P3.

We assume that the sequential dataflow analysis computes a set
of dataflow facts at each program point, where the set of all possi-
ble dataflow facts is DataflowFact . For the purposes of exposition,
we assume that dataflow facts in DataflowFact are must facts,
which means that may information, if needed, has to be encoded
by the absence of must information. Although we make this as-
sumption in our exposition, our implementation explicitly supports
may facts. Thus, the domain of the sequential dataflow analysis is
D = P(DataflowFact), ordered as a lattice (D ,v,>,⊥,u,t),
where v is ⊇, > is ∅, ⊥ is DataflowFact , u is ∪, and t is ∩.

We also assume that the flow function is given as:

F : Node ×D × PPoint → D

Given a node n , some incoming dataflow information d , and an
outgoing program point p for node n, F (n, d , p) returns the outgo-
ing dataflow information. We assume that if a node n has more than
one incoming program point, the dataflow information is merged
using t before being passed to the flow function.

Examples of dataflow facts that can be propagated include:
HasConstantValue(x, 5), which states that x has the value of
5, MustPointTo(x, y), which states that x points to y, and
NonNull(p), which states that p is safe to dereference.
Requirement on Dataflow Information. As our framework does
not depend on the exact details of the DataflowFact set, analysis
writers have the freedom to choose the way in which they encode
dataflow information. However, we do place a requirement on the
DataflowFact set: we assume the existence of a function lvals that
returns the set of lvalues that a fact depends on. Intuitively, given a
dataflow fact f ∈ DataflowFact , lvals(f ) returns the set of lvalues
that, if written to with arbitrary values, would invalidate the fact
f . We denote the set of all lvalues by LVal , and so the function
lvals has type DataflowFact → P(LVal). As an example, for the
dataflow facts mentioned above, we would have:

lvals(HasConstantValue(x, 5)) = {x}
lvals(MustPointTo(x, y)) = {x}
lvals(NonNull(p)) = {p}

Although we assume that the lvals function is given, it can easily be
computed from the sequential flow function F if F handles “havoc”



CFG nodes of the form “l := ⊥”. In particular:

lvals(f ) = {l | l ∈ LVal ∧ f /∈ F (“l := ⊥”, {f }, )}

Concurrent Dataflow Analysis. We capture the way in which con-
currency affects the sequential dataflow analysis through a function
ThreadKill : PPoint × LVal → Bool . Given a program point p
and an lvalue l , ThreadKill(p, l) returns whether or not l may be
written to by concurrent threads when the current thread is at pro-
gram point p. The ThreadKill function, which we will define later
in terms of a race detection engine, is at the core of our technique:
it allows RADAR to kill dataflow facts that are made invalid by con-
current writes.

Given the sequential flow function F and the ThreadKill func-
tion, we define FAdj , the flow function for the concurrent analysis:

FAdj (n, d , p) = {f | f ∈ F (n, d , p) ∧
∀l ∈ lvals(f ) . ¬ThreadKill(p, l)}

This adjusted flow function essentially propagates dataflow
facts that are produced by the original flow function F and that
are not killed by any concurrent writes.
Adjusting via Race Detection. The key contribution of our work
lies in the way in which we use a race detection engine to com-
pute ThreadKill . As a result, we need a way to abstract the race
detection engine. We achieve this through a function RacyRead :
PPoint × LVal → Bool , which behaves as follows: given a pro-
gram point p and an lvalue l , RacyRead(p, l) returns true if a read
of l at program point p would cause a race.
Soundness. For our framework to be sound, the race detection
engine must be sound, in the sense that if there really is a race,
then RacyRead must return true (but RacyRead can also re-
turn true in cases where there is no race). To formalize this
soundness property, we assume a perfect race detection oracle
RealRace : PPoint × LVal → Bool , such that RealRace(p, l)
returns true exactly when there is an execution in which a read
of l at p would cause a race. The following requirement states that
the race detection engine RacyRead must approximate the oracle
RealRace:

∀p ∈ PPoint , l ∈ LVal .
RealRace(p, l) ⇒ RacyRead(p, l)

(1)

Having a sound race detection engine, the ThreadKill function
can then be defined as:

ThreadKill(p, l) = RacyRead(p, l)

This basic definition of ThreadKill expresses the key insight be-
hind the RADAR framework, which is that pseudo-races can be used
as a way of determining when concurrent writes could happen.
Instantiation Requirements: To instantiate the basic RADAR
framework, one needs to provide a race detection engine
RacyRead : PPoint × LVal → Bool that satisfies the sound-
ness property (1).

3.2 Optimized Framework: Race Equivalence Regions
The basic RADAR framework from Section 3.1 performs a race
check at each program point for each lval that the dataflow facts
depend on. This can lead to a large number of race checks, in the
worst case n × m, where n is the number of program points and
m is the number of lvalues. To reduce this large number of race
checks, we partition program points into race equivalence regions.

Intuitively, a race equivalence region is a set of program points
that have the same raciness behavior: for each lvalue, either the
lvalue is racy throughout the entire region, or it is not racy through-
out the entire region. It is not possible for an lvalue to be racy in
one part of the region and not racy in another part. Race equivalence

regions reduce the number of race checks because by checking the
raciness of an lvalue at (any) one program point in a region, RADAR
can know the raciness of the lvalue throughout the entire region.

Race Equivalence Regions. Formally, we define a partitioning of
program points into race equivalence regions as a pair (R,Reg),
where R is a set of regions, and Reg : PPoint → R is a function
mapping each program point to a region. Two program points
p and p′ are race equivalent if Reg(p) = Reg(p′). We say a
program point p belongs to a region r if Reg(p) = r . Since all
program points belonging to a region are equivalent in terms of
race detection, we change the interface to the race detection engine
to take a race equivalence region rather than a program point:

RacyRead : R× LVal → Bool

One possible implementation for this new RacyRead is to choose
a unique representative program point for each region, and when
queried with a particular region r and lvalue l , to return the result
of the old RacyRead on r ’s representative point and l .

Soundness. Instead of imposing a particular way of implement-
ing RacyRead , we define a soundness requirement for the new
RacyRead engine and the Reg function:

∀p ∈ PPoint , l ∈ LVal .
RealRace(p, l) ⇒ RacyRead(Reg(p), l)

(2)

With this new abstraction for the race detection engine, the
ThreadKill function becomes:

ThreadKill(p, l) = RacyRead(Reg(p), l)

This new definition of ThreadKill reduces the number of race
checks for each lvalue from at most once per program point to at
most once per region.

Instantiation Requirements: To instantiate the region-based
RADAR framework, one needs to provide:

1. A race detection engine RacyRead : R × LVal → Bool
2. A region map Reg : PPoint → R

such that RacyRead and Reg satisfy property (2). We now give
two examples to illustrate the idea of race equivalence regions.

Example: Global Locksets. One possible instantiation of regions
uses locksets. If we assume that there is a global set of locks L, we
can define R = P(L), which means that a race equivalence region
is simply a set of locks, and the program points in the region are
those program points at which the region’s locks are held.

Consider the buggy example from Figure 2. The Reg map is:

Reg(p) =

8><>:
{buf lock} if p ∈ {P3, P4, P8, P9}
{buf lock} if p ∈ {C3, C4, C5, C6, C7}
∅ otherwise

which captures the set of program points where buf lock is held.
The RacyRead function is defined as:

RacyRead(r , l) = (l = px→data ∧ buf lock 6∈ r) ∨
(l = cx→data ∧ buf lock 6∈ r)

which captures the fact that an access of px→data in Producer
or cx→data in Consumer is racy at any point where the lock
buf lock is not held, and that all other accesses are non-racy. It
is easy to check that the Reg and RacyRead functions soundly
approximate the possible races and pseudo-races. The adjusting at
program point P5 kills the fact NonNull(px→data) as

RacyRead(Reg(P5), px→data) = true



In the correct version from Figure 1, the absence of the unsafe
lock operations changes the Reg map to:

Reg(p) =

8><>:
{buf lock} if p ∈ {P3, P5, P6, P8, P9}
{buf lock} if p ∈ {C3, C4, C5, C6, C7}
∅ otherwise

reflecting the fact that in this program, buf lock is held throughout
from P3 to P9. The RacyRead function remains the same as before,
as the synchronization discipline is unchanged: as in Figure 1,
buf lock is held at all points where the buffer cells are written,
namely P3, P8, and C5. In the fixed program, the adjusting at
p ∈ {P5, P6, P8} does not kill the fact NonNull(px→data), as
for each of these p

RacyRead(Reg(p), px→data) = false

Example: Predicates. Another possible instantiation of regions
consists of having R be a set of predicates Pred . A race equivalence
region is then a predicate from Pred , and the set of program
points in the region are those program points at which the predicate
holds. The predicate instantiation is more general than the lockset
instantiation because we can encode a set of locks as a predicate
stating that all the locks in the set are held.

Recall the version of the Producer-Consumer program shown
in Figure 3, where the synchronization is performed via a flag
field and not explicitly declared locks. As shown in [11], one
can generalize race regions to an access predicate describing the
thread’s state. For the example in Figure 3, the Reg map is:

Reg(p) =

8><>:
px→flag = 0 if p ∈ {P3, P5, P6, P8, P9}
cx→flag 6= 0 if p ∈ {C3, C4, C5, C6, C7}
true otherwise

The RacyRead function is defined as:

RacyRead(ϕ, l) = (l = px→data ∧ ϕ 6⇒ px→flag = 0) ∨
(l = cx→data ∧ ϕ 6⇒ cx→flag 6= 0)

Together, Reg and RacyRead capture the intuition that a read
of px→data in Producer (respectively cx→data in Consumer)
is racy at any point where the px→flag is zero (respectively
cx→flag is zero).

3.3 Interprocedural Framework
The RADAR framework presented so far does not take function
calls into account. To understand how function calls affect our basic
framework, consider the example from Figure 4, which is a version
of the Producer-Consumer example where there is a call to a
function foo right before the increment of perf ctr.

Let us assume that foo itself does not modify px→data, and
that the sequential dataflow analysis uses a simple “modifies” anal-
ysis to determine this. As a result, the sequential dataflow analysis
is able to propagate NonNull(px→data) from P4 to P5 (that is to
say, through the call to foo). However, in the face of concurrency,
even if foo itself does not modify px→data, a call to foo while
other threads are running can in fact lead to px→data being modi-
fied. In particular, calling foo has the effect of unlocking buf lock
and then re-locking it, which gives concurrent threads an opportu-
nity to modify px→data. As a result, the adjusted flow function
needs to kill NonNull(px→data) at P5, as well as any dataflow
information about px→data.

Unfortunately, with the definition of ThreadKill given so far,
the adjusted flow function would not do this. In particular, the
adjusted flow function would ask ThreadKill if px→data could
be written concurrently at the program point right after foo returns
(which is P5). ThreadKill in turn would ask the race detection
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Figure 4. Producer-Consumer with function calls

engine if a read of px→data would cause a race at P5. The race
detection engine would answer back saying “no race” since by
the time foo returns, the lock protecting px→data would already
have been re-acquired. As a result, the information about px→data
being non-null would incorrectly survive the adjusting process.

The problem in the example above is that the execution of
foo passes through a region that does not hold buf lock, which
allows concurrent threads to modify px→data, and callers of foo
must take this into account. More broadly, the problem is that
the execution of a function can pass through a variety of race
equivalence regions, and callers need a way to summarize the effect
of having passed through all of the callee’s regions.

Summary Regions. To address this problem, we add to RADAR a
new function called SumReg : CS → R, which returns for each
call-site an interprocedural summary region. This call-site-specific
summary region is meant to approximate the possible regions that
the callee can go through when invoked at the given call-site. We
denote by CS the set of all call-sites, and we define the call-site of
a call node to be the CFG edge that immediately follows the call
node (so that CS ⊆ PPoint).

Soundness. Intuitively, for soundness we require that for every
lvalue l , if a read of l is racy at some program point transitively
reachable during the call made at cs , then the summary region for
the call-site cs must be a region that is racy for l . Thus, to formalize
soundness in a context-sensitive manner, we extend the perfect race
detection oracle to RealRace : CS × PPoint × LVal → Bool ,
such that RealRace(cs, p, l) returns true exactly when there is an
execution in which a read of l at p while cs is on the callstack
would cause a race. Let cs∗ be the set of program points in the
function being called at call-site cs and any of its transitive callees.
The soundness requirement for SumReg can be formally stated as:

∀cs ∈ CS , l ∈ LVal .
[∃p ∈ cs∗ . RealRace(cs, p, l)] ⇒

RacyRead(SumReg(cs), l)
(3)



Having defined SumReg and its soundness property, we can
now define the ThreadKill function as follows:
ThreadKill(p, l) = RacyRead(Reg(p), l) ∨

(RacyRead(SumReg(p), l) ∧ p ∈ CS)

Instantiation Requirements: To instantiate the interprocedural
RADAR framework, one needs to provide:

1. A race detection engine RacyRead : R × LVal → Bool
2. A region map Reg : PPoint → R
3. A summary map SumReg : CS → R

such that RacyRead and Reg satisfy property (2), and SumReg
satisfies property (3). We now go through the same two instantia-
tion from Section 3.2, and show how SumReg can be defined.
Example: Global Locksets. If we instantiate regions as locksets
over a global set of locks L, the summary of a function is the
intersection of all the locksets that the function goes through. As
a result, in the example from Figure 4, the SumReg function is
defined as:

SumReg(P5) = ∅
since the unlock in foo causes the lockset to be empty at G1, and
thus the intersection of all locksets in foo is empty. The Reg and
RacyRead functions are the same as in Section 3.2.

With these definitions, the adjusting process now correctly kills
the fact NonNull(px→data) at P5 , since, even though

RacyRead(Reg(P5), px→data) =false

we have

RacyRead(SumReg(P5), px→data) =true

which, combined with P5 ∈ CS , means

ThreadKill(P5, px→data) =true

Example: Predicates. If we use a set Pred of predicates for the race
equivalence regions, the summary of a function is the disjunction
of all the predicates in the function.

4. An implementation of RADAR using RELAY
We have implemented an instantiation of the RADAR framework
using an existing scalable race detection engine called RELAY [29].
We call this instantiation RADAR(RELAY). We first give a brief
overview of RELAY, and then we describe RADAR(RELAY).

4.1 Overview of RELAY

RELAY is a lockset-based static race detection tool that scales to
code bases as large as the Linux kernel (5 million lines of C code).
RELAY works by traversing the call graph in a bottom-up manner,
analyzing each function in isolation.
Assumptions.We assume that programmers can create threads, ac-
quire locks and release locks by calling functions from specific
thread libraries (e.g. pthreads). Our techniques work even when
matching lock and unlock calls appear in different procedures, as is
often the case in many of our benchmarks. RELAY is also summary-
based, so the programmer can provide summaries that describe the
effect of missing procedures on the lockset. Finally, when analyz-
ing a library in isolation, we conservatively assume that each API
function can be called by separate threads created by clients.
Relative Locksets. For each function, RELAY first performs a lock-
set analysis on the function using a relative lockset representation.
A relative lockset at a program point is a disjoint pair of locksets
(L+, L−) (respectively called the positive and negative locksets),

which encodes the difference between the locks held at the given
program point and the locks held at the function entry point. In
particular, the set L+ represents the locks that have definitely been
acquired since the beginning of the function, and the set L− repre-
sents the locks that may have been released since the beginning of
the function. Notice that L+ is a must set and that L− is a may set.

Locks can be represented as lvalues, and so L+ ⊆ LVal and
L− ⊆ LVal . We denote by L = P(LVal) × P(LVal) the set
of all relative locksets. The set of relative locksets form a lattice
(L,v,>,⊥,u,t) defined as:

• ⊥ = (LVal , ∅), > = (∅,LVal)

• (L+, L−) v (L′
+, L′

−) iff L′
+ ⊆ L+ ∧ L− ⊆ L′

−

• (L+, L−) t (L′
+, L′

−) = (L+ ∩ L′
+, L− ∪ L′

−).

• (L+, L−) u (L′
+, L′

−) = (L+ ∪ L′
+, L− ∩ L′

−)

Relative Lockset Summaries. The relative lockset computed for the
exit point of the function is stored in a context-sensitive relative
lockset summary. This summary soundly approximates the effect of
the function on the thread’s lockset just before calling the function
and is used to update locksets at call-sites.
Guarded Access Summaries. For each function, RELAY also com-
putes the set of guarded accesses in the function. A guarded access
is a triple of an lvalue, the relative lockset at the program location
where the access takes place, and the kind of access, either a read or
a write. The set of guarded accesses of a function is the set of triples
corresponding to accesses that may occur during the execution of
the function. RELAY stores this set as a guarded access summary
for the function.

RELAY computes these two summaries (the relative lockset
summary and the guarded access summary) in a bottom-up manner,
plugging in the summaries of the callees at call-sites to compute
the relative lockset and guarded access summaries of the callers.
Once summaries have been computed for all functions, RELAY
looks at the guarded accesses at thread entry points. For each pair of
guarded accesses whose lvalues may be aliased, if the intersection
of the positive locksets is empty, RELAY reports a race.

4.2 Putting RELAY into RADAR

We now show how to instantiate the three functions Reg ,
RacyRead , and SumReg using RELAY. The result is an instan-
tiation of RADAR using RELAY, namely RADAR(RELAY).
Region map. We define R = F × L, where F is the set of
function identifiers. Given a program point p, Reg(p) returns
(g , (L+, L−)), where g is the function to which p belongs, and
(L+, L−) is the relative lockset computed at p by the RELAY lock-
set analysis.
Summary map. To define the SumReg function, we first define
a helper function AllUnlocks . Intuitively, the set AllUnlocks(cs)
represents an overapproximation of the set of locks that could
possibly be released by performing the call at cs . In particular,
given a call-site cs , AllUnlocks(cs) computes the union of all
the L− sets in the function being called at cs , and then converts
this set into the caller context. The conversion consists of replacing
the callee’s formals that occur in the locksets with the parameters
passed in at the call-site.

Given a call-site cs ∈ CS where function h calls g , and given
that (L+, L−) is the relative lockset computed by RELAY for the
program point right before the call to g at cs , then SumReg(cs) is
defined as follows:

SumReg(cs) = (h, (L+−AllUnlocks(cs), L−∪AllUnlocks(cs)))

Essentially, SumReg subtracts the AllUnlocks set from the
locks that were held before the call is made. The result of this



subtraction is a conservative approximation of the set of locks that
are guaranteed to remain locked at all points during the call.

Race detection engine. Given a region r = (g , (L+, L−)) and an
lvalue l , RacyRead(r, l) conceptually runs a full RELAY analysis
bottom-up, except that when it analyzes function g , it inserts an
additional guarded access to the guarded access set. The additional
guarded access is the triple (l , (L+, L−), read), indicating that
we are simulating a read of l with a lockset of (L+, L−). The
RacyRead(r, l) function returns true if and only if, after being
propagated up to the thread roots, this pseudo-read leads to a
RELAY race warning.

This conceptual description of RacyRead(r, l) is not how we
implement it, since each call to RacyRead would lead to an entire
RELAY bottom-up analysis of the program. Instead, we structure
the execution of RADAR(RELAY) into the following four passes,
two of which are the RELAY bottom-up analysis.
• First pass. RADAR(RELAY) runs the bottom-up RELAY analy-

sis to compute the relative locksets at each program point, and
hence, the race equivalence regions.

• Second pass. RADAR(RELAY) runs the sequential analysis on
the entire program with a RacyRead function that returns false
all the time. This has the effect of running the sequential analysis
without any adjusting, but it allows RADAR(RELAY) to collect
the parameters of all the RacyRead queries into a set S of (r , l)
pairs. Since the sequential analysis computes a superset of the
facts computed by the adjusted analysis, the set S is a superset
of the queries that the adjusted analysis will make.

• Third pass. RADAR(RELAY) then runs the bottom-up RELAY
analysis again to insert pseudo-accesses. In particular, when
analyzing a function g , for each pair (r , l) ∈ S where
r = (g , (L+, L−)), RADAR(RELAY) adds the guarded ac-
cess (l , (L+, L−), read) to the guarded access summary of g .
RADAR(RELAY) uses the results of the second RELAY run to
build a map RelayResults : S → Bool . Given (r , l) ∈ S,
RelayResults(r , l) returns whether or not the pseudo-read in-
serted for (r , l) caused a RELAY race warning.

• Fourth pass. Finally, RADAR(RELAY) runs the sequential anal-
ysis again, but this time performs the adjusting process. In par-
ticular, RADAR(RELAY) uses the RelayResults map computed
in the second pass to answer the RacyRead queries.

Example: Relative Locksets. We now illustrate how
RADAR(RELAY) would analyze the program in Figure 4.

• First pass. RELAY computes the Reg map where Reg(p) is:8>>>>>>>>>>><>>>>>>>>>>>:

(Producer, (∅, ∅)) if p ∈ {P0}
(Producer, ({buf lock}, ∅)) if p ∈ {P3, P4, P5, P6, P8, P9}
(Producer, (∅, {buf lock})) if p ∈ {P1, P2, PA}
(Consumer, (∅, ∅)) if p ∈ {C0}
(Consumer, ({buf lock}, ∅)) if p ∈ {C3, C4, C5, C6, C7}
(Consumer, (∅, {buf lock})) if p ∈ {C1, C2}
(foo, (∅, ∅)) if p ∈ {G0}
(foo, (∅, {buf lock})) if p ∈ {G1}

Notice that both locksets are empty at the first point in each
function meaning the lockset is trivially the same as at the entry
point. Using the above Reg map, RADAR(RELAY) determines:

AllUnlocks(P5) ={buf lock}

as the buf lock is released inside foo. Thus,

SumReg(P5) =(Producer, (∅, {buf lock}))

• Second pass. In the second pass, RADAR(RELAY) runs a se-
quential non-null analysis which generates the flow facts shown
on the left in Figure 4, including the facts crossed out by a line.
Using these facts, RADAR(RELAY) computes the superset S as
the set of tuples {(Reg(p), l) | NonNull(l) at p}.

• Third pass. RADAR(RELAY) then inserts pseudo-reads corre-
sponding to the queries S generated above, and builds the map
RelayResults which yields the following RacyRead map:

RacyRead((g, (L+, L−)), l) =

(l = px→data ∧ buf lock 6∈ L+)

∨ (l = cx→data ∧ buf lock 6∈ L+)

• Fourth pass. When the adjusted sequential analysis is per-
formed, the fact NonNull(px→data) gets killed at P5 since
the summary region at that call-site does not include buf lock
in L+. The result is shown on the left in Figure 4 – the dataflow
solution includes only the facts that are not crossed out.

5. Evaluation
To evaluate the RADAR framework, we have designed a sequential
null-dereference analysis, which we describe first. We then present
three instantiations of the adjusting framework to convert the analy-
sis into multithreaded versions of the analysis, and we compare the
results of each on three benchmarks: the Apache web server (ap-
proximately 130,000 lines of code), the OpenSSL library (210,000
lines of code) and part of the Linux kernel (830,000 lines of code).

5.1 Sequential Null-Dereference Analysis
We describe the sequential null-dereference analysis in two steps:
we start with an intraprocedural analysis, and then we extend it to
an interprocedural one.
Intraprocedural Analysis. To describe the analysis, we define the
set of dataflow facts DataflowFact (whose powerset is the domain
D of the analysis) and the sequential flow function F .
• Dataflow Facts: The dataflow facts used by

the intraprocedural sequential analysis are
DataflowFact ≡ {NonNull(l) | l ∈ LVal}. Intuitively, if
the analysis computes NonNull(l) at a program point, we
conclude that the lvalue l is always non-null at that program
point. Thus, the dereference of an lvalue l is safe at a node n
if NonNull(l) is in the set of facts computed for the program
point right before n.

• Flow Function: Recall that the sequential flow function F takes
as input a CFG node n , a set of input facts d , and an outgoing
program point p for which to compute a set of output facts.

NonNull(l ′) ∈ F (“if e”, d , p) if
NonNull(l ′) ∈ d

or [p = true out and e = (l ′ ! = NULL)]

NonNull(l ′) ∈ F (“l := e”, d , ) if
[NonNull(l ′) ∈ d and ¬Aliased(l , l ′)]

or [l = l ′ and NonNull(e) ∈ d ]

or [l = l ′ and e = malloc(. . .)]

or [l = l ′ and e = & . . .]

Interprocedural Analysis. In the presence of multiple procedures,
the set of facts and the flow function are updated to summarize the
effects of procedure calls, but the safety check remains the same.
• Dataflow Facts: The set of dataflow facts includes the facts used

for the intraprocedural analysis, as well as facts NotMod(l) that



state whether a given lvalue l has not been modified during the
course of executing the function call. The NotMod() facts are
a must version of the may information captured via the usual
may-modify analysis.

• Flow Function: The flow function must be updated to handle
the NotMod() facts and function calls. We define the summary
of a function the flow facts that hold at its exit point. We use a
function Norm : CS → D , which takes a call-site cs as input,
looks up the current summary for the function being called,
and normalizes the flow facts by renaming formals to be in
terms of the parameters passed in at the call-site cs . Using the
summaries, we get a new flow function, where in addition to the
rules described above for the intraprocedural case, we have rules
to propagate the non-modified facts, and rules that propagate the
non-null facts at procedure call-sites:

NotMod(l ′) ∈ F (“l := e”, d , ) if
NotMod(l ′) ∈ d and ¬Aliased(l , l ′)

NotMod(l ′) ∈ F (“if e”, d , ) if
NotMod(l ′) ∈ d

NotMod(l ′) ∈ F (“call...”, d , cs) if
NotMod(l ′) ∈ d and NotMod(l ′) ∈ Norm(cs)

NonNull(l ′) ∈ F (“call...”, d , cs) if
[NonNull(l ′) ∈ d and NotMod(l ′) ∈ Norm(cs)]

or NonNull(l ′) ∈ Norm(cs)

5.2 Instantiations
In addition to the non-null sequential analysis, RADAR requires a
black box to answer RacyRead queries. We present four imple-
mentations of this component.

Steensgaard-based instantiation. The simplest and least precise
instantiation we consider is based on Steensgaard’s pointer anal-
ysis [26], and we call this instantation RADAR(STEENS). For this
instantiation, RacyRead(r , l) ignores the region r it is passed and
returns true if l is reachable from a global in the Steensgaard’s
points-to graph. This matches our intuition that lvalues that can-
not be reached from globals cannot be shared, and thus cannot be
racy.

RELAY-based instantiations. We have already described the
RELAY-based instantiation of RADAR in Section 4. However,
for the purpose of better understanding where the precision of
RADAR(RELAY) is coming from, we separate RADAR(RELAY)
into two instantiations based on the observation that RELAY can
prove the absence of a race in two different ways: (1) by show-
ing that the two lvalues do not alias; and (2) if they can alias, by
showing that the intersection of the locksets is non-empty.

To better understand how these two different ways of show-
ing the absence of a race contribute to RADAR(RELAY), we sep-
arate the instantiation into two parts, RADAR(RELAY¬L) and
RADAR(RELAY). We have already seen the latter; it is just as de-
scribed in Section 4. The former is a version of RADAR(RELAY)
where we change the Reg map to always return >, which repre-
sents the empty set of locks. This modification simulates a version
of RELAY that only answers race queries based on possible aliasing
relationships but not on locksets.

Optimistic instantiation. The last instantation we consider is the
most optimistic possible: the one where RacyRead always returns
false . We call this version SEQ because it is equivalent to the se-
quential analysis without any adjusting. Although this instantiation

of RADAR is unsound, it establishes an upper bound on how well
any adjusted analysis can do.

Each one of these four instantiations – RADAR(STEENS),
RADAR(RELAY¬L), RADAR(RELAY), and SEQ – is strictly more
precise than the previous, with the last one being unsound.

5.3 Results
Figure 5 shows the number of dereferences proven safe, as a frac-
tion of all dereferences, by each of the four RADAR-adjusted anal-
yses. As expected, the size of each bar grows from left to right,
indicating that each analysis is more precise.

The first thing to notice is that for each benchmark the sequen-
tial analysis (the fourth bar in each cluster) can prove only a small
percentage of dereferences safe, between 42% and 68%. Thus,
no matter how precise the adjusting process, the resulting multi-
threaded analysis will not be able to prove a majority of derefer-
ences.

The imprecision in the sequential non-null analysis is mostly
due to imprecision in analyzing the heap. The alias analysis we use
merges many of the lvalues on the heap into “blob” nodes, thus
losing precision for heap-allocated variables. Previous null-pointer
analyses [4] have also found that heap structures are hard to an-
alyze precisely and lead to many false-positives when performing
null-dereference checks. To factor this degree of imprecision out
of our experiments, we plot in Figure 6 the percentages of safe
dereferences to pointers not including those in blob nodes. The
percentage of all non-blobby dereferences is approximately 52%
for Apache, 76% for SSL, and 71% for Linux. Considering these
remaining dereferences, the sequential analysis is able to prove the
safety of the majority of dereferences on each benchmark (again
the fourth bar in each cluster). This demonstrates that, aside from
the issue of precise heap analysis, this sequential analysis is a rea-
sonable and practical one on which to test RADAR.

Recall that the sequential analysis is unsound in the concurrent
setting because it assumes lvalues cannot be modified by concur-
rent threads, so it may miss actual null-pointer dereferences. Nev-
ertheless, because we cannot know what an oracle would provide
as the “correct” answer for adjusting, we use SEQ as an upper
bound; the other three analyses, as well as the oracle, cannot do
any better. At the other end of the spectrum is RADAR(STEENS),
the least precise of the analyses. We included this Steensgaard-
based approach in our evaluation because it can easily be imple-
mented in a compiler or program analyzer that needs to be sound
but is not concerned with being extremely precise. We therefore use
RADAR(STEENS) as a baseline for comparison.

We now evaluate how the RADAR(RELAY¬L) and
RADAR(RELAY) instantiations compare to the RADAR(STEENS)
lower bound and the SEQ upper bound. We consider what per-
centage of this gap – the difference between the results of SEQ
and RADAR(STEENS) – is bridged by the other two analyses.
Keep in mind that because SEQ is an unsound overapproxima-
tion, the real gap – the difference between a perfect oracle and
RADAR(STEENS) – may be smaller than the gap we consider.
Thus, the percentages we report are in fact lower bounds on how
much of the real gap we bridge. Figure 7 summarizes these results.
On average, RADAR(RELAY¬L) bridges 55.0% of the gap on
non-blobby dereferences while RADAR(RELAY) bridges 58.4%.

The results on Linux are what we would expect: each analysis is
incrementally better than the previous one. From left to right, each
analysis incorporates, in the following order, a simple alias analy-
sis, a more precise thread sharing analysis, and a lockset analysis.
As a result, each analysis better captures concurrency interactions
in the program. This leads to more precise race detection, which is
ultimately the factor that determines RADAR’s effectiveness.
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Figure 5. Percentage of all dereferences proven safe by each in-
stantiation.
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Figure 6. Percentage of non-blobby dereferences proven safe by
each instantiation.

w/ blobs no blobs
no locks w/ locks no locks w/ locks

Apache 53.9 53.9 54.2 54.2
SSL 63.3 63.4 63.9 64.0

Linux 46.4 61.2 46.9 57.0

Average 54.5 59.5 55.0 58.4

Figure 7. Percent of the gap bridged.

The results for Apache and SSL, however, are different from
the Linux ones. In particular, RADAR(RELAY¬L) is just as ef-
fective as RADAR(RELAY) on Apache and almost as effective as
RADAR(RELAY) on SSL.

To better understand the implications of these results, recall how
RADAR(RELAY) and RADAR(RELAY¬L) differ: RADAR(RELAY)
uses the full version of RELAY, whereas RADAR(RELAY¬L) uses
a version of RELAY that answers race queries based on pos-
sible aliasing relationships, but not on locksets. The fact that
RADAR(RELAY¬L) is nearly as precise as RADAR(RELAY) indi-
cates that in many of the cases arising in our non-null analysis, the
lvalue being adjusted is simply not shared. This in turn is an indica-
tion that a more precise alias analysis in the RELAY race detection
engine could drastically improve the precision of RADAR(RELAY).

Overall, our experiments on RADAR(RELAY) demonstrate the
precision and scalability of RADAR. Running RADAR(RELAY) on
a single machine took 1 hour on SSL, 4 hours on Apache, and 12
hours on Linux. But because the callgraph of Linux is embarass-
ingly parallel, the implementation of RADAR(RELAY) can easily
be parallelized in the same way as RELAY to run much faster on
a cluster of nodes. In each of the test cases, RADAR(RELAY) was
able to bridge a sizable portion of the gap between optimistic and
conservative conconcurrent non-null analyses, while still produc-
ing a sound result.

6. Related Work
Race Analyses. Java’s native support for threads and its syntacti-
cally scoped locks enable many techniques for detecting and prov-
ing the absence of races. These include type systems encoding lock-
set information [6], and extended with ownership [1]. Another ap-
proach is to statically approximate the happens-before relation [28].
Escape analyses have been proposed as a simpler way of detecting
shared objects and removing synchronization [23]. A recent line
of work [17] shows how to combine nested locking with cloning-

based context-sensitivity to improve the accuracy of lockset com-
putations. The results of [17] show that even in Java benchmarks,
the large majority potential races are eliminated by a precise shar-
ing analysis. Analyses for C programs must cope with the unstruc-
tured use of locks and thread creation, which make flow- or context-
insensitivity very imprecise. [5] works by computing summaries in
a top-down manner, but prunes summaries to scale, [20] uses a con-
straint based technique to compute correlations that describe the
locking protocol.
Dataflow Analysis. There are frameworks for intraprocedural
dataflow analysis of concurrent programs that use par-begin and
par-end constructs nested within functions. These frameworks
work by building a parallel flow graph (PFG) (a control flow
graph with concurrency nodes). The dataflow analysis is lifted by
extending the flow equations to handle fork, join and the com-
munication between threads. Examples include a reaching defi-
nitions analysis [9] and bit-vector analyses [13]. Intraprocedural
representation-based approaches include [24] which uses cobe-
gin/end and wait/notify constructs to build a Parallel Program
Graph, analagous to the PDG, and [15] which describes a Con-
current SSA (CSSA) representation which enables subsequent op-
timizations. The pointer analysis of [22] is interprocedural but
matching par-begin and par-end constructs must be in the same
function. Recently, [3] proposed an analysis framework for op-
timizing embedded programs written in NESC [8]. This frame-
work is tailored to NESC’s interrupt-based concurrency and explicit
atomic sections.

All the above frameworks are more precise than our framework
in which facts can only be killed by concurrent interactions. In con-
trast, these frameworks exploit specific concurrency constructs to
also allow new facts to be generated by concurrent interactions.
However, RADAR is more general, as it is independent of the un-
derlying concurrency constructs, requiring only that a race detector
exists for the constructs. For example, none of these approaches
could be applied to our thread-based benchmarks.
Model Checking. Model checkers explore all interleavings to ver-
ify abitrary safety properties, and so they can be used to encode
dataflow analyses [25]. Flavers [2] is a finite-state property checker
that employs conservative state and interleaving reductions, e.g. a
may-happen-in-parallel dataflow analysis ([18]) that conservatively
prunes interleavings. Even with techniques like these and others
like partial-order and symmetry reduction that mitigate the effect
of combinatorial explosion in interleavings, model checking has
only been shown to scale to relatively small code bases. A tech-
nique related to RADAR is the thread-modular approach, proposed
in [19, 12] which requires that users provide annotations describing



when other threads can modify shared state. Model checking can
be used to infer the annotations [7, 11], but these techniques do not
scale. If the programs include recursive procedures, model check-
ing (and hence, “exact” dataflow analysis in the sense of computing
MOP solutions) is undecidable [21].

In contrast to the above, the principal benefit of our framework
RADAR is that it is not tied to any particular concurrency constructs
or structure, as all reasoning about concurrency is folded into the
race detection engine. This allows RADAR to switch between race
detection engines to explore the tradeoff between precision and
scalability of the dataflow analysis. Moreover, RADAR enables a
finer view of concurrency by preserving facts that are not killed by
other threads, without exploring interleavings caused by irrelevant
atomicity breaks as in Figure 1.

7. Conclusions and Future Work
We have presented a framework called RADAR for converting a
sequential dataflow analysis into a concurrent one using a race de-
tection engine as a black box. The main benefit of our approach
is that it cleanly separates the part of the analysis that deals with
concurrency, the race detection engine, from the rest of the anal-
ysis. With this separation in place, the race detection engine can
be fine-tuned to improve its precision without changing any of the
client analyses. As a result, RADAR provides a framework that al-
lows the precision with which concurrency is analyzed to be easily
tuned. Our experiments show that the framework scales, and for a
particular analysis, achieves good precision with respect to some
upper and lower bounds. Our experience also shows that the preci-
sion of the overall concurrent analysis depends on the precision of
the underlying alias, escape, sequential and race analyses. We have
identified two lines of future work that will, in combination, lead to
the understanding and addressing of these issues.

The first direction is to apply the adjusting approach to lift a
variety of previously developed sequential analyses to the con-
current setting. Examples include array bounds checking analy-
ses [27, 10], other kinds of null-dereference analyses [4], and analy-
ses that guide compiler optimizations, such as reaching definitions,
available expressions, and live variables.

The second direction is to explore precise and scalable race de-
tection techniques for other concurrency constructs. Improvements
will likely involve a combination of better alias and escape analysis,
better inter-thread flow analysis to handle system calls like wait
and notify, path-sensitive analysis to handle flag-based synchro-
nization, and possibly programmer-supplied annotations to help
with cases that are too difficult to analyze automatically.

Adjusting a wide variety of sequential analyses will allow us to
tune the precision of the race detector using actual facts deduced
while analyzing real systems for a variety of properties. We believe
that the generated concurrent analyses can lead to an empirical
understanding of the concurrency idioms used in real programs.
These patterns can then be used to iteratively tune the precision
of the race detector, leading to a variety of scalable and precise
concurrent program analyses and optimizations.
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