Reasoning about Functions

Niki Vazou, Anish Tondwalkar, Ranjit Jhala

v\i

UC San Diego

Reasoning about Functions

Niki Vazou, Anish Tondwalkar, Ranjit Jhala

Motivation

Motivation: SMT i1s Robust!

For “Shallow” Specs in Decidable theories

SMT is Robust For “Shallow” Specs

sum n =
1f n <= 0
then 0

else n + sum (n - 1)

SMT is Robust For “Shallow” Specs

goals =
[assert (0 sum 3)]

Verity goals

SMT is Robust For “Shallow” Specs

sum n =
@ensures (@ <= res)

goals =
[assert (0 sum 3)]

Verify goals using spec for sum

SMT is Robust For “Shallow” Specs

sum :: n:_ -> res:{0 res}

goals =
[assert (0 sum 3)]

Verify goals using spec for sum

SMT is Robust For “Shallow” Specs

sum :: n:_ -> res:{0 <= res}
sum n =
1f n <= 0
then 0
else(h + sum (n - 1)

goals =
[assert (0 <= sum 3) |

Verification Conditions

0<n=0<sum(n—1)=0<n-+sum(n—1) 4

SMT is Robust For “Shallow” Specs

sum :: n:_ -> res:{0 <= res}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals = i
[assert(t@ <= sum 3) |

Verification Conditions

0<n=0<sum(n—1)=0<n+sum(n—1)
0 <sum(3) = 0 < sum(3)

SMT is Robust For “Shallow” Specs

sum :: n:_ -> res:40 res}
sum n =
1f n 0
then 0
else n + sum (n - 1)

goals =
[assert (0 sum 3)]

SMT Solves Verification Conditions

0<n=0<sum(n—1)=0<n+sum(n—1)
0 <sum(3) = 0 < sum(3)

SMT is Robust For “Shallow” Specs
SMT solves decidable* VCs...

*Quantifier Free Equality, UIE Arithmetic, Sets, Maps, Bitvectors....

SMT is Robust For “Shallow” Specs
SMT solves decidable VCs...

SMT is Brittle For “Deep” Specs

...VCs over user-defined functions

SMT is Brittle For “Deep” Specs

sum :: n:_ -> res:{777}

goals =

[assert @sum 3 == 0) :D

A suitable spec for sum?

SMT is Brittle For “Deep” Specs

sum :: n:_ -> res:{777}

goals =
[assert (sum 3 == 06) |

A suitable spec for sum needs axioms!

Vn.n < 0= sum(n) =0

Vn. 0 <n = sum(n) =n-+sum(n — 1)

SMT is Brittle For “Deep” Specs

A suitable spec for sum needs axioms!

Vn.n < 0= sum(n) =20

Vn. 0 <n = sum(n) =n-+sum(n — 1)

o

SMT e

S

Loading

SMT is Robust For “Shallow” Specs
SMT solves decidable VCs

SMT is Brittle For “Deep” Specs

VCs over User-defined Functions

VCs over User-defined Functions

... are everywhere!

VCs over User-defined Functions

Laws
Transitivity, Associativity...

Optimizations
Optimization preserves behavior ...

Code Invariants
Higher-order Contract Specifications...

Functional Correctness
Equivalence w.r.t. to reference implementation

Motivation

VCs over User-defined Functions

Motivation

SMT Reasoning about Functions

LEON [“Satisfiability Modulo Recursive Functions”, Suter et al. 2011]
DAFNY [“Computing with an SMT Solver”, Amin et al. 2014]

https://dl.acm.org/citation.cfm?id=2041575
https://link.springer.com/chapter/10.1007/978-3-319-09099-3_2

SMT Reasoning about Functions

I
Equational Proof v
11
Proof Synthesis MC
I11
Al

Synthesis Terminates

SMT Reasoning about Functions

I
Equational Proof

V

I
Equational Proof

A suitable spec for sum?

sum :: n:_ -> res:{777}

goals =

[assert ((sum 3 == 60) :D

A suitable spec for sum?

reflect implementation as the specification

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals =
[assert (sum 3 == 06) |

sum :: n:_ -> v:{v = 1f n <= 0 then 0 else n + sum(n-1)}

A suitable spec for sum?

reflect implementation as the specification

sum :: n:_ -> v:{v = 1f n <= 0 then 0 else n + sum(n-1)}

A. sum Must Terminate on All Inputs

Ensures soundness

A suitable spec for sum?

reflect implementation as the specification

sum :: n:_ -> v:{v = 1f n <= 0 then 0 else n + sum(n-1)}

B. sum is an uninterpreted function

Ve,y: =y = f(z) = f(y)

A suitable spec for sum?

reflect implementation as the specification

sum :: n:_ -> v:{v = 1f n <= 0 then 0 else n + sum(n-1)}

B. sum is an uninterpreted function
Ensures SMT can decide VCs

A suitable spec for sum?

reflect implementation as the specification

A. sum Must Terminate on All Inputs

Ensures soundness

B. sum is an uninterpreted function
Ensures SMT can decide VCs

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to “unfold” definition

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals =

| assert (;um §)== Q)]

Verification Condition*

(sum(0) = if (0 < 0) then 0 else ...)|= sum(0) = 0

* At callsite, substitute actuals for formals in Post-Condition [Floyd-Hoare]

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals =

[assert @sum 0 == Q)]

Verification Condition

(sum(0) = if (0 < 0) then 0 else ...) ={sum(0) = 0)

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals =
[assert (sum @ == @)]

Verification Condition

(sum(0) = if (0 <0) then 0 else ...) = sum(0) =0

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals =
[assert (sum 2 == 3)]

Verification Condition Invalid

(sum(2) = if 2 <0 then 0 else 2

* VC has no information about sum(1)

If at first you don’t succeed...

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals =
[assert (sum 1 == 1)
, assert (sum 2 == 3)]

VC has no information about sum(1)

Call sum(1) to unfold specification...

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals =
[assert (sum 1 == 1)
, assert (sum 2 == 3)]

VC has no information about sum(Q)

Call sum(@) to unfold specification...

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals =
[assert (sum 0 == 0)
, assert (sum 1 == 1)

, assert (sum 2 == 3)]

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n - 1)

goals =
[assert (sum 0 == 0)
, assert (sum 1 == 1)

, assert (sum 2 == 3)]

VC
(sum(0) = 4f 0 <0 then 0 else 04+ sum(0 —1))= sum(0) = 0

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =

1f n <= 0
then 0
else n + sum (n - 1)

goals =
[assert (sum 0 == 0)
, assert (sum 1 == 1)

, assert (sum 2 == 3)]

VC

(sum(0) = if 0 <0 then 0 else 0 +sum(0 — 1))
A(sum(1l) = if 1 <0 then 0 else 1 +sum(1 —1))=sum(1) =1

Call function to “unfold” definition

{-@ reflect sum @-}
sum n =

1f n <= 0
then 0
else n + sum (n - 1)

goals =
[assert (sum 0 == 0)
, assert (sum 1 == 1)

, assert (sum 2 == 3) Y]
VC
(sum(0) = if 0 <0 then 0 else 0 +sum(0 — 1))
A(sum(1) =if 1 <0 then 0 else 1 +sum(1 — 1))
A(sum(2) = if 2 <0 then 0 else 2+ sum(2 —1))= sum(2) = 3

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to “unfold” definition

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to “unfold” definition (repeatedly!)

Tedious to unfold repeatedly!

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to “unfold” definition (repeatedly!)

Step 3

Combinators structure calls as equations

Equational Proof

Combinators structure calls as equations

(===) :: X:_—> [y:{y=x}) -> {v:iv=x && v=y}

Combinator’s Precondition
Input arguments must be equal

Equational Proof

Combinators structure calls as equations

(===) :: X:_-> y:{y=x} -> @v:v=x && v=y}9

Combinator’s Postcondition
Output value equals inputs

Equational Proof

Combinators structure calls as equations

goal2 () =
assert (sum 2 == 3)

Verification goal

Equational Proof

Combinators structure calls as equations

goal2 () =
@ensures (sum 2 == 3)

Verification goal
Rephrased as post-condition

Equational Proof

Combinators structure calls as equations

goal2 :: () -> { sum 2 == 3 }

Verification goal
Rephrased as output-type

Equational Proof

Combinators structure calls as equations

goal2 :: (O -> {sum 2 == 3}
goalZ2 ()
= sum 2

— 3

Invalid VC

VC has no information about sum(1)

Equational Proof

Combinators structure calls as equations

goal2 :: (O -> {sum 2 == 3}
goalZ2 ()

= sum 2

=== /2 4+ sum 1

=== 3

prery

Invalid VC

VC has no information about sum(@)

Equational Proof

Combinators structure calls as equations

goal2 :: () -> {sum 2 == 3}
goal2 ()

= sum 2

=== /7 4+ sum 1

=== /2 + 1 + sum 0

=== 3

Equational Proof

Combinators structure calls as equations

(==7) :: Xi_-> y:i_ -> E{y=x}) -> {v:iv=x && v=y}

Ternary “Because” Combinator
Third input “asserts” that first two are equal

Equational Proof

Combinators structure calls as equations

goal3 :: (O -> {sum 3 == 6}

Equational Proof

Combinators structure calls as equations

goal3 :: (O -> {sum 3 == 6}
goal3 ()

= sum 3

—— 3 +(sum 2)

=== 0

prery

Invalid VC

VC has no information about sum(2)

Equational Proof

Combinators structure calls as equations

goal3 :: (O -> {sum 3 == 6}
goal3 ()

= sum 3

=== 3 + sum Z

==? 3 + 3 ?2{goal2()

Post-condition adds sum(2) to VC

goal2 :: () -> {sum 2 == 3}

Equational Proof

Combinators structure calls as equations

goal3 :: (O -> {sum 3 == 6}
goal3 ()

= sum 3

=== 3 + sum Z

==7 0 ? goal2()

Equational Proof

Enables “deep” verification

Equational Proof
VO<n.2xXsum(n)=nx (n+1)

[Demo]

Equational Proof
VO<n.2xXsum(n)=nx (n+1)

sumPf ::

sumPf 0

sumPf n

n:{0 <=n} -> {2*sum n == n*(n+1)}

— 2 * sum 0

Induction
_ 5k
= 2 * sum n Hypothesis
=== 2 * (n + sum (n-1))
=72 * n+ (n-1) * n ?(%umPf (n—li)
=== n * (n+1)

Equational Proof
Vs, ys, zs. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

[Demo]

Equational Proof
Vs, ys, zs. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

appendPf :: xs:_ -> ys:_ -> zs:_ ->
{(Xs ++ ys) ++ zs = XS ++ (ys ++ zs)}

appendPf [] yS ZS
= (L[] ++ ys) ++ zs
=== [] ++ (ys ++ zS)

appendPf (x:xs) ys zs
-~ ((X:XS) ++ ysS) ++ zS Induction
=== (X ! (XS ++ yS)) ++ zs Hypothesis
—== X : ((Xs ++ ys) ++ zs)
==7 X : (xs ++ (ys ++ zs)) ?(@ppendPF XS YS z%)
=== (X:XS) ++ (ys ++ zS)

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to “unfold” definition (repeatedly!)

Step 3

Combinators structure calls as equations

SMT Reasoning about Functions

I
Equational Proof

V

SMT Reasoning about Functions

I1

Proof Synthesis MC

I1
Proof Synthesis

Proof Synthesis

Equational Proof is very expressive

Manual unfolding is tedious!

Manual unfolding is tedious!

Vn.n >2 = sum(n) > 5+ sum(n — 3)

n:{n > 2} -> {sum n > 5 + sum(n-3)}

Manual unfolding is tedious!

ex :: n:{dn > 2} -> {sum n > 5 + sum(n-3)}

Proof Synthesis

ex :: n:{dn > 2} -> {sum n > 5 + sum(n-3)}

ex n = sum n
n + sum (n-1)
n + (n-1) + sum (n-2)
n + (n-1) + (n-2) + sum (n-3)
5 + sum (n-3)

Manual unfolding is tedious!

Proof Synthesis

ex :: n:{dn > 2} -> {sum n > 5 + sum(n-3)}

ex n = sum n
n + sum (n-1)
n + (n-1) + sum (n-2)
n + (n-1) + (n-2) + sum (n-3)
5 + sum (n-3)

How to automate unfolding?

How to automate unfolding?

TS
Gyl
LS
iV w2 2l
as>

S

Loading

Problem

Completeness vs. Termination
[LEON] [DAFNY]

How to automate unfolding?

Problem
Completeness vs. Termination

Solution
Unfold if you must

Logical Evaluation
Unfold if you must

Logical Evaluation

Step 1
Represent functions in guarded form*

{-@ reflect sum @-}
sum n =
1f n <= 0
then 0
else n + sum (n-1)

Logical Evaluation

Step 1
Represent functions in guarded form*

- ~

sum n =
n<=Q=® |
@ < rD=Gl + sum Cn—l)]

. _

| [guar‘dij = (bOd)/i]

* Every sub-term in body; is evaluated when guardi is true

Logical Evaluation

Step 1
Represent functions in guarded form

Step 2
Unfold calls whose guard is valid

Logical Evaluation

Step 1
Represent functions in guarded form

Step 2
Unfold calls whose guard is valid

Logical Evaluation

Unfold calls whose guard s valid

n:{n > 2} -> {sum n > 5 + sum(h-3)}

Logical Evaluation

Unfold calls whose guard s valid

~ ™

Assume Prove

n > 2 sum n > 5 + sum(n-3)

Logical Evaluation

Unfold calls whose guard s valid

Assume Calls

n > 2 sum n sum(n-3)

Unfold calls whose guard is valid

Assume Is valid?

n > 2 i [h>®]

(sum(n) =n + sum(n—l)]

Calls

(sum n} » sum(n-1)
sum(n-3)

Unfold calls whose guard is valid

Assume Is valid?
n > 2
sum(n) =n_ + sum(n-1) i [n—l > @}
[sum(n—l) = n-1 + sum(n—Zj} - —
Calls
sum n >{sum(n—1)}»~95um(n—2)

sum(n-3)

Unfold calls whose guard is valid

Assume Is valid?

n > 2
sum(n) =n + sum(n-1)
sum(n-1) = n-1 + sum(n-2) i {:n—Z > 0}

[sum(n—Z) = n-2 + sum(n—3j} - _

Calls

sum n > sum(n—l)—»-«-)sum(n—Z)}*m) sum(n-3)
sum(n-3) —

Unfold calls whose guard is valid

Assume Is valid?

n > 2
sum(n) =n + sum(n-1)
sum(n-1) = n-1 + sum(n-2)

sum(n-2) = n-2 + sum(n-3) i [n—?) > @] x

Red

Calls

sum n » sum(n-1) —>» sum(n-2) ——> sum(n—3)}

Unfold calls whose guard is valid

a)
Assume
n > 2 ® ®
sum(n) =n + sum(n-1) FIXPOIHt!
sum(n-1) = n-1 + sum(n-2)
ksum(n—Z) = n-2 + sum(n—3))

Calls

Ssum n

» sum(n-1) —3» sum(n-2) —3» sum(n-3)

Unfold calls whose guard is valid

a)
Assume
n > 2
sum(n) =n + sum(n-1)
sum(n-1) = n-1 + sum(n-2)
ksum(n—Z) = n-2 + sum(n—B)J

Fixpoint!
Assume strengthened by unfolded calls

Unfold calls whose guard is valid

() ()

Assume Prove
n>2|=—>|sumn>5+ sum(n-3)

sum(n) =n + sum(n-1)

sum(n-1) = n-1 + sum(n-2)

sum(n-2) = n-2 + sum(n-3)
_ w,

Assume strengthened by unfolded calls

Logical Evaluation

Step 1
Represent functions in guarded form

Step 2
Unfold calls whose guard is valid

Logical Evaluation

a)
def PLE(D, A, G):

C
A*

[Xx = f(t) for f(t) 1n G, x fresh]
AuC

while A c A*:
A A*
A* = Unfold(D, A)

return (A" = G)
_ J

Algorithm: PLE

Logical Evaluation

a)
def PLE(D, A, G):

\— _J/

(D)efinitions, (A)ssumptions, (G)oal

Logical Evaluation

a)
def PLE(D, A, G):

[Xx = f(t) for f(t) 1n G, x fresh]
A uC

C
A*

\— _J/

Extend (A)ssumptions with calls in (G)oal

Logical Evaluation

a)
def PLE(D, A, G):

while A c A*:
A = A*
A* = Unfold(D, A)

\— _J/

Strengthen (A)ssumption with fixpoint of unfoldings

Logical Evaluation

a)
def PLE(D, A, G):

return (A* = @)
_ _J

Does strengthened (A)ssumption imply (G)oal ?

Logical Evaluation

- ™

def Unfold(D, A):
return [(F(x) = body)[t/x] |
for f(t) 1n A
for <guard = body> 1n D(f)
1f IsValid(A = guard[t/x])]

e _/

Unfold

Returns equations for calls whose guard implied by A

Proof Synthesis

a)
def PLE(D, A, G):

while A c A*:
A = A*
A* = Unfold(D, A)

return (A* = Q)
_ Y,

Logical Evaluation

Let A = A after k loop iterations

Proof Synthesis

a)
def PLE(D, A, G):

while A c A*:

A = A*
A* = Unfold(D, A)
return (A* = @)
_ J

Logical Evaluation

Theorem

(Ak=@) if A — G with size k equational proof
_J

Proof Synthesis

a)
def PLE(D, A, G):

while A c A*:
A = A*
A* = Unfold(D, A)

return (A* = Q)
_ Y,

Logical Evaluation

Theorem

(A"=G) if A — G with any equational proof

J

Proof Synthesis

Vn.n >2 = sum(n) > 5+ sum(n — 3)

| Demo]

Proof Synthesis

VO<n.2xsum(n)=n x (n+ 1)

| Demo]

SMT Reasoning about Functions

I1

Proof Synthesis MC

SMT Reasoning about Functions

I11
Synthesis Terminates

Al

I11
Synthesis Terminates

Synthesis Terminates

~ R
def PLECD, A, G):

while A c A*:

A = A*
A* = Unfold(D, A)
return (A* = ()
_ Y,

Why does PLE terminate?

Why does PLE terminate?

~

_

def PLECD, A, G):

while A c A*;:
A = A*

A* = Unfold(D, A)

return

(A* = G)

v,

f1(t1)

7N\

f2(t2) f3(t3)

7NN

(Implicit) Tree of Logical Steps
fi(ti) unfolds to body with f;(t;)

Why does PLE terminate?

PLE diverges F1(t1)

= Tree 1s infinite / \
fa(t2) f3(ts3)

= infinite Logical Path / \ ,/ \

— infinite Concrete Trace x

Reflected Functions Terminate!
(Required for soundness)

Logical Steps

D, A F f(t) — f'(¥)

A implies guard of f(¢) whose body has f'(t/)

Logical Path = Concrete Trace

Logical Steps are Must-Abstractions

4)

If D, AF f@t)— ()

Then Vo € [A]. o(f()) =* Clo(f'(¥'))]

J

A implies guard of f(t) whose body has f'(t')

Logical Path = Concrete Trace

Logical Steps are Must-Abstractions

4)

If D, AF f@t)— ()

Then Vo € [A]. o(f()) =* Clo(f'(¥'))]

J

If A, every evaluation of f(t) transitions to f'(t')

Logical Path = Concrete Trace

Logical Path = Concrete Trace

If D AF{E) - 6E)— ...

Then vo e [A]. o(fi(7) —=* Colo(f2(T3))] —* . ..

_ Wy,

If A, every evaluation of f(t) transitions to f'(t')

Logical Path = Concrete Trace

\-

If D AF) — f(ts) — ...

Then Vo € [A]. o(fi(F)) —* Colo(f(F2))] = . ..

1.e.

-

If infinite logical path, [A] not empty*

Then infinite concrete trace.

~

*A 1s satisfiable

Why does PLE terminate?

PLE(D,A,G) diverges
= Tree is infinite

= infinite logical path

— infinite concrete trace.

Why does PLE terminate?

PLE(D,A,G) diverges
= Tree is infinite

= infinite logical path

— infinite concrete trace. X

Synthesis Terminates

PLE(D,A,G) diverges
= Tree is infinite

= infinite logical path

— infinite concrete trace. X

. PLE(D,A,G) terminates! |

Reasoning about Functions

I11
Synthesis Terminates

Al

Reasoning about Functions

Laws
Transitivity, Associativity...

Optimizations
Optimization preserves behavior ...

Code Invariants
Higher-order Contract Specifications...

Functional Correctness
Equivalence w.r.t. to reference implementation

Reasoning about Functions

| Demo]

Reasoning about Functions

Benchmark Common Without PLE Search With PLE Search
Impl (1) | Spec (1) | Proof (1) | Time (s) | SMT (q) | Proof (1) | Time (s) | SMT (q)
Arithmetic
Fibonacci 7 10 38 2.74 129 16 1.92 79
Ackermann 20 73 196 5.40 566 119 13.80 846
Class Laws Fig 11
Monoid 33 50 109 4.47 34 33 4.22 209
Functor 48 44 93 4.97 26 14 3.68 68
Applicative 62 110 241 12.00 69 74 10.00 1090
Monad 63 42 122 5.39 49 39 4.89 250
Higher-Order Properties
Logical Properties 0 20 33 2.71 32 33 2.74 32
Fold Universal 10 44 43 2.17 24 14 1.46 48
Functional Correctness
SAT-solver 92 34 0 50.00 50 0 50.00 50
Unification 51 60 85 4,77 195 21 5.64 422
Deterministic Parallelism
Conc. Sets 597 329 339 40.10 339 229 40.70 861
n-body 163 251 101 7.41 61 21 6.27 61
Par. Reducers 30 212 6.63 52 5.56 52
Total 1176 1279 1524 148.76 1626 | i 638 150.88 4068

Reasoning about Functions

Equational Proofs

Synthesized by Logical Evaluation

Equational Proofs
Synthesized by Logical Evaluation

SMT Automation is Great ...
Short, Readable, High-level Proofs

... Except when A Proof Fails!

Counterexamples for true but unprovable facts?

Reasoning about Functions
Equational Proofs, Synthesized by Logical Evaluation

A LiquidHaskell

bit.ly/liquidhaskell

https://github.com/ucsd-progsys/liquidhaskell

[f at first
you don't

succeed,
call it
version 1.0

