Reasoning about Functions

Niki Vazou, Anish Tondwalkar, Ranjit Jhala

UC San Diego

Reasoning about Functions

Niki Vazou, Anish Tondwalkar, Ranjit Jhala

Motivation

Motivation: SMT is Robust!

For "Shallow" Specs in Decidable theories

sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)</pre>

sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (0 <= sum 3)]</pre>

```
Verify goals
```

sum n =
 @ensures (0 <= res)
 if n <= 0
 then 0
 else n + sum (n - 1)
goals =</pre>

[assert (0 <= sum 3)]

Verify goals using spec for sum

```
sum :: n:_ -> res:{0 <= res}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (0 <= sum 3) ]</pre>
```

Verify goals using spec for sum

sum :: n:_ -> res:{0 <= res}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (0 <= sum 3)]</pre>

Verification Conditions

 $0 < n \Rightarrow 0 \leq \operatorname{sum}(n-1) \Rightarrow 0 \leq n + \operatorname{sum}(n-1) \bigstar$

```
sum :: n:_ -> res:{0 <= res}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (0 <= sum 3) ]</pre>
```

Verification Conditions

```
0 < n \Rightarrow 0 \le \operatorname{sum}(n-1) \Rightarrow 0 \le n + \operatorname{sum}(n-1)0 \le \operatorname{sum}(3) \Rightarrow 0 \le \operatorname{sum}(3)
```

```
sum :: n:_ -> res:{0 <= res}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (0 <= sum 3) ]</pre>
```

SMT Solves Verification Conditions $0 < n \Rightarrow 0 \le sum(n-1) \Rightarrow 0 \le n + sum(n-1)$ $0 \le sum(3) \Rightarrow 0 \le sum(3)$

SMT is Robust For "Shallow" Specs SMT solves decidable* VCs...

*Quantifier Free Equality, UIF, Arithmetic, Sets, Maps, Bitvectors....

SMT is Robust For "Shallow" Specs SMT solves decidable VCs...

SMT is Brittle For "Deep" Specs ...VCs over user-defined functions

SMT is Brittle For "Deep" Specs

sum :: n:_ -> res:{???}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 3 == 6)]</pre>

A suitable spec for sum?

SMT is Brittle For "Deep" Specs

sum :: n:_ -> res:{???}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 3 == 6)]</pre>

A suitable spec for sum needs axioms! $\forall n. n \le 0 \Rightarrow sum(n) = 0$ $\forall n. 0 < n \Rightarrow sum(n) = n + sum(n - 1)$

SMT is Brittle For "Deep" Specs

A suitable spec for sum needs axioms!

 $\forall n. \ n \leq 0 \Rightarrow \mathsf{sum}(n) = 0$

 $\forall n. \ 0 < n \Rightarrow \operatorname{sum}(n) = n + \operatorname{sum}(n-1)$

Loading

SMT is Robust For "Shallow" Specs SMT solves decidable VCs

SMT is Brittle For "Deep" Specs VCs over User-defined Functions

VCs over User-defined Functions

... are everywhere!

VCs over User-defined Functions

Laws Transitivity, Associativity...

Optimizations

Optimization preserves behavior ...

Code Invariants Higher-order Contract Specifications...

Functional Correctness Equivalence w.r.t. to reference implementation

Motivation

VCs over User-defined Functions

Motivation

SMT Reasoning about Functions

LEON ["Satisfiability Modulo Recursive Functions", Suter et al. 2011] DAFNY ["Computing with an SMT Solver", Amin et al. 2014]

SMT Reasoning about Functions Equational Proof ΙΙ MC **Proof Synthesis** ΙΠ ΑΙ Synthesis Terminates

SMT Reasoning about Functions Equational Proof MC **Proof Synthesis** Synthesis Terminates

I Equational Proof

```
sum :: n:_ -> res:{???}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (sum 3 == 6) ]</pre>
```

reflect implementation as the specification

```
{-@ reflect sum @-}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (sum 3 == 6) ]</pre>
```

sum :: $n:_ \rightarrow v: \{v = if n \le 0 \text{ then } 0 \text{ else } n + sum(n-1)\}$

reflect implementation as the specification

sum ::
$$n:_ -> v: \{v = if n <= 0 then 0 else n + sum(n-1)\}$$

A. sum Must Terminate on All Inputs Ensures soundness

reflect implementation as the specification

sum ::
$$n:_ \rightarrow v: \{v = if n \le 0 \text{ then } 0 \text{ else } n + sum(n-1)\}$$

B. Sum is an uninterpreted function $\forall x, y : x = y \Rightarrow f(x) = f(y)$

reflect implementation as the specification

sum ::
$$n:_ -> v: \{v = if n <= 0 then 0 else n + sum(n-1)\}$$

B. Sum is an uninterpreted function Ensures SMT can decide VCs

reflect implementation as the specification

A. sum Must Terminate on All Inputs Ensures soundness

B. Sum is an uninterpreted function Ensures SMT can decide VCs

Equational Proof

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition

{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 0) == 0)]</pre>

Verification Condition*

 $(\mathsf{sum}(0) = if \ (0 \le 0) \ then \ 0 \ else \ \ldots) \Rightarrow \mathsf{sum}(0) = 0$

* At callsite, substitute actuals for formals in Post-Condition [Floyd-Hoare]

{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 0 == 0)]</pre>

Verification Condition

 $(\mathsf{sum}(0) = if \ (0 \le 0) \ then \ 0 \ else \ \ldots) \Rightarrow \mathsf{sum}(0) = 0$

{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)
goals =
 [assert (sum 0 == 0)]</pre>

Verification Condition

 $(sum(0) = if (0 \le 0) then 0 else \dots) \Rightarrow sum(0) = 0$

{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)

goals =
 [assert (sum 2 == 3)]</pre>

Verification Condition Invalid

 $(\operatorname{sum}(2) = if \ 2 \le 0 \ then \ 0 \ else \ 2 + \operatorname{sum}(1)) \Rightarrow \operatorname{sum}(2) = 3$

* VC has no information about sum(1)

{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n - 1)
If at first you don't succeed...
[assert (sum 2 == 3)]</pre>

Verification Condition Invalid

 $(\operatorname{sum}(2) = if \ 2 \le 0 \ then \ 0 \ else \ 2 + \operatorname{sum}(1)) \Rightarrow \operatorname{sum}(2) = 3$

* VC has no information about sum(1)

```
{-@ reflect sum @-}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (sum 1 == 1)
    , assert (sum 2 == 3) ]</pre>
```

VC has no information about sum(1)
Call sum(1) to unfold specification...

```
{-@ reflect sum @-}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (sum 1 == 1)
    , assert (sum 2 == 3) ]</pre>
```

VC has no information about sum(0)
Call sum(0) to unfold specification...

```
{-@ reflect sum @-}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (sum 0 == 0)
    , assert (sum 1 == 1)
    , assert (sum 2 == 3) ]</pre>
```

```
{-@ reflect sum @-}
sum n =
 if n <= 0
    then 0
    else n + sum (n - 1)
goals =
  [ assert (sum ∅ == ∅) ✓
  , assert (sum 1 == 1)
  , assert (sum 2 == 3) ]
```

 $(\operatorname{sum}(0) = if \ 0 \le 0 \ then \ 0 \ else \ 0 + \operatorname{sum}(0-1)) \Rightarrow \operatorname{sum}(0) = 0$

VC

```
{-@ reflect sum @-}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (sum 0 == 0) /
    , assert (sum 1 == 1) /
    , assert (sum 2 == 3) ]</pre>
```

VC

 $(\operatorname{sum}(0) = if \ 0 \le 0 \ then \ 0 \ else \ 0 + \operatorname{sum}(0-1)) \qquad \checkmark \qquad \land (\operatorname{sum}(1) = if \ 1 \le 0 \ then \ 0 \ else \ 1 + \operatorname{sum}(1-1)) \Rightarrow \operatorname{sum}(1) = 1$

```
{-@ reflect sum @-}
sum n =
    if n <= 0
        then 0
        else n + sum (n - 1)

goals =
    [ assert (sum 0 == 0) </pre>
, assert (sum 1 == 1) 
, assert (sum 2 == 3)
```

VC

 $(sum(0) = if \ 0 \le 0 \ then \ 0 \ else \ 0 + sum(0 - 1))$ $\land (sum(1) = if \ 1 \le 0 \ then \ 0 \ else \ 1 + sum(1 - 1))$ $\land (sum(2) = if \ 2 \le 0 \ then \ 0 \ else \ 2 + sum(2 - 1)) \Rightarrow sum(2) = 3$

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition (repeatedly!)

Tedious to unfold repeatedly!

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition (repeatedly!)

Step 3

Combinators structure calls as equations

$$(===) :: x:_-> y: \{y=x\} \to \{v:v=x \& v=y\}$$

Combinator's Precondition Input arguments must be equal

$$(===) :: x:_-> y: \{y=x\} \to \{v:v=x \&\& v=y\}$$

Combinator's Postcondition Output value equals inputs

goal2 () = assert (sum 2 == 3)

Verification goal

goal2 () = @ensures (sum 2 == 3)

Verification goal Rephrased as *post-condition*

goal2 :: () -> { sum 2 == 3 }

Verification goal Rephrased as *output-type*

Invalid VC

VC has no information about sum(1)

Invalid VC

VC has no information about sum(0)

goal2 :: () -> {sum 2 == 3}
goal2 ()
 = sum 2
 === 2 + sum 1
 === 2 + 1 + sum 0
 === 3

$$(==?) :: x:_-> y:_-> \{y=x\} \to \{v:v=x \& v=y\}$$

Ternary "Because" Combinator Third input "asserts" that first two are equal

$$goal3 :: () \rightarrow {sum 3 == 6}$$

Invalid VC

VC has no information about sum(2)

goal3 :: () -> {sum 3 == 6}
goal3 ()
= sum 3
=== 3 + sum 2
=? 3 + 3 ? goal2()

Post-condition adds sum(2) to VC

goal2 :: () -> {sum 2 == 3}

goal3 :: () -> {sum 3 == 6}
goal3 ()
= sum 3
=== 3 + sum 2
=? 6 ? goal2()

$$\checkmark$$

Equational Proof Enables "deep" verification

 $\forall 0 \le n. \ 2 \times \operatorname{sum}(n) = n \times (n+1)$

[Demo]

Equational Proof
$$\forall 0 \le n. \ 2 \times sum(n) = n \times (n+1)$$

 $sumPf :: n: \{0 <=n\} \rightarrow \{2*sum n == n*(n+1)\}$ sumPf 0 = 2 * sum 0 == 0 sumPf n = 2 * sum n == 2 * (n + sum (n-1)) ==? 2 * n + (n-1) * n == n * (n+1) $rac{1}{sumPf (n-1)}$

 $\forall xs, ys, zs. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)$

[Demo]

 $\forall xs, ys, zs. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)$

```
appendPf :: xs:_ -> ys:_ -> zs:_ ->
             \{(xs ++ ys) ++ zs = xs ++ (ys ++ zs)\}
appendPf [] ys zs
 = ([] ++ ys) ++ zs
 === [] ++ (ys ++ zs)
appendPf (x:xs) ys zs
                          Induction
 = ((x:xs) ++ ys) ++ zs
 === (x : (xs ++ ys)) ++ zs
                                  Hypothesis
 === x : ((xs ++ ys) ++ zs)
 ==? x : (xs ++ (ys ++ zs)) ? [appendPf xs ys zs]
  === (x:xs) ++ (ys ++ zs)
```

Step 1

reflect implementation as the specification

Step 2

Call function to "unfold" definition (repeatedly!)

Step 3

Combinators structure calls as equations

SMT Reasoning about Functions Equational Proof MC **Proof Synthesis** Synthesis Terminates

SMT Reasoning about Functions

L Equational Proof

II Proof Synthesis

MC

III Synthesis Terminates

II Proof Synthesis

Proof Synthesis

Equational Proof is very expressive

Manual unfolding is tedious!

Manual unfolding is tedious!

$$\forall n. n > 2 \Rightarrow \operatorname{sum}(n) > 5 + \operatorname{sum}(n-3)$$

 $n:\{n > 2\} \rightarrow \{sum n > 5 + sum(n-3)\}$

Manual unfolding is tedious!

ex :: $n:\{n > 2\} \rightarrow \{sum n > 5 + sum(n-3)\}$

Proof Synthesis

ex :: $n:\{n > 2\} \rightarrow \{sum \ n > 5 + sum(n-3)\}\)$ ex n = sum n === n + sum (n-1) === n + (n-1) + sum (n-2) === n + (n-1) + (n-2) + sum (n-3) > 5 + sum (n-3)

Manual unfolding is tedious!

Proof Synthesis

ex :: $n: \{n > 2\} \rightarrow \{sum \ n > 5 + sum(n-3)\}$ ex n = sum n === n + sum (n-1) === n + (n-1) + sum (n-2) === n + (n-1) + (n-2) + sum (n-3) > 5 + sum (n-3)

How to automate unfolding?

How to automate unfolding?

Loading

Problem

Completeness vs. Termination [LEON] [DAFNY]

How to automate unfolding?

Problem Completeness vs. Termination

Solution Unfold if you must

Logical Evaluation Unfold if you must

Logical Evaluation Step 1 Represent functions in guarded form*

{-@ reflect sum @-}
sum n =
 if n <= 0
 then 0
 else n + sum (n-1)</pre>

Logical Evaluation Step 1 Represent functions in guarded form*

* Every sub-term in $body_i$ is evaluated when $guard_i$ is true

Step 1 Represent functions in *guarded* form

Step 2 Unfold calls whose guard *is valid*

Step 1 Represent functions in *guarded* form

Step 2 Unfold calls whose guard *is valid*

Logical Evaluation Unfold calls whose guard *is valid*

$n:\{n > 2\} \rightarrow \{sum n > 5 + sum(n-3)\}$

Logical Evaluation Unfold calls whose guard is valid

Prove sum n > 5 + sum(n-3)

Logical Evaluation Unfold calls whose guard *is valid*

sum n

Calls sum(n-3)

$$n > 2 \implies n > 0$$

$$sum(n) = n + sum(n-1)$$

Unfold calls whose guard is valid Is valid? Assume n > 2 $\frac{\operatorname{sum}(n) = n + \operatorname{sum}(n-1)}{\operatorname{sum}(n-1) = n-1 + \operatorname{sum}(n-2)} \implies (n-1 > 0)$

Calls
sum
$$n \longrightarrow sum(n-1) \longrightarrow sum(n-2)$$

sum(n-3)

Unfold calls whose guard is valid Is valid? Assume n > 2 sum(n) = n + sum(n-1) $sum(n-1) = n-1 + sum(n-2) \implies (n-2 > 0)$ sum(n-2) = n-2 + sum(n-3)

Calls

sum $n \longrightarrow sum(n-1) \longrightarrow sum(n-2) \longrightarrow sum(n-3)$ sum(n-3)

Unfold calls whose guard is valid Is valid? Assume n > 2 sum(n) = n + sum(n-1)sum(n-1) = n-1 + sum(n-2) $sum(n-2) = n-2 + sum(n-3) \implies n-3 > 0$

Calls

 $sum n \longrightarrow sum(n-1) \longrightarrow sum(n-2) \longrightarrow sum(n-3)$

$$sum(n) = n + sum(n-1)$$

 $sum(n-1) = n-1 + sum(n-2)$
 $sum(n-2) = n-2 + sum(n-3)$

n > 2 n(n-1) **Fixpoint!**

Calls

sum $n \longrightarrow sum(n-1) \longrightarrow sum(n-2) \longrightarrow sum(n-3)$

Fixpoint! Assume *strengthened by* unfolded calls

Assume strengthened by unfolded calls

Step 1 Represent functions in *guarded* form

Step 2 Unfold calls whose guard *is valid*

```
def PLE(D, A, G):

C = [x = f(t) \text{ for } f(t) \text{ in } G, \text{ x fresh}]
A^* = A \cup C
while A < A*:

A = A^*
A^* = \text{Unfold}(D, A)
return IsValid(A* \implies G)
```

Algorithm: PLE

```
def PLE(D, A, G):

C = [x = f(t) \text{ for } f(t) \text{ in } G, x \text{ fresh}]
A^* = A \cup C
while A \subset A^*:

A = A^*
A^* = \text{Unfold}(D, A)
return IsValid(A* \implies G)
```

(D)efinitions, (A)ssumptions, (G)oal

```
def PLE(D, A, G):
  C = [x = f(t) \text{ for } f(t) \text{ in } G, x \text{ fresh}]
  A^* = A \cup C
  while A \subset A^*:
    A = A^*
     A^* = Unfold(D, A)
   return IsValid(A^* \implies G)
```

Extend (A)ssumptions with calls in (G)oal

```
def PLE(D, A, G):
  C = [x = f(t) \text{ for } f(t) \text{ in } G, x \text{ fresh}]
  A^* = A \cup C
  while A \subset A^*:
     A = A^*
     A^* = Unfold(D, A)
   return IsValid(A^* \implies G)
```

Strengthen (A) ssumption with *fixpoint* of unfoldings

```
def PLE(D, A, G):
  C = [x = f(t) \text{ for } f(t) \text{ in } G, x \text{ fresh}]
  A^* = A \cup C
  while A \subset A^*:
    A = A^*
     A^* = Unfold(D, A)
   return IsValid(A^* \implies G)
```

Does strengthened (A)ssumption imply (G)oal?

def Unfold(D, A):
 return [(f(x) = body)[t/x] |
 for f(t) in A
 for <guard = body> in D(f)
 if IsValid(A ⇒ guard[t/x])]

Unfold

Returns equations for calls whose guard implied by A

```
def PLE(D, A, G):

...

while A \subset A^*:

A = A^*

A^* = Unfold(D, A)

...

return IsValid(A^* \implies G)
```

Logical Evaluation

Let $A^k = A$ after k loop iterations

```
def PLE(D, A, G):

...

while A \subset A^*:

A = A^*

A^* = Unfold(D, A)

...

return IsValid(A^* \implies G)
```

Logical Evaluation

Theorem

IsValid($A^k \Longrightarrow G$) if $A \rightarrow G$ with size k equational proof

```
def PLE(D, A, G):

...

while A \subset A^*:

A = A^*

A^* = Unfold(D, A)

...

return IsValid(A^* \implies G)
```

Logical Evaluation

Theorem

IsValid($A^* \implies G$) if $A \rightarrow G$ with any equational proof

$\forall n. n > 2 \Rightarrow \operatorname{sum}(n) > 5 + \operatorname{sum}(n-3)$

[Demo]

$\forall 0 \le n. \ 2 \times \mathsf{sum}(n) = n \times (n+1)$

[Demo]

SMT Reasoning about Functions

L Equational Proof

II Proof Synthesis

MC

III Synthesis Terminates

SMT Reasoning about Functions

L Equational Proof

II Proof Synthesis

MC

ΑΙ

III Synthesis Terminates

III Synthesis Terminates

Synthesis Terminates

def PLE(D, A, G):
...
while
$$A \subset A^*$$
:
 $A = A^*$
 $A^* = Unfold(D, A)$
...
return IsValid($A^* \implies G$)

Why does PLE terminate?

Why does PLE terminate?

(Implicit) Tree of Logical Steps f_i(t_i) unfolds to body with f_j(t_j)

Why does PLE terminate?

- PLE diverges
- \Rightarrow Tree is infinite
- ⇒ infinite Logical Path
- \Rightarrow infinite Concrete Trace

Reflected Functions Terminate! (Required for soundness)

Logical Steps

$D, A \vdash \mathsf{f}(\overline{t}) \longmapsto \mathsf{f}'(\overline{t'})$

A implies guard of $f(\overline{t})$ whose body has $f'(\overline{t'})$

Logical Path \Rightarrow Concrete Trace

Logical Steps are Must-Abstractions

If
$$D, A \vdash f(\overline{t}) \longmapsto f'(\overline{t'})$$

Then $\forall \sigma \in [A]$. $\sigma(f(\overline{t})) \hookrightarrow^* C[\sigma(f'(\overline{t'}))]$

A implies guard of $f(\overline{t})$ whose body has $f'(\overline{t'})$

Logical Path \Rightarrow Concrete Trace

Logical Steps are Must-Abstractions

If
$$D, A \vdash f(\overline{t}) \longmapsto f'(\overline{t'})$$

Then $\forall \sigma \in [A]$. $\sigma(f(\overline{t})) \hookrightarrow^* C[\sigma(f'(\overline{t'}))]$

If A, every evaluation of $f(\overline{t})$ transitions to $f'(\overline{t'})$

Logical Path \Rightarrow Concrete Trace

Logical Path \Rightarrow Concrete Trace

If
$$D, A \vdash f_1(\overline{t_1}) \longmapsto f_2(\overline{t_2}) \longmapsto \dots$$

Then $\forall \sigma \in [A]$. $\sigma(f_1(\overline{t_1})) \hookrightarrow^* C_2[\sigma(f_2(\overline{t_2}))] \hookrightarrow^* \dots$

If A, every evaluation of $f(\overline{t})$ transitions to $f'(\overline{t'})$

Logical Path \Rightarrow Concrete Trace

If
$$D, A \vdash f_1(\overline{t_1}) \longmapsto f_2(\overline{t_2}) \longmapsto \dots$$

Then $\forall \sigma \in [A]$. $\sigma(f_1(\overline{t_1})) \hookrightarrow^* C_2[\sigma(f_2(\overline{t_2}))] \hookrightarrow^* \dots$

i.e.

If infinite logical path, $\llbracket A \rrbracket$ not empty* **Then** infinite concrete trace.

*A is satisfiable

Why does PLE terminate?

PLE(D,A,G) diverges
⇒ Tree is infinite
⇒ infinite logical path
⇒ infinite concrete trace.

Why does PLE terminate?

PLE(D,A,G) diverges
⇒ Tree is infinite
⇒ infinite logical path
⇒ infinite concrete trace. X

Synthesis Terminates

PLE(D,A,G) diverges
⇒ Tree is infinite
⇒ infinite logical path
⇒ infinite concrete trace. X

∴ PLE(D,A,G) terminates!

I Equational Proof

II Proof Synthesis

MC

ΑΙ

III Synthesis Terminates

Laws Transitivity, Associativity...

Optimizations

Optimization preserves behavior ...

Code Invariants Higher-order Contract Specifications...

Functional Correctness Equivalence w.r.t. to reference implementation

Laws Transitivity, Associativity...

Functional Correctness Equivalence w.r.t. to reference implementation

Benchmark	Common		Without PLE Search			With PLE Search		
	Impl (l)	Spec (l)	Proof (l)	Time (s)	SMT (q)	Proof (l)	Time (s)	SMT (q)
Arithmetic								
Fibonacci	7	10	38	2.74	129	16	1.92	79
Ackermann	20	73	196	5.40	566	119	13.80	846
Class Laws Fig 11								
Monoid	33	50	109	4.47	34	33	4.22	209
Functor	48	44	93	4.97	26	14	3.68	68
Applicative	62	110	241	12.00	69	74	10.00	1090
Monad	63	42	122	5.39	49	39	4.89	250
Higher-Order Properties								
Logical Properties	0	20	33	2.71	32	33	2.74	32
Fold Universal	10	44	43	2.17	24	14	1.46	48
Functional Correctness								
SAT-solver	92	34	0	50.00	50	0	50.00	50
Unification	51	60	85	4.77	195	21	5.64	422
Deterministic Parallelism								
Conc. Sets	597	329	339	40.10	339	229	40.70	861
<i>n</i> -body	163	251	101	7.41	61	21	6.27	61
Par. Reducers	30	212	124	6.63	52	25	5.56	52
Total	1176	1279	1524	148.76	1626	638	150.88	4068

Equational Proofs Synthesized by Logical Evaluation

Equational Proofs Synthesized by Logical Evaluation

SMT Automation is Great ... Short, Readable, High-level Proofs

... Except when A Proof Fails! Counterexamples for true but *unprovable* facts?

Equational Proofs, Synthesized by Logical Evaluation

LiquidHaskell bit.ly/liquidhaskell

If at first you don't succeed, call it version 1.0