Reasoning about Functions

Niki Vazou, Anish Tondwalkar, Ranjit Jhala

UC San Diego

Reasoning about Functions

Niki Vazou, Anish Tondwalkar, Ranjit Jhala

Motivation

Motivation: SMT is Robust!

For "Shallow" Specs in Decidable theories

SMT is Robust For "Shallow" Specs

sum $n=$
if $n<=0$
then 0
else $n+\operatorname{sum}(n-1)$

SMT is Robust For "Shallow" Specs

Verify goals

SMT is Robust For "Shallow" Specs

sum $\mathrm{n}=$
@ensures (0 <= res)
goals = [assert (0 <= sum 3)]

Verify goals using spec for sum

SMT is Robust For "Shallow" Specs

$$
\text { sum }:: \mathrm{n}: \text { _ }^{->} \mathrm{res}:\{0<=\text { res }\}
$$

Verify goals using spec for sum

SMT is Robust For "Shallow" Specs

$$
\begin{aligned}
& \text { sum }:: n:_{-}->\text {res: }\{0<=\text { res }\} \\
& \text { sum } n= \\
& \text { if } n<=0 \\
& \text { then } 0 \\
& \text { else } n+\operatorname{sum}(n-1) \\
& \begin{array}{l}
\text { goals }= \\
{[\text { assert }(0<=\text { sum } 3)]}
\end{array} \\
& \text { Verification Conditions } \\
& 0<n \Rightarrow 0 \leq \operatorname{sum}(n-1) \Rightarrow 0 \leq n+\operatorname{sum}(n-1)
\end{aligned}
$$

SMT is Robust For "Shallow" Specs

$$
\begin{aligned}
& \text { sum }:: n: _ \text {res: }\{0<=\text { res }\} \\
& \text { sum } n= \\
& \text { if } n<=0 \\
& \text { then } 0 \\
& \text { else } n+\operatorname{sum}(n-1) \\
& \text { goals }= \\
& [\text { assert }(0<=\text { sum } 3)]) \\
& \text { Verification Conditions }
\end{aligned} \quad \begin{array}{r}
0<n \Rightarrow 0 \leq \operatorname{sum}(n-1) \Rightarrow 0 \leq n+\operatorname{sum}(n-1) \\
0 \leq \operatorname{sum}(3) \Rightarrow 0 \leq \operatorname{sum}(3)
\end{array}
$$

SMT is Robust For "Shallow" Specs

$$
\begin{aligned}
& \text { sum }:: n: Z_{-}->\text {res: }\{0<=\text { res }\} \\
& \text { sum } n= \\
& \text { if } n<=0 \\
& \text { then } 0 \\
& \quad \text { else } n+\operatorname{sum}(n-1) \\
& \text { goals }= \\
& {[\text { assert }(0<=\text { sum } 3)]}
\end{aligned}
$$

SMT Solves Verification Conditions

$$
\begin{gathered}
0<n \Rightarrow 0 \leq \operatorname{sum}(n-1) \Rightarrow 0 \leq n+\operatorname{sum}(n-1) \\
0 \leq \operatorname{sum}(3) \Rightarrow 0 \leq \operatorname{sum}(3)
\end{gathered}
$$

SMT is Robust For "Shallow" Specs

SMT solves decidable* VCs...

*Quantifier Free Equality, UIF, Arithmetic, Sets, Maps, Bitvectors....

SMT is Robust For "Shallow" Specs
SMT solves decidable VCs...

SMT is Brittle For "Deep" Specs
...VCs over user-defined functions

SMT is Brittle For "Deep" Specs

```
sum :: n:_ -> res:{???}
goals =
    [ assert (sum 3 == 6)]
```

A suitable spec for sum?

SMT is Brittle For "Deep" Specs

```
sum :: n:_ -> res:{???}
goals =
[ assert (sum 3 == 6) ]
```

A suitable spec for sum needs axioms!

$$
\begin{aligned}
& \forall n . n \leq 0 \Rightarrow \operatorname{sum}(n)=0 \\
& \forall n .0<n \Rightarrow \operatorname{sum}(n)=n+\operatorname{sum}(n-1)
\end{aligned}
$$

SMT is Brittle For "Deep" Specs

A suitable spec for sum needs axioms!

$$
\begin{aligned}
& \forall n . n \leq 0 \Rightarrow \operatorname{sum}(n)=0 \\
& \forall n .0<n \Rightarrow \operatorname{sum}(n)=n+\operatorname{sum}(n-1)
\end{aligned}
$$

Loading

SMT is Robust For "Shallow" Specs

SMT solves decidable VCs

SMT is Brittle For "Deep" Specs

VCs over User-defined Functions

VCs over User-defined Functions

... are everywhere!

VCs over User-defined Functions

Laws
Transitivity, Associativity...

Optimizations
Optimization preserves behavior ...

Code Invariants

Higher-order Contract Specifications...

Functional Correctness
Equivalence w.r.t. to reference implementation

Motivation

VCs over User-defined Functions

Motivation

SMT Reasoning about Functions

SMT Reasoning about Functions

I

Equational Proof

II
Proof Synthesis

III
Synthesis Terminates

SMT Reasoning about Functions

I

Equational Proof

I
 Equational Proof

A suitable spec for sum?

A suitable spec for sum?

 reflect implementation as the specification$$
\begin{aligned}
& \begin{array}{l}
\text { \{-@ reflect sum @-\} } \\
\text { sum } n= \\
\text { if } n<=0 \\
\quad \text { then } 0 \\
\quad \text { else } n+\operatorname{sum}(n-1) \\
\text { goals }= \\
\quad[\text { assert }(\operatorname{sum} 3==6)]
\end{array}
\end{aligned}
$$

sum : : $\mathrm{n}:$ _ $^{->} \mathrm{v}:\{\mathrm{v}=\mathrm{if} \mathrm{n}<=0$ then 0 else $\mathrm{n}+\operatorname{sum}(\mathrm{n}-1)\}$

A suitable spec for sum?

 reflect implementation as the specification$$
\text { sum }:: n:{ }_{-}->v:\{v=\text { if } n<=0 \text { then } 0 \text { else } n+\operatorname{sum}(n-1)\}
$$

A. sum Must Terminate on All Inputs

Ensures soundness

A suitable spec for sum?

 reflect implementation as the specification$$
\text { sum }:: n: _->v:\{v=\text { if } n<=0 \text { then } 0 \text { else } n+\operatorname{sum}(n-1)\}
$$

B. sum is an uninterpreted function

$$
\forall x, y: x=y \Rightarrow f(x)=f(y)
$$

A suitable spec for sum?

reflect implementation as the specification

$$
\text { sum }:: n:{ }_{-}->v:\{v=\text { if } n<=0 \text { then } 0 \text { else } n+\operatorname{sum}(n-1)\}
$$

B. sum is an uninterpreted function Ensures SMT can decide VCs

A suitable spec for sum?

reflect implementation as the specification
A. sum Must Terminate on All Inputs Ensures soundness
B. sum is an uninterpreted function Ensures SMT can decide VCs

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition

Call function to "unfold" definition

$$
\begin{aligned}
& \text { \{-@ reflect sum @-\} } \\
& \text { sum } n= \\
& \text { if } n<=0 \\
& \quad \text { then } 0 \\
& \quad \text { else } n+\operatorname{sum}(n-1) \\
& \text { goals }= \\
& \quad[\text { assert }(\operatorname{sum} 0=0)]
\end{aligned}
$$

Verification Condition*

$$
(\operatorname{sum}(0)=\text { if }(0 \leq 0) \text { then } 0 \text { else } \ldots) \Rightarrow \operatorname{sum}(0)=0
$$

* At callsite, substitute actuals for formals in Post-Condition [Floyd-Hoare]

Call function to "unfold" definition

$$
\begin{aligned}
& \text { \{-@ reflect sum @-\} } \\
& \text { sum } n= \\
& \text { if } n<=0 \\
& \quad \text { then } 0 \\
& \quad \text { else } n+\operatorname{sum}(n-1) \\
& \text { goals }= \\
& \quad[\text { assert }(\operatorname{sum} 0==0)]
\end{aligned}
$$

Verification Condition

$$
(\operatorname{sum}(0)=\text { if }(0 \leq 0) \text { then } 0 \text { else } \ldots) \Rightarrow \operatorname{sum}(0)=0
$$

Call function to "unfold" definition

$$
\begin{aligned}
& \text { \{-@ reflect sum @-\} } \\
& \text { sum } n= \\
& \text { if } n<=0 \\
& \quad \text { then } 0 \\
& \quad \text { else } n+\operatorname{sum}(n-1) \\
& \text { goals }= \\
& \quad[\text { assert }(\operatorname{sum} 0==0)]
\end{aligned}
$$

Verification Condition

$(\operatorname{sum}(0)=$ if $(0 \leq 0)$ then 0 else $\ldots) \Rightarrow \operatorname{sum}(0)=0$

Call function to "unfold" definition

$$
\begin{aligned}
& \text { \{-@ reflect sum @-\} } \\
& \text { sum } n= \\
& \text { if } n<=0 \\
& \quad \text { then } 0 \\
& \quad \text { else } n+\operatorname{sum}(n-1) \\
& \text { goals }= \\
& \quad[\text { assert }(\text { sum } 2=3)]
\end{aligned}
$$

Verification Condition Invalid

$(\operatorname{sum}(2)=$ if $2 \leq 0$ then 0 else $2+\operatorname{sum}(1) \Rightarrow \operatorname{sum}(2)=3$

* VC has no information about sum(1)

Call function to "unfold" definition

\{-@ reflect sum @-\}
sum $\mathrm{n}=$
if $n<=0$
then 0
If at first you don't succeed... assert (sum $2==3)]$

Verification Condition Invalid
$(\operatorname{sum}(2)=i f 2 \leq 0$ inen 0 else $2+\operatorname{sum}(1)) \Rightarrow \operatorname{sum}(2)=3$

Call function to "unfold" definition

```
{-@ reflect sum @-}
sum n =
    if n<= 0
        then 0
        else n + sum (n - 1)
goals =
    [ assert (sum 1 == 1)
    , assert (sum 2 == 3)]
```

VC has no information about sum(1)
Call sum(1) to unfold specification...

Call function to "unfold" definition

```
{-@ reflect sum @-}
sum n =
    if n<= 0
        then 0
        else n + sum (n - 1)
goals =
    [ assert (sum 1 == 1)
    , assert (sum 2 == 3)]
```

VC has no information about sum(0) Call sum(0) to unfold specification...

Call function to "unfold" definition

```
{-@ reflect sum @-}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)
goals =
    [ assert (sum 0 == 0)
    , assert (sum 1 == 1)
    , assert (sum 2 == 3) ]
```


Call function to "unfold" definition

$$
\begin{aligned}
& \text { \{-@ reflect sum @-\} } \\
& \text { sum } n= \\
& \text { if } n<=0 \\
& \quad \text { then } 0 \\
& \quad \text { else } n+\operatorname{sum}(n-1) \\
& \text { goals }= \\
& \quad[\text { assert }(\operatorname{sum} 0==0) \\
& \quad, \text { assert }(\operatorname{sum} 1==1) \\
& \quad \text {, assert }(\operatorname{sum} 2==3)]
\end{aligned}
$$

$$
(\operatorname{sum}(0)=\text { if } 0 \leq 0 \text { then } 0 \text { else } 0+\operatorname{sum}(0-1)) \Rightarrow \operatorname{sum}(0)=0
$$

Call function to "unfold" definition

$$
\begin{aligned}
& \{-@ \text { reflect sum @-\} } \\
& \text { sum } n= \\
& \text { if } n<=0 \\
& \text { then } 0 \\
& \quad \text { else } n+\operatorname{sum}(n-1) \\
& \text { goals }= \\
& \quad[\text { assert }(\operatorname{sum} 0==0) \\
& \quad, \text { assert }(\operatorname{sum} 1==1) \\
& \quad, \text { assert }(\operatorname{sum} 2==3)]
\end{aligned}
$$

Call function to "unfold" definition

$$
\begin{aligned}
& \text { \{-@ reflect sum @-\} } \\
& \text { sum } n= \\
& \quad \text { if } n<=0 \\
& \quad \text { then } 0 \\
& \quad \text { else } n+\operatorname{sum}(n-1) \\
& \text { goals }= \\
& \quad[\text { assert (sum } 0=0) \\
& \quad, \text { assert (sum } 1==1) \\
& \quad \text {, assert (sum } 2==3)
\end{aligned}
$$

$$
\wedge(\operatorname{sum}(1)=\text { if } 1 \leq 0 \text { then } 0 \text { else } 1+\operatorname{sum}(1-1))
$$

$$
\wedge(\operatorname{sum}(2)=\text { if } 2 \leq 0 \text { then } 0 \text { else } 2+\operatorname{sum}(2-1)) \Rightarrow \operatorname{sum}(2)=3
$$

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition (repeatedly!)
Tedious to unfold repeatedly!

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition (repeatedly!)

Step 3

Combinators structure calls as equations

Equational Proof

Combinators structure calls as equations

$$
(===):: x::_{-} y:\{y=x\}->\{v: v=x \& \& v=y\}
$$

Combinator's Precondition Input arguments must be equal

Equational Proof

Combinators structure calls as equations

$$
(===):: x: \text { _ }_{->} y:\{y=x\} \text {-> }\{v: v=x \& \& v=y\}
$$

Combinator's Postcondition Output value equals inputs

Equational Proof

Combinators structure calls as equations

$$
\begin{aligned}
& \text { goal2 }()= \\
& \text { assert }(\text { sum } 2=3)
\end{aligned}
$$

Verification goal

Equational Proof

Combinators structure calls as equations

$$
\begin{aligned}
& \text { goal2 }()= \\
& \text { @ensures (sum } 2==3)
\end{aligned}
$$

Verification goal
Rephrased as post-condition

Equational Proof

Combinators structure calls as equations

$$
\text { goal2 : : () -> \{ sum } 2=3\}
$$

Verification goal
Rephrased as output-type

Equational Proof

Combinators structure calls as equations

$$
\begin{aligned}
& \text { goal2 :: () }->\{\text { sum } 2=3\} \\
& \text { goal2 () } \\
& =\text { sum } 2 \\
& ==3
\end{aligned}
$$

Invalid VC

VC has no information about sum(1)

Equational Proof

Combinators structure calls as equations

$$
\begin{aligned}
& \text { goal2 :: () }->\{\text { sum } 2=3\} \\
& \text { goal2 }() \\
& ==\text { sum } 2 \\
& ==2+\text { sum } 1 \\
& \equiv=3
\end{aligned}
$$

Invalid VC

VC has no information about sum(0)

Equational Proof

Combinators structure calls as equations

$$
\begin{aligned}
& \text { goal2 : : () -> \{sum } 2=3\} \\
& \text { goal2 () } \\
& ==\text { sum } 2 \\
& ==2+\text { sum } 1 \\
& ===2+1+\text { sum } 0 \\
& ===3
\end{aligned}
$$

Equational Proof

Combinators structure calls as equations

$$
(==?):: x::_{-}->y:_{-}->\{y=x\}->\{v: v=x \& \& v=y\}
$$

Ternary "Because" Combinator

Third input "asserts" that first two are equal

Equational Proof

Combinators structure calls as equations

$$
\text { goal3 : : () -> \{sum } 3=6\}
$$

Equational Proof

Combinators structure calls as equations

$$
\begin{aligned}
& \text { goal3 :: () }->\{\text { sum } 3=6\} \\
& \text { goal3 }() \\
& =\text { sum } 3 \\
& ==3+\text { sum } 2 \\
& ==6
\end{aligned}
$$

Invalid VC

VC has no information about sum(2)

Equational Proof

Combinators structure calls as equations

$$
\begin{aligned}
& \text { goal3 :: () }->\text { \{sum } 3=6\} \\
& \text { goal3 }() \\
& =\text { sum } 3 \\
& ==3+\text { sum } 2 \\
& ==? 3+3 \quad
\end{aligned}
$$

Post-condition adds sum(2) to VC

$$
\text { goal2 : : () -> }\{\text { sum } 2=3\}
$$

Equational Proof

Combinators structure calls as equations

$$
\begin{aligned}
& \text { goal3 :: () }->\text { sum } 3=6\} \\
& \text { goal3 }() \\
& =\text { sum } 3 \\
& ==3+\text { sum } 2 \quad \\
& ==\text { ? } 6
\end{aligned}
$$

Equational Proof

Enables "deep" verification

Equational Proof

$$
\forall 0 \leq n .2 \times \operatorname{sum}(n)=n \times(n+1)
$$

[Demo]

Equational Proof

$$
\forall 0 \leq n .2 \times \operatorname{sum}(n)=n \times(n+1)
$$

$$
\begin{aligned}
\text { sumPf }: & \mathrm{n}:\{0<=\mathrm{n}\}->\{2 * \text { sum } \mathrm{n}==\mathrm{n} *(\mathrm{n}+1)\} \\
\text { sumPf } 0 & =2 * \operatorname{sum} 0 \\
& ===0 \\
\text { sumPf } \mathrm{n} & =2 * \operatorname{sum} \mathrm{n} \\
& ==2 *(\mathrm{n}+\operatorname{sum}(\mathrm{n}-1)) \\
& ==? 2 * \mathrm{n}+(\mathrm{n}-1)^{*} \mathrm{n} \\
& ===n *(n+1)
\end{aligned}
$$

Equational Proof

$\forall x s, y s, z s .(x s+y s)+z s=x s+(y s+z s)$

[Demo]

Equational Proof

$\forall x s, y s, z s .(x s+y s)+z s=x s+(y s+z s)$

$$
\begin{aligned}
& \text { appendPf :: xs:_ -> es:_ -> zs:_ -> } \\
& \{(x s++y s)++z s=x s++(y s++z s)\}
\end{aligned}
$$

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition (repeatedly!)

Step 3

Combinators structure calls as equations

SMT Reasoning about Functions

I

Equational Proof

SMT Reasoning about Functions

Equational Proof

II
Proof Synthesis

II

Proof Synthesis

Proof Synthesis

Equational Proof is very expressive
Manual unfolding is tedious!

Manual unfolding is tedious!

$\forall n . n>2 \Rightarrow \operatorname{sum}(n)>5+\operatorname{sum}(n-3)$
$\mathrm{n}:\{\mathrm{n}>2\}->\{$ sum $\mathrm{n}>5+\operatorname{sum}(\mathrm{n}-3)\}$

Manual unfolding is tedious!

$$
\text { ex }:: n:\{n>2\}->\{\text { sum } n>5+\operatorname{sum}(n-3)\}
$$

Proof Synthesis

$$
\begin{aligned}
\text { ex }:: & n:\{n>2\}->\{\operatorname{sum} n>5+\operatorname{sum}(n-3)\} \\
\text { ex } n & =\operatorname{sum} n \\
& ==n+\operatorname{sum}(n-1) \\
& ==n+(n-1)+\operatorname{sum}(n-2) \\
& ==n+(n-1)+(n-2)+\operatorname{sum}(n-3) \\
& >5+\operatorname{sum}(n-3)
\end{aligned}
$$

Manual unfolding is tedious!

Proof Synthesis

$$
\begin{aligned}
\text { ex }:: & n:\{n>2\}->\{\operatorname{sum} n>5+\operatorname{sum}(n-3)\} \\
\text { ex } n & =\operatorname{sum} n \\
& ==n+\operatorname{sum}(n-1) \\
& ==n+(n-1)+\operatorname{sum}(n-2) \\
& ==n+(n-1)+(n-2)+\operatorname{sum}(n-3) \\
& >5+\operatorname{sum}(n-3)
\end{aligned}
$$

How to automate unfolding?

How to automate unfolding?

Loading

Problem

Completeness vs. Termination [LEON]
[DAFNY]

How to automate unfolding?

Problem

Completeness vs. Termination

Solution

Unfold if you must

Logical Evaluation Unfold if you must

Logical Evaluation

Step 1

Represent functions in guarded form*
\{-@ reflect sum @-\}
sum $\mathrm{n}=$
if $n<=0$
then 0
else $n+\operatorname{sum}(n-1)$

Logical Evaluation

Step 1

Represent functions in guarded form*

$$
\begin{aligned}
& \text { sum } n= \\
& 1 n<=0=0 \\
& 10<n=n+\operatorname{sum}(n-1)
\end{aligned}
$$

$$
1 \text { guardi }=\text { body }{ }_{i}
$$

* Every sub-term in body ${ }_{i}$ is evaluated when guard d_{i} is true

Logical Evaluation

Step 1
Represent functions in guarded form

Step 2

Unfold calls whose guard is valid

Logical Evaluation

Step 1
Represent functions in guarded form

Step 2

Unfold calls whose guard is valid

Logical Evaluation

Unfold calls whose guard is valid

$$
n:\{n>2\}->\{\operatorname{sum} n>5+\operatorname{sum}(n-3)\}
$$

Logical Evaluation

Unfold calls whose guard is valid

Assume

Prove

sum $n>5+\operatorname{sum}(n-3)$

Logical Evaluation

 Unfold calls whose guard is validAssume
$n>2$

Calls

sum $n \quad \operatorname{sum}(n-3)$

Unfold calls whose guard is valid

Assume
 Is valid?

Calls

Unfold calls whose guard is valid

Assume
 Is valid?

$$
\begin{array}{r}
n>2 \\
\operatorname{sum}(n)=n+\operatorname{sum}(n-1) \\
\operatorname{sum}(n-1)=n-1+\operatorname{sum}(n-2)
\end{array} \Longrightarrow n-1>0
$$

Calls

$\operatorname{sum} n \longrightarrow \operatorname{sum}(n-1) \longrightarrow \operatorname{sum}(n-2)$ sum($n-3$)

Unfold calls whose guard is valid

Assume
 Is valid?

$$
\begin{array}{r}
n>2 \\
\operatorname{sum}(n)=n+\operatorname{sum}(n-1) \\
\operatorname{sum}(n-1)=n-1+\operatorname{sum}(n-2) \\
\operatorname{sum}(n-2)=n-2+\operatorname{sum}(n-3)
\end{array} \Rightarrow n-2>0
$$

Calls

$\operatorname{sum} n \longrightarrow \operatorname{sum}(n-1) \longrightarrow \operatorname{sum}(n-2) \longrightarrow \operatorname{sum}(n-3)$ sum($n-3$)

Unfold calls whose guard is valid

Assume
 Is valid?

\[

\]

Calls

$\operatorname{sum} \mathrm{n} \longrightarrow \operatorname{sum}(\mathrm{n}-1) \longrightarrow \operatorname{sum}(\mathrm{n}-2) \longrightarrow \operatorname{sum}(\mathrm{n}-3)$

Unfold calls whose guard is valid

> Assume
> $\operatorname{sum}(n)=n+\operatorname{sum}(n-1)$
> Fixpoint!
> $\operatorname{sum}(n-1)=n-1+\operatorname{sum}(n-2)$
> $\operatorname{sum}(n-2)=n-2+\operatorname{sum}(n-3)$

Calls
$\operatorname{sum} \mathrm{n} \longrightarrow \operatorname{sum}(\mathrm{n}-1) \longrightarrow \operatorname{sum}(\mathrm{n}-2) \longrightarrow \operatorname{sum}(\mathrm{n}-3)$

Unfold calls whose guard is valid

Assume

$$
\begin{array}{ll}
n>2 \\
\operatorname{sum}(n) & =n+\operatorname{sum}(n-1) \\
\operatorname{sum}(n-1) & =n-1+\operatorname{sum}(n-2) \\
\operatorname{sum}(n-2) & =n-2+\operatorname{sum}(n-3)
\end{array}
$$

Fixpoint!

Assume strengthened by unfolded calls

Unfold calls whose guard is valid

Assume strengthened by unfolded calls

Logical Evaluation

Step 1
Represent functions in guarded form

Step 2

Unfold calls whose guard is valid

Logical Evaluation

def PLE(D, A, G):

$$
\begin{aligned}
& C=[x=f(t) \text { for } f(t) \text { in } G, x \text { fresh }] \\
& A^{*}=A \cup C
\end{aligned}
$$

$$
\text { while } \mathrm{A} \subset \mathrm{~A}^{*}:
$$

$$
\mathrm{A}=\mathrm{A}^{*}
$$

$$
A^{*}=U n f o l d(D, A)
$$

$$
\text { return IsValid(A* } \Longrightarrow \text { G) }
$$

Algorithm: PLE

Logical Evaluation

def PLE(D, A, G):
(D)efinitions, (A)ssumptions, (G)oal

Logical Evaluation

$$
\begin{aligned}
& \text { def } \operatorname{PLE}(D, A, G): \\
& C=[x=f(t) \text { for } f(t) \text { in } G, x \text { fresh }] \\
& A^{*}=A \cup C
\end{aligned}
$$

Extend (A) ssumptions with calls in (G) oal

Logical Evaluation

$$
\operatorname{def} \operatorname{PLE}(D, A, G):
$$

$$
\begin{aligned}
& \text { while } A \subset A^{*}: \\
& \qquad A=A^{*} \\
& A^{*}=U n f o l d(D, A)
\end{aligned}
$$

Strengthen (A) ssumption with fixpoint of unfoldings

Logical Evaluation

> def PLE(D, A, G):
return IsValid $\left(A^{*} \Longrightarrow G\right)$

Does strengthened (A)ssumption imply (G)oal ?

Logical Evaluation

def Unfold(D, A):

$$
\begin{aligned}
& \text { return }[(f(x)=\text { body }[t / x] \text { । } \\
& \text { for } f(t) \text { in } A \\
& \text { for }<\text { guard }=\text { body> in } D(f) \\
& \text { if IsValid }(A \Longrightarrow \operatorname{guard}[t / x])]
\end{aligned}
$$

Unfold

Returns equations for calls whose guard implied by A

Proof Synthesis

$$
\begin{aligned}
& \text { def } \operatorname{PLE}(D, A, G): \\
& \ldots \\
& \text { while } A \subset A^{*}: \\
& A=A^{*} \\
& A^{*}=\text { Unfold(D, A) } \\
& \ldots \\
& \text { return IsValid(A* } \Longrightarrow G)
\end{aligned}
$$

Logical Evaluation

Let $A^{k}=A$ after k loop iterations

Proof Synthesis

$$
\begin{aligned}
& \text { def } \operatorname{PLE}(D, A, G): \\
& \ldots \\
& \text { while } A \subset A^{*}: \\
& A=A^{*} \\
& A^{*}=\text { Unfold(D, A) } \\
& \ldots \\
& \text { return IsValid(A* } \Longrightarrow G)
\end{aligned}
$$

Logical Evaluation

Theorem

IsValid $\left(A^{k} \Longrightarrow G\right)$ if $A \rightarrow G$ with size k equational proof

Proof Synthesis

$$
\begin{aligned}
& \text { def } \operatorname{PLE}(D, A, G): \\
& \ldots \\
& \text { while } A \subset A^{*}: \\
& A=A^{*} \\
& A^{*}=\text { Unfold(D, A) } \\
& \ldots \\
& \text { return IsValid }\left(A^{*} \Longrightarrow G\right)
\end{aligned}
$$

Logical Evaluation

Theorem

$\operatorname{IsValid}\left(A^{*} \Longrightarrow G\right)$ if $A \rightarrow G$ with any equational proof

Proof Synthesis

$\forall n . n>2 \Rightarrow \operatorname{sum}(n)>5+\operatorname{sum}(n-3)$
[Demo]

Proof Synthesis

$$
\forall 0 \leq n .2 \times \operatorname{sum}(n)=n \times(n+1)
$$

[Demo]

SMT Reasoning about Functions

Equational Proof

II
Proof Synthesis

SMT Reasoning about Functions

Equational Proof

II

III
Synthesis Terminates

III

Synthesis Terminates

Synthesis Terminates

```
def PLE(D, A, G):
while A c A*:
    A = A*
    A* = Unfold(D, A)
    return IsValid(A* \Longrightarrow G)
```

Why does PLE terminate?

Why does PLE terminate?

```
def PLE(D, A, G):
    while A c A*:
        A = A*
        A* = Unfold(D, A)
    return IsValid(A* \LongrightarrowG)
```


(Implicit) Tree of Logical Steps $f_{i}\left(t_{i}\right)$ unfolds to body with $f_{j}\left(t_{j}\right)$

Why does PLE terminate?

PLE diverges
\Rightarrow Tree is infinite
\Rightarrow infinite Logical Path
\Rightarrow infinite Concrete Trace X

Reflected Functions Terminate! (Required for soundness)

Logical Steps

$$
D, A \vdash \mathrm{f}(\bar{t}) \longmapsto \mathrm{f}^{\prime}\left(\overline{t^{\prime}}\right)
$$

A implies guard of $\mathbf{f}(\bar{t})$ whose body has $\mathrm{f}^{\prime}\left(\overline{t^{\prime}}\right)$

Logical Path \Rightarrow Concrete Trace

Logical Steps are Must-Abstractions

$$
\text { If } \quad D, A \vdash \mathrm{f}(\bar{t}) \longmapsto \mathrm{f}^{\prime}\left(\overline{t^{\prime}}\right)
$$

Then $\forall \sigma \in \llbracket A \rrbracket . \sigma(\mathrm{f}(\bar{t})) \hookrightarrow^{*} C\left[\sigma\left(\mathrm{f}^{\prime}\left(\overline{t^{\prime}}\right)\right)\right]$

A implies guard of $\mathrm{f}(\bar{t})$ whose body has $\mathrm{f}^{\prime}\left(\overline{t^{\prime}}\right)$
Logical Path \Rightarrow Concrete Trace

Logical Steps are Must-Abstractions

$$
\text { If } \quad D, A \vdash \mathrm{f}(\bar{t}) \longmapsto \mathrm{f}^{\prime}\left(\overline{t^{\prime}}\right)
$$

Then $\forall \sigma \in \llbracket A \rrbracket . \sigma(\mathrm{f}(\bar{t})) \hookrightarrow^{*} C\left[\sigma\left(\mathrm{f}^{\prime}\left(\overline{t^{\prime}}\right)\right)\right]$

If A, every evaluation of $\mathrm{f}(\bar{t})$ transitions to $\mathrm{f}^{\prime}\left(\overline{t^{\prime}}\right)$ Logical Path \Rightarrow Concrete Trace

Logical Path \Rightarrow Concrete Trace

$$
\text { If } \quad D, A \vdash \mathrm{f}_{1}\left(\overline{t_{1}}\right) \longmapsto \mathrm{f}_{2}\left(\overline{t_{2}}\right)
$$

Then $\forall \sigma \in \llbracket A \rrbracket . \sigma\left(\mathrm{f}_{1}\left(\overline{t_{1}}\right)\right) \hookrightarrow^{*} C_{2}\left[\sigma\left(\mathrm{f}_{2}\left(\overline{t_{2}}\right)\right)\right] \hookrightarrow^{*} \ldots$

If A, every evaluation of $\mathrm{f}(\bar{t})$ transitions to $\mathrm{f}^{\prime}\left(\overline{t^{\prime}}\right)$

Logical Path \Rightarrow Concrete Trace

$$
\text { If } \quad D, A \vdash \mathrm{f}_{1}\left(\overline{t_{1}}\right) \longmapsto \mathrm{f}_{2}\left(\overline{t_{2}}\right) \longmapsto \ldots
$$

Then $\forall \sigma \in \llbracket A \rrbracket . \sigma\left(\mathrm{f}_{1}\left(\overline{t_{1}}\right)\right) \hookrightarrow^{*} C_{2}\left[\sigma\left(\mathrm{f}_{2}\left(\overline{t_{2}}\right)\right)\right] \hookrightarrow^{*} \ldots$
i.e.

If infinite logical path, $\llbracket A \rrbracket$ not empty*
Then infinite concrete trace.

* A is satisfiable

Why does PLE terminate?

$\operatorname{PLE}(\mathrm{D}, \mathrm{A}, \mathrm{G})$ diverges

\Rightarrow Tree is infinite
\Rightarrow infinite logical path
\Rightarrow infinite concrete trace.

Why does PLE terminate?

$\operatorname{PLE}(\mathrm{D}, \mathrm{A}, \mathrm{G})$ diverges

\Rightarrow Tree is infinite
\Rightarrow infinite logical path
\Rightarrow infinite concrete trace.

Synthesis Terminates

$\operatorname{PLE}(\mathrm{D}, \mathrm{A}, \mathrm{G})$ diverges
\Rightarrow Tree is infinite
\Rightarrow infinite logical path
\Rightarrow infinite concrete trace.
$\therefore \operatorname{PLE}(\mathrm{D}, \mathrm{A}, \mathrm{G})$ terminates!

Reasoning about Functions

Equational Proof

Proof Synthesis
III
Synthesis Terminates

Reasoning about Functions

Laws
Transitivity, Associativity...

Optimizations
Optimization preserves behavior ...

Code Invariants

Higher-order Contract Specifications...

Functional Correctness
Equivalence w.r.t. to reference implementation

Reasoning about Functions

Laws

Transitivity, Associativity...

Code Invariants
ler Contract Specifications...

Functional Correctness

Reasoning about Functions

Benchmark	Common		Without PLE Search			With PLE Search		
	Impl (1)	Spec (1)	Proof (l)	Time (s)	SMT (q)	Proof (l)	Time (s)	SMT (q)
Arithmetic								
Fibonacci	7	10	38	2.74	129	16	1.92	79
Ackermann	20	73	196	5.40	566	119	13.80	846
Class Laws Fig 11								
Monoid	33	50	109	4.47	34	33	4.22	209
Functor	48	44	93	4.97	26	14	3.68	68
Applicative	62	110	241	12.00	69	74	10.00	1090
Monad	63	42	122	5.39	49	39	4.89	250
Higher-Order Properties								
Logical Properties	0	20	33	2.71	32	33	2.74	32
Fold Universal	10	44	43	2.17	24	14	1.46	48
Functional Correctness								
SAT-solver	92	34	0	50.00	50	0	50.00	50
Unification	51	60	85	4.77	195	21	5.64	422
Deterministic Parallelism								
Conc. Sets	597	329	339	40.10	339	229	40.70	861
n-body	163	251	101	7.41	61	21	6.27	61
Par. Reducers	30	212	124	6.63	52	25	5.56	52
Total	1176	1279	1524	148.76	1626	638	150.88	4068

Reasoning about Functions

Equational Proofs

Synthesized by Logical Evaluation

Equational Proofs

Synthesized by Logical Evaluation

SMT Automation is Great ...

Short, Readable, High-level Proofs
... Except when A Proof Fails!
Counterexamples for true but unprovable facts?

Reasoning about Functions

Equational Proofs, Synthesized by Logical Evaluation

bit.ly/liquidhaskell

If at first

 you don't succeed, call it version 1.0