
UC San Diego

Niki Vazou, Anish Tondwalkar, Ranjit Jhala

Reasoning about Functions

Niki Vazou, Anish Tondwalkar, Ranjit Jhala

Reasoning about Functions

Motivation

Motivation: SMT is Robust!
For “Shallow” Specs in Decidable theories

Motivation SMT is Robust
For “Shallow” Specs

SMT is Robust For “Shallow” Specs

sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

SMT is Robust For “Shallow” Specs

SMT is Robust For “Shallow” Specs

sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (0 <= sum 3)]

Verify goals

SMT is Robust For “Shallow” Specs

sum n =
 @ensures (0 <= res)
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (0 <= sum 3)]

using spec for sumVerify goals

SMT is Robust For “Shallow” Specs

sum :: n:_ -> res:{0 <= res}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (0 <= sum 3)]

Verify goals using spec for sum

SMT is Robust For “Shallow” Specs

sum :: n:_ -> res:{0 <= res}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (0 <= sum 3)]

Verification Conditions
0 < n) 0  sum(n� 1)) 0  n+ sum(n� 1)

SMT is Robust For “Shallow” Specs

sum :: n:_ -> res:{0 <= res}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (0 <= sum 3)]

Verification Conditions

0  sum(3)) 0  sum(3)

0 < n) 0  sum(n� 1)) 0  n+ sum(n� 1)

SMT is Robust For “Shallow” Specs

sum :: n:_ -> res:{0 <= res}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (0 <= sum 3)]

SMT Solves Verification Conditions

0  sum(3)) 0  sum(3)

0 < n) 0  sum(n� 1)) 0  n+ sum(n� 1)

SMT is Robust For “Shallow” Specs

SMT solves decidable* VCs…

*Quantifier Free Equality, UIF, Arithmetic, Sets, Maps, Bitvectors….

SMT is Robust For “Shallow” Specs

SMT solves decidable* VCs…

SMT is Brittle For “Deep” Specs

…VCs over user-defined functions

sum :: n:_ -> res:{???}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 3 == 6)]

A suitable spec for sum?

SMT is Brittle For “Deep” Specs

sum :: n:_ -> res:{???}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 3 == 6)]

A suitable spec for sum needs axioms!

SMT is Brittle For “Deep” Specs

8n. n  0) sum(n) = 0

8n. 0 < n) sum(n) = n+ sum(n� 1)

A suitable spec for sum needs axioms!

SMT is Brittle For “Deep” Specs

8n. n  0) sum(n) = 0

8n. 0 < n) sum(n) = n+ sum(n� 1)

SMT

SMT is Robust For “Shallow” Specs

SMT solves decidable VCs

SMT is Brittle For “Deep” Specs

VCs over User-defined Functions

VCs over User-defined Functions

… are everywhere!

VCs over User-defined Functions
Laws

Transitivity, Associativity…

Optimizations
Optimization preserves behavior …

 Code Invariants
Higher-order Contract Specifications…

 Functional Correctness
Equivalence w.r.t. to reference implementation

Motivation
VCs over User-defined Functions

Motivation
SMT Reasoning about Functions

LEON [“Satisfiability Modulo Recursive Functions”, Suter et al. 2011]
DAFNY [“Computing with an SMT Solver”, Amin et al. 2014]

https://dl.acm.org/citation.cfm?id=2041575
https://link.springer.com/chapter/10.1007/978-3-319-09099-3_2

I
Equational Proof

II
Proof Synthesis

III
Synthesis Terminates

SMT Reasoning about Functions

V

MC

AI

V

MC

AI

I
Equational Proof

II
Proof Synthesis

III
Synthesis Terminates

SMT Reasoning about Functions

I
Equational Proof

sum :: n:_ -> res:{???}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 3 == 6)]

A suitable spec for sum?

{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 3 == 6)]

A suitable spec for sum?
reflect implementation as the specification

sum :: n:_ -> v:{v = if n <= 0 then 0 else n + sum(n-1)}

A suitable spec for sum?

A. sum Must Terminate on All Inputs
Ensures soundness

sum :: n:_ -> v:{v = if n <= 0 then 0 else n + sum(n-1)}

reflect implementation as the specification

A suitable spec for sum?

B. sum is an uninterpreted function
8x, y : x = y) f(x) = f(y)

sum :: n:_ -> v:{v = if n <= 0 then 0 else n + sum(n-1)}

reflect implementation as the specification

A suitable spec for sum?

Ensures SMT can decide VCs
B. sum is an uninterpreted function

sum :: n:_ -> v:{v = if n <= 0 then 0 else n + sum(n-1)}

reflect implementation as the specification

A suitable spec for sum?

Ensures SMT can decide VCs
B. sum is an uninterpreted function

A. sum Must Terminate on All Inputs
Ensures soundness

reflect implementation as the specification

reflect implementation as the specification

Step 1

Call function to “unfold” definition

Step 2

Equational Proof

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 0 == 0)]

Verification Condition*

* At callsite, substitute actuals for formals in Post-Condition [Floyd-Hoare]

(sum(0) = if (0  0) then 0 else . . .)) sum(0) = 0

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 0 == 0)]

Verification Condition*
(sum(0) = if (0  0) then 0 else . . .)) sum(0) = 0

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 0 == 0)]

Verification Condition*
(sum(0) = if (0  0) then 0 else . . .)) sum(0) = 0

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 2 == 3)]

Verification Condition Invalid
(sum(2) = if 2  0 then 0 else 2 + sum(1))) sum(2) = 3

* VC has no information about sum(1)

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 2 == 3)]

Verification Condition Invalid
(sum(2) = if 2  0 then 0 else 2 + sum(1))) sum(2) = 3

* VC has no information about sum(1)

If at first you don’t succeed…

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 1 == 1)
 , assert (sum 2 == 3)]

VC has no information about sum(1)
Call sum(1) to unfold specification…

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 1 == 1)
 , assert (sum 2 == 3)]

VC has no information about sum(0)
Call sum(0) to unfold specification…

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 0 == 0)
 , assert (sum 1 == 1)
 , assert (sum 2 == 3)]

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 0 == 0)
 , assert (sum 1 == 1)
 , assert (sum 2 == 3)]

(sum(0) = if 0  0 then 0 else 0 + sum(0� 1))) sum(0) = 0

VC

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 0 == 0)
 , assert (sum 1 == 1)
 , assert (sum 2 == 3)]

(sum(0) = if 0  0 then 0 else 0 + sum(0� 1))

^(sum(1) = if 1  0 then 0 else 1 + sum(1� 1))) sum(1) = 1

VC

Call function to “unfold” definition
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 0 == 0)
 , assert (sum 1 == 1)
 , assert (sum 2 == 3)]

(sum(0) = if 0  0 then 0 else 0 + sum(0� 1))

^(sum(1) = if 1  0 then 0 else 1 + sum(1� 1))

^(sum(2) = if 2  0 then 0 else 2 + sum(2� 1))) sum(2) = 3

VC

reflect implementation as the specification

Step 1

Call function to “unfold” definition

Step 2

Equational Proof

reflect implementation as the specification

Step 1

Call function to “unfold” definition

Step 2

Equational Proof

(repeatedly!)

Tedious to unfold repeatedly!

Equational Proof

reflect implementation as the specification

Step 1

Step 2

Combinators structure calls as equations
Step 3

Call function to “unfold” definition (repeatedly!)

Equational Proof

(===) :: x:_-> y:{y=x} -> {v:v=x && v=y}

Combinator’s Precondition
Input arguments must be equal

Combinators structure calls as equations

Equational Proof

(===) :: x:_-> y:{y=x} -> {v:v=x && v=y}

Combinator’s Postcondition
Output value equals inputs

Combinators structure calls as equations

goal2 () =
 assert (sum 2 == 3)

Verification goal

Combinators structure calls as equations
Equational Proof

Combinators structure calls as equations

Verification goal
Rephrased as post-condition

goal2 () =
 @ensures (sum 2 == 3)

Equational Proof

goal2 :: () -> { sum 2 == 3 }

Verification goal
Rephrased as output-type

Combinators structure calls as equations
Equational Proof

goal2 :: () -> {sum 2 == 3}
goal2 ()
 = sum 2
 === 3

Equational Proof
Combinators structure calls as equations

Invalid VC
VC has no information about sum(1)

goal2 :: () -> {sum 2 == 3}
goal2 ()
 = sum 2
 === 2 + sum 1
 === 3

Equational Proof
Combinators structure calls as equations

Invalid VC
VC has no information about sum(0)

Equational Proof
Combinators structure calls as equations

goal2 :: () -> {sum 2 == 3}
goal2 ()
 = sum 2
 === 2 + sum 1
 === 2 + 1 + sum 0
 === 3

Equational Proof

(==?) :: x:_-> y:_ -> {y=x} -> {v:v=x && v=y}

Ternary “Because” Combinator
Third input “asserts” that first two are equal

Combinators structure calls as equations

Equational Proof

goal3 :: () -> {sum 3 == 6}
goal3 ()
 = sum 3
 === 3 + sum 2
 === 6

Combinators structure calls as equations

goal3 :: () -> {sum 3 == 6}
goal3 ()
 = sum 3
 === 3 + sum 2
 === 6

Equational Proof

Invalid VC
VC has no information about sum(2)

Combinators structure calls as equations

goal3 :: () -> {sum 3 == 6}
goal3 ()
 = sum 3
 === 3 + sum 2
 ==? 3 + 3 ? goal2()

Equational Proof
Combinators structure calls as equations

goal2 :: () -> {sum 2 == 3}

Post-condition adds sum(2) to VC

goal3 :: () -> {sum 3 == 6}
goal3 ()
 = sum 3
 === 3 + sum 2
 ==? 6 ? goal2()

Equational Proof
Combinators structure calls as equations

Equational Proof
Enables “deep” verification

[Demo]

Equational Proof
80  n. 2⇥ sum(n) = n⇥ (n+ 1)

Equational Proof
80  n. 2⇥ sum(n) = n⇥ (n+ 1)

sumPf :: n:{0 <=n} -> {2*sum n == n*(n+1)}

sumPf 0 = 2 * sum 0
 === 0

sumPf n = 2 * sum n
 === 2 * (n + sum (n-1))
 ==? 2 * n + (n-1) * n ? sumPf (n-1)
 === n * (n+1)

Induction
Hypothesis

Equational Proof

[Demo]

8xs, ys, zs. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Equational Proof
8xs, ys, zs. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

appendPf :: xs:_ -> ys:_ -> zs:_ ->
 {(xs ++ ys) ++ zs = xs ++ (ys ++ zs)}

appendPf [] ys zs
 = ([] ++ ys) ++ zs
 === [] ++ (ys ++ zs)

appendPf (x:xs) ys zs
 = ((x:xs) ++ ys) ++ zs
 === (x : (xs ++ ys)) ++ zs
 === x : ((xs ++ ys) ++ zs)
 ==? x : (xs ++ (ys ++ zs)) ? appendPf xs ys zs
 === (x:xs) ++ (ys ++ zs)

Induction
Hypothesis

Equational Proof

reflect implementation as the specification

Step 1

Step 2

Combinators structure calls as equations

Step 3

Call function to “unfold” definition (repeatedly!)

AI

MC

I
Equational ProofEquational Proof

II
Proof Synthesis

III
Synthesis Terminates

SMT Reasoning about Functions

V

AI

VEquational Proof
I

Equational Proof

II
Proof Synthesis

III
Synthesis Terminates

SMT Reasoning about Functions

Proof Synthesis MC

II
Proof SynthesisProof Synthesis

Proof Synthesis

Manual unfolding is tedious!

Equational Proof is very expressive

n:{n > 2} -> {sum n > 5 + sum(n-3)}

Manual unfolding is tedious!

8n. n > 2) sum(n) > 5 + sum(n� 3)

ex :: n:{n > 2} -> {sum n > 5 + sum(n-3)}
ex n = sum n
 === n + sum (n-1)
 === n + (n-1) + sum (n-2)
 === n + (n-1) + (n-2) + sum (n-3)
 > 5 + sum (n-3)

Manual unfolding is tedious!

ex :: n:{n > 2} -> {sum n > 5 + sum(n-3)}
ex n = sum n
 === n + sum (n-1)
 === n + (n-1) + sum (n-2)
 === n + (n-1) + (n-2) + sum (n-3)
 > 5 + sum (n-3)

Proof Synthesis

Manual unfolding is tedious!

ex :: n:{n > 2} -> {sum n > 5 + sum(n-3)}
ex n = sum n
 === n + sum (n-1)
 === n + (n-1) + sum (n-2)
 === n + (n-1) + (n-2) + sum (n-3)
 > 5 + sum (n-3)

How to automate unfolding?

Proof Synthesis

How to automate unfolding?

Problem
Completeness vs. Termination

[LEON] [DAFNY]

How to automate unfolding?

Problem
Completeness vs. Termination

Solution
Unfold if you mustUnfold if you must

Logical Evaluation
Unfold if you must

Logical Evaluation
Step 1

Represent functions in guarded form*
{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n-1)

sum n =
 | n <= 0 = 0
 | 0 < n = n + sum (n-1)

Logical Evaluation
Step 1

Represent functions in guarded form*

| guardi = bodyi

* Every sub-term in bodyi is evaluated when guardi is true

Logical Evaluation

Step 2
Unfold calls whose guard is valid

Step 1
Represent functions in guarded form*

Unfold calls whose guard is valid

Logical Evaluation

Step 2
Unfold calls whose guard is valid

Step 1
Represent functions in guarded form*

Unfold calls whose guard is valid

Unfold calls whose guard is valid

n:{ } -> { }

Logical Evaluation

sum n > 5 + sum(n-3)n > 2

Logical Evaluation

sum n > 5 + sum(n-3)n > 2
Assume Prove

Unfold calls whose guard is valid

sum n sum(n-3)

Logical Evaluation

n > 2
Assume Calls

Unfold calls whose guard is valid

sum n sum(n-3)

n > 2

sum n
sum(n-3)

Calls

Unfold calls whose guard is valid

sum(n-1)

) n > 0

Is valid?Assume

sum(n) = n-0 + sum(n-1)

n > 2

sum n
sum(n-3)

Calls

Unfold calls whose guard is valid

sum(n-1)

sum(n) = n-0 + sum(n-1)

sum(n-2)

) n-1 > 0

Is valid?Assume

sum(n-1) = n-1 + sum(n-2)

n > 2

sum n
sum(n-3)

Calls

Unfold calls whose guard is valid

sum(n-1)

sum(n) = n-0 + sum(n-1)
sum(n-1) = n-1 + sum(n-2)

sum(n-2) sum(n-3)

) n-2 > 0

Is valid?Assume

sum(n-2) = n-2 + sum(n-3)

n > 2

sum n

Calls

Unfold calls whose guard is valid

sum(n-1)

sum(n) = n-0 + sum(n-1)
sum(n-1) = n-1 + sum(n-2)
sum(n-2) = n-2 + sum(n-3)

sum(n-2) sum(n-3)

) n-3 > 0

Is valid?Assume

n > 2

sum n

Calls

Unfold calls whose guard is valid

sum(n-1)

sum(n) = n-0 + sum(n-1)
sum(n-1) = n-1 + sum(n-2)
sum(n-2) = n-2 + sum(n-3)

sum(n-2) sum(n-3)

Assume

Fixpoint!

n > 2

Unfold calls whose guard is valid

sum(n) = n-0 + sum(n-1)
sum(n-1) = n-1 + sum(n-2)
sum(n-2) = n-2 + sum(n-3)

Assume

Assume strengthened by unfolded calls
Fixpoint!

n > 2

sum(n) = n-0 + sum(n-1)

sum(n-1) = n-1 + sum(n-2)

sum(n-2) = n-2 + sum(n-3)

)
Assume

sum n > 5 + sum(n-3)
Prove

Unfold calls whose guard is valid

Assume strengthened by unfolded calls

Logical Evaluation

Step 2
Unfold calls whose guard is valid

Step 1
Represent functions in guarded form*

Unfold calls whose guard is valid

def PLE(D, A, G):

 C = [x = f(t) for f(t) in G, x fresh]
 A* = A ∪ C

 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)

 return IsValid(A* ⟹ G)

Logical Evaluation

Algorithm: PLE

def PLE(D, A, G):

 C = [x = f(t) for f(t) in G, x fresh]
 A* = A ∪ C

 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)

 return IsValid(A* ⟹ G)

Logical Evaluation

(D)efinitions, (A)ssumptions, (G)oal

def PLE(D, A, G):

 C = [x = f(t) for f(t) in G, x fresh]
 A* = A ∪ C

 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)

 return IsValid(A* ⟹ G)

Logical Evaluation

Extend (A)ssumptions with calls in (G)oal

def PLE(D, A, G):

 C = [x = f(t) for f(t) in G, x fresh]
 A* = A ∪ C

 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)

 return IsValid(A* ⟹ G)

Logical Evaluation

Strengthen (A)ssumption with fixpoint of unfoldings

def PLE(D, A, G):

 C = [x = f(t) for f(t) in G, x fresh]
 A* = A ∪ C

 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)

 return IsValid(A* ⟹ G)

Logical Evaluation

Does strengthened (A)ssumption imply (G)oal ?

def Unfold(D, A):
 return [(f(x) = body)[t/x] |
 for f(t) in A
 for <guard = body> in D(f)
 if IsValid(A ⟹ guard[t/x])]

Logical Evaluation

Unfold
Returns equations for calls whose guard implied by A

Proof Synthesis
def PLE(D, A, G):
 …
 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)
 …
 return IsValid(A* ⟹ G)

Let Ak = A after k loop iterations

Logical Evaluation

Logical Evaluation

Proof Synthesis
def PLE(D, A, G):
 …
 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)
 …
 return IsValid(A* ⟹ G)

Theorem
IsValid(Ak⟹G) if A → G with size k equational proof

Logical Evaluation

Proof Synthesis
def PLE(D, A, G):
 …
 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)
 …
 return IsValid(A* ⟹ G)

Theorem
IsValid(A*⟹G) if A → G with any equational proof

8n. n > 2) sum(n) > 5 + sum(n� 3)

Proof Synthesis

[Demo]

Proof Synthesis

80  n. 2⇥ sum(n) = n⇥ (n+ 1)

[Demo]

I
Equational Proof

II
Proof Synthesis

III
Synthesis Terminates

SMT Reasoning about Functions

V

MC

AI

Proof Synthesis

I
Equational Proof

II
Proof Synthesis

III
Synthesis Terminates

SMT Reasoning about Functions

V

MC

AI

Proof Synthesis

Synthesis Terminates

III
Synthesis TerminatesSynthesis Terminates

Synthesis Terminates
def PLE(D, A, G):
 …
 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)
 …
 return IsValid(A* ⟹ G)

Why does PLE terminate?

Why does PLE terminate?

def PLE(D, A, G):
 …
 while A ⊂ A*:
 A = A*
 A* = Unfold(D, A)
 …
 return IsValid(A* ⟹ G)

(Implicit) Tree of Logical Steps
fi(ti) unfolds to body with fj(tj)

f1(t1)

f2(t2) f3(t3)

… … … …

Why does PLE terminate?

PLE diverges
⇒ Tree is infinite
⇒ infinite Logical Path
⇒ infinite Concrete Trace

Reflected Functions Terminate!
(Required for soundness)

Logical Path
Concrete Trace⇒

f1(t1)

f2(t2) f3(t3)

… … … …

Logical Path Concrete Trace⇒

D, A ` f(t) 7�! f 0(t0)

Logical Steps

A implies guard of f(t) whose body has f ’(t’)f 0(t0)f(t)

Logical Path Concrete Trace⇒

are Must-Abstractions

8� 2 [[A]]. �(f(t)) ,!⇤ C[�(f 0(t0))]

Logical Steps

Then

If D, A ` f(t) 7�! f 0(t0)

A implies guard of f(t) whose body has f ’(t’)f 0(t0)f(t)

Logical Path Concrete Trace⇒

are Must-Abstractions

8� 2 [[A]]. �(f(t)) ,!⇤ C[�(f 0(t0))]

Logical Steps

Then

If D, A ` f(t) 7�! f 0(t0)

If A, every evaluation of transitions to(t’)f 0(t0)f(t)

Logical Path Concrete Trace⇒

Then

If D, A ` f1(t1) 7�! f2(t2) 7�! . . .

8� 2 [[A]]. �(f1(t1)) ,!⇤ C2[�(f2(t2))] ,!⇤ . . .

If A, every evaluation of transitions to(t’)f 0(t0)f(t)

Logical Path Concrete Trace⇒

Then

If D, A ` f1(t1) 7�! f2(t2) 7�! . . .

8� 2 [[A]]. �(f1(t1)) ,!⇤ C2[�(f2(t2))] ,!⇤ . . .

i.e.

Then

If infinite logical path [[A]], not empty*

infinite concrete trace.

*A is satisfiable

Why does PLE terminate?

PLE(D,A,G) diverges

⇒ Tree is infinite
⇒ infinite Logical Path
⇒ infinite Concrete Trace

infinite logical path
infinite concrete trace.

Why does PLE terminate?

PLE(D,A,G) diverges

⇒ Tree is infinite
⇒ infinite Logical Path
⇒ infinite Concrete Trace

infinite logical path
infinite concrete trace.

PLE(D,A,G) diverges

⇒ Tree is infinite
⇒ infinite Logical Path
⇒ infinite Concrete Trace

infinite logical path
infinite concrete trace.

∴ PLE(D,A,G) terminates!

Synthesis Terminates

I
Equational Proof

II
Proof Synthesis

III
Synthesis Terminates

V

MC

AI

Proof Synthesis

Synthesis Terminates

IV
Reasoning about Functions

Laws
Transitivity, Associativity…

Optimizations
Optimization preserves behavior …

 Code Invariants
Higher-order Contract Specifications…

 Functional Correctness
Equivalence w.r.t. to reference implementation

IV
Reasoning about Functions

Laws
Transitivity, Associativity…

Optimizations
Optimization preserves behavior …

 Code Invariants
Higher-order Contract Specifications…

 Functional Correctness
Equivalence w.r.t. to reference implementation

IV
Reasoning about Functions

[Demo]

IV
Reasoning about Functions

IV
Reasoning about Functions

Equational Proofs
Synthesized by Logical Evaluation

, Synthesized by Logical Evaluation
Equational ProofsEquational Proofs

Synthesized by Logical Evaluation

SMT Automation is Great …
Short, Readable, High-level Proofs

… Except when A Proof Fails!
Counterexamples for true but unprovable facts?

?
Reasoning about Functions

Equational Proofs, Synthesized by Logical Evaluation

bit.ly/liquidhaskell

https://github.com/ucsd-progsys/liquidhaskell

