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Verify goals



SMT is Robust For “Shallow” Specs

sum n = 
  @ensures (0 <= res)
  if n <= 0
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goals =
  [ assert (0 <= sum 3) ]

using spec for sumVerify goals
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Verify goals using spec for sum
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SMT is Robust For “Shallow” Specs

sum :: n:_ -> res:{0 <= res}
sum n = 
  if n <= 0
    then 0
    else n + sum (n - 1)

goals =
  [ assert (0 <= sum 3) ]

SMT Solves Verification Conditions

0  sum(3) ) 0  sum(3)

0 < n ) 0  sum(n� 1) ) 0  n+ sum(n� 1)



SMT is Robust For “Shallow” Specs

SMT solves decidable* VCs…

*Quantifier Free Equality, UIF, Arithmetic, Sets, Maps, Bitvectors….  
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SMT solves decidable* VCs…

SMT is Brittle For “Deep” Specs

…VCs over user-defined functions
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A suitable spec for sum needs axioms!

SMT is Brittle For “Deep” Specs

8n. n  0 ) sum(n) = 0

8n. 0 < n ) sum(n) = n+ sum(n� 1)

SMT



SMT is Robust For “Shallow” Specs

SMT solves decidable VCs

SMT is Brittle For “Deep” Specs

VCs over User-defined Functions



VCs over User-defined Functions

… are everywhere!



VCs over User-defined Functions
Laws 

Transitivity, Associativity…

Optimizations 
Optimization preserves behavior … 

 Code Invariants  
Higher-order Contract Specifications… 

 Functional Correctness 
Equivalence w.r.t. to reference implementation 



Motivation
VCs over User-defined Functions



Motivation
SMT Reasoning about Functions

LEON    [“Satisfiability Modulo Recursive Functions”, Suter et al. 2011]  
DAFNY [“Computing with an SMT Solver”, Amin et al. 2014]

https://dl.acm.org/citation.cfm?id=2041575
https://link.springer.com/chapter/10.1007/978-3-319-09099-3_2


I 
Equational Proof

II  
Proof Synthesis

III 
Synthesis Terminates

SMT Reasoning about Functions

V

MC

AI



V

MC

AI

I 
Equational Proof

II  
Proof Synthesis

III 
Synthesis Terminates

SMT Reasoning about Functions



I 
Equational Proof



sum :: n:_ -> res:{???} 
sum n = 
  if n <= 0
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A suitable spec for sum?



{-@ reflect sum @-} 
sum n = 
  if n <= 0
    then 0
    else n + sum (n - 1)

goals =
  [ assert (sum 3 == 6) ]

A suitable spec for sum?
reflect implementation as the specification

sum :: n:_ -> v:{v = if n <= 0 then 0 else n + sum(n-1)}



A suitable spec for sum?

A. sum Must Terminate on All Inputs 
Ensures soundness

sum :: n:_ -> v:{v = if n <= 0 then 0 else n + sum(n-1)}

reflect implementation as the specification



A suitable spec for sum?

B. sum is an uninterpreted function
8x, y : x = y ) f(x) = f(y)

sum :: n:_ -> v:{v = if n <= 0 then 0 else n + sum(n-1)}

reflect implementation as the specification



A suitable spec for sum?

Ensures SMT can decide VCs
B. sum is an uninterpreted function

sum :: n:_ -> v:{v = if n <= 0 then 0 else n + sum(n-1)}

reflect implementation as the specification



A suitable spec for sum?

Ensures SMT can decide VCs
B. sum is an uninterpreted function

A. sum Must Terminate on All Inputs 
Ensures soundness

reflect implementation as the specification



reflect implementation as the specification

Step 1

Call function to “unfold” definition

Step 2

Equational Proof



Call function to “unfold” definition
{-@ reflect sum @-} 
sum n = 
  if n <= 0
    then 0
    else n + sum (n - 1)

goals =
  [ assert (sum 0 == 0) ]

Verification Condition*

* At callsite, substitute actuals for formals in Post-Condition [Floyd-Hoare]

(sum(0) = if (0  0) then 0 else . . .) ) sum(0) = 0
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Call function to “unfold” definition
{-@ reflect sum @-} 
sum n = 
  if n <= 0
    then 0
    else n + sum (n - 1)

goals =
  [ assert (sum 2 == 3) ]

Verification Condition Invalid
(sum(2) = if 2  0 then 0 else 2 + sum(1)) ) sum(2) = 3

* VC has no information about sum(1)



Call function to “unfold” definition
{-@ reflect sum @-} 
sum n = 
  if n <= 0
    then 0
    else n + sum (n - 1)

goals =
  [ assert (sum 2 == 3) ]

Verification Condition Invalid
(sum(2) = if 2  0 then 0 else 2 + sum(1)) ) sum(2) = 3

* VC has no information about sum(1)

If at first you don’t succeed… 



Call function to “unfold” definition
{-@ reflect sum @-} 
sum n = 
  if n <= 0
    then 0
    else n + sum (n - 1)

goals =
  [ assert (sum 1 == 1)
  , assert (sum 2 == 3) ]

VC has no information about sum(1)
Call sum(1) to unfold specification…



Call function to “unfold” definition
{-@ reflect sum @-} 
sum n = 
  if n <= 0
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Call sum(0) to unfold specification…
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Call function to “unfold” definition
{-@ reflect sum @-} 
sum n = 
  if n <= 0
    then 0
    else n + sum (n - 1)

goals =
  [ assert (sum 0 == 0)
  , assert (sum 1 == 1)
  , assert (sum 2 == 3) ]

(sum(0) = if 0  0 then 0 else 0 + sum(0� 1))) sum(0) = 0

VC



Call function to “unfold” definition
{-@ reflect sum @-} 
sum n = 
  if n <= 0
    then 0
    else n + sum (n - 1)

goals =
  [ assert (sum 0 == 0)
  , assert (sum 1 == 1)
  , assert (sum 2 == 3) ]

(sum(0) = if 0  0 then 0 else 0 + sum(0� 1))

^(sum(1) = if 1  0 then 0 else 1 + sum(1� 1))) sum(1) = 1

VC



Call function to “unfold” definition
{-@ reflect sum @-} 
sum n = 
  if n <= 0
    then 0
    else n + sum (n - 1)

goals =
  [ assert (sum 0 == 0)
  , assert (sum 1 == 1)
  , assert (sum 2 == 3) ]

(sum(0) = if 0  0 then 0 else 0 + sum(0� 1))

^(sum(1) = if 1  0 then 0 else 1 + sum(1� 1))

^(sum(2) = if 2  0 then 0 else 2 + sum(2� 1))) sum(2) = 3

VC



reflect implementation as the specification

Step 1

Call function to “unfold” definition

Step 2

Equational Proof



reflect implementation as the specification

Step 1

Call function to “unfold” definition

Step 2

Equational Proof

(repeatedly!)

Tedious to unfold repeatedly!



Equational Proof

reflect implementation as the specification

Step 1

Step 2

Combinators structure calls as equations
Step 3

Call function to “unfold” definition (repeatedly!)



Equational Proof

(===) :: x:_-> y:{y=x} -> {v:v=x && v=y}

Combinator’s Precondition 
Input arguments must be equal

Combinators structure calls as equations



Equational Proof

(===) :: x:_-> y:{y=x} -> {v:v=x && v=y}

Combinator’s Postcondition 
Output value equals inputs

Combinators structure calls as equations



goal2 () = 
  assert (sum 2 == 3)

Verification goal

Combinators structure calls as equations
Equational Proof



Combinators structure calls as equations

Verification goal  
Rephrased as post-condition

goal2 () = 
  @ensures (sum 2 == 3)

Equational Proof



goal2 :: () -> { sum 2 == 3 }

Verification goal  
Rephrased as output-type

Combinators structure calls as equations
Equational Proof



goal2 :: () -> {sum 2 == 3}
goal2 () 
  =   sum 2
  === 3

Equational Proof
Combinators structure calls as equations

Invalid VC
VC has no information about sum(1)



goal2 :: () -> {sum 2 == 3}
goal2 () 
  =   sum 2
  === 2 + sum 1
  === 3

Equational Proof
Combinators structure calls as equations

Invalid VC
VC has no information about sum(0)



Equational Proof
Combinators structure calls as equations

goal2 :: () -> {sum 2 == 3}
goal2 () 
  =   sum 2
  === 2 + sum 1
  === 2 + 1 + sum 0 
  === 3



Equational Proof

(==?) :: x:_-> y:_ -> {y=x} -> {v:v=x && v=y}

Ternary “Because” Combinator 
Third input “asserts” that first two are equal

Combinators structure calls as equations



Equational Proof

goal3 :: () -> {sum 3 == 6}
goal3 () 
  =   sum 3
  === 3 + sum 2
  === 6           

Combinators structure calls as equations



goal3 :: () -> {sum 3 == 6}
goal3 () 
  =   sum 3
  === 3 + sum 2
  === 6           

Equational Proof

Invalid VC
VC has no information about sum(2)

Combinators structure calls as equations



goal3 :: () -> {sum 3 == 6}
goal3 () 
  =   sum 3
  === 3 + sum 2
  ==? 3 + 3       ? goal2() 

Equational Proof
Combinators structure calls as equations

goal2 :: () -> {sum 2 == 3}

Post-condition adds sum(2) to VC



goal3 :: () -> {sum 3 == 6}
goal3 () 
  =   sum 3
  === 3 + sum 2
  ==? 6           ? goal2() 

Equational Proof
Combinators structure calls as equations



Equational Proof
Enables “deep” verification



[Demo]

Equational Proof
80  n. 2⇥ sum(n) = n⇥ (n+ 1)



Equational Proof
80  n. 2⇥ sum(n) = n⇥ (n+ 1)

sumPf :: n:{0 <=n} -> {2*sum n == n*(n+1)}

sumPf 0 =   2 * sum 0
        === 0

sumPf n =   2 * sum n
        === 2 * (n + sum (n-1))
        ==? 2 * n + (n-1) * n    ? sumPf (n-1)
        === n * (n+1)

Induction  
Hypothesis



Equational Proof

[Demo]

8xs, ys, zs. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)



Equational Proof
8xs, ys, zs. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

appendPf :: xs:_ -> ys:_ -> zs:_ ->
              {(xs ++ ys) ++ zs = xs ++ (ys ++ zs)}

appendPf []     ys zs
  =    ([] ++ ys) ++ zs
  ===  [] ++ (ys ++ zs)

appendPf (x:xs) ys zs
  =    ((x:xs) ++ ys) ++ zs
  ===  (x : (xs ++ ys)) ++ zs
  ===  x : ((xs ++ ys) ++ zs)
  ==?  x : (xs ++ (ys ++ zs)) ? appendPf xs ys zs
  ===  (x:xs) ++ (ys ++ zs)

Induction  
Hypothesis



Equational Proof

reflect implementation as the specification

Step 1

Step 2

Combinators structure calls as equations

Step 3

Call function to “unfold” definition (repeatedly!)
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Proof SynthesisProof Synthesis



Proof Synthesis

Manual unfolding is tedious!

Equational Proof is very expressive



n:{n > 2} -> {sum n > 5 + sum(n-3)}

Manual unfolding is tedious!

8n. n > 2 ) sum(n) > 5 + sum(n� 3)



ex :: n:{n > 2} -> {sum n > 5 + sum(n-3)}
ex n  =   sum n
      === n + sum (n-1)
      === n + (n-1) + sum (n-2)
      === n + (n-1) + (n-2) + sum (n-3)
        > 5 + sum (n-3)

Manual unfolding is tedious!



ex :: n:{n > 2} -> {sum n > 5 + sum(n-3)}
ex n  =   sum n
      === n + sum (n-1)
      === n + (n-1) + sum (n-2)
      === n + (n-1) + (n-2) + sum (n-3)
        > 5 + sum (n-3)

Proof Synthesis

Manual unfolding is tedious!



ex :: n:{n > 2} -> {sum n > 5 + sum(n-3)}
ex n  =   sum n
      === n + sum (n-1)
      === n + (n-1) + sum (n-2)
      === n + (n-1) + (n-2) + sum (n-3)
        > 5 + sum (n-3)

How to automate unfolding?

Proof Synthesis



How to automate unfolding?

Problem 
Completeness vs. Termination 

[LEON] [DAFNY]



How to automate unfolding?

Problem 
Completeness vs. Termination 

Solution 
Unfold if you mustUnfold if you must



Logical Evaluation
Unfold if you must



Logical Evaluation
Step 1 

Represent functions in guarded form*
{-@ reflect sum @-} 
sum n = 
  if n <= 0
    then 0
    else n + sum (n-1)



sum n = 
 | n <= 0 = 0
 | 0 <  n = n + sum (n-1)

Logical Evaluation
Step 1 

Represent functions in guarded form*

| guardi = bodyi 

* Every sub-term in bodyi is evaluated when guardi is true



Logical Evaluation

Step 2 
Unfold calls whose guard is valid

Step 1 
Represent functions in guarded form*

Unfold calls whose guard is valid



Logical Evaluation

Step 2 
Unfold calls whose guard is valid

Step 1 
Represent functions in guarded form*

Unfold calls whose guard is valid



Unfold calls whose guard is valid

n:{     } -> {                    }

Logical Evaluation

sum n > 5 + sum(n-3)n > 2



Logical Evaluation

sum n > 5 + sum(n-3)n > 2
Assume Prove

Unfold calls whose guard is valid

sum n sum(n-3)



Logical Evaluation

n > 2
Assume Calls

Unfold calls whose guard is valid

sum n sum(n-3)



n > 2

sum n
sum(n-3)

Calls

Unfold calls whose guard is valid

sum(n-1)

) n > 0

Is valid?Assume

sum(n)   = n-0 + sum(n-1)



n > 2

sum n
sum(n-3)

Calls

Unfold calls whose guard is valid

sum(n-1)

sum(n)   = n-0 + sum(n-1)

sum(n-2)

) n-1 > 0

Is valid?Assume

sum(n-1) = n-1 + sum(n-2)



n > 2

sum n
sum(n-3)

Calls

Unfold calls whose guard is valid

sum(n-1)

sum(n)   = n-0 + sum(n-1)
sum(n-1) = n-1 + sum(n-2)

sum(n-2) sum(n-3)

) n-2 > 0

Is valid?Assume

sum(n-2) = n-2 + sum(n-3)



n > 2

sum n

Calls

Unfold calls whose guard is valid

sum(n-1)

sum(n)   = n-0 + sum(n-1)
sum(n-1) = n-1 + sum(n-2)
sum(n-2) = n-2 + sum(n-3)

sum(n-2) sum(n-3)

) n-3 > 0

Is valid?Assume



n > 2

sum n

Calls

Unfold calls whose guard is valid

sum(n-1)

sum(n)   = n-0 + sum(n-1)
sum(n-1) = n-1 + sum(n-2)
sum(n-2) = n-2 + sum(n-3)

sum(n-2) sum(n-3)

Assume

Fixpoint!



n > 2

Unfold calls whose guard is valid

sum(n)   = n-0 + sum(n-1)
sum(n-1) = n-1 + sum(n-2)
sum(n-2) = n-2 + sum(n-3)

Assume

Assume strengthened by unfolded calls
Fixpoint!



n > 2

sum(n)   = n-0 + sum(n-1)

sum(n-1) = n-1 + sum(n-2)

sum(n-2) = n-2 + sum(n-3)

)
Assume

sum n > 5 + sum(n-3)
Prove

Unfold calls whose guard is valid

Assume strengthened by unfolded calls



Logical Evaluation

Step 2 
Unfold calls whose guard is valid

Step 1 
Represent functions in guarded form*

Unfold calls whose guard is valid



def PLE(D, A, G):

  C  = [x = f(t) for f(t) in G, x fresh]
  A* = A ∪ C

  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)

  return IsValid(A* ⟹ G)

Logical Evaluation

Algorithm: PLE



def PLE(D, A, G):

  C  = [x = f(t) for f(t) in G, x fresh]
  A* = A ∪ C

  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)

  return IsValid(A* ⟹ G)

Logical Evaluation

(D)efinitions, (A)ssumptions, (G)oal



def PLE(D, A, G):

  C  = [x = f(t) for f(t) in G, x fresh]
  A* = A ∪ C

  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)

  return IsValid(A* ⟹ G)

Logical Evaluation

Extend (A)ssumptions with calls in (G)oal



def PLE(D, A, G):

  C  = [x = f(t) for f(t) in G, x fresh]
  A* = A ∪ C

  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)

  return IsValid(A* ⟹ G)

Logical Evaluation

Strengthen (A)ssumption with fixpoint of unfoldings



def PLE(D, A, G):

  C  = [x = f(t) for f(t) in G, x fresh]
  A* = A ∪ C

  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)

  return IsValid(A* ⟹ G)

Logical Evaluation

Does strengthened (A)ssumption imply (G)oal ?



def Unfold(D, A):
  return [ (f(x) = body)[t/x] |
            for f(t) in A
              for <guard = body> in D(f)
                if IsValid(A ⟹ guard[t/x]) ]

Logical Evaluation

Unfold 
Returns equations for calls whose guard implied by A



Proof Synthesis
def PLE(D, A, G):
  …
  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)
  …
  return IsValid(A* ⟹ G)

Let Ak = A after k loop iterations

Logical Evaluation



Logical Evaluation

Proof Synthesis
def PLE(D, A, G):
  …
  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)
  …
  return IsValid(A* ⟹ G)

Theorem  
IsValid(Ak⟹G) if A → G with size k equational proof



Logical Evaluation

Proof Synthesis
def PLE(D, A, G):
  …
  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)
  …
  return IsValid(A* ⟹ G)

Theorem  
IsValid(A*⟹G) if A → G with any equational proof



8n. n > 2 ) sum(n) > 5 + sum(n� 3)

Proof Synthesis

[Demo]



Proof Synthesis

80  n. 2⇥ sum(n) = n⇥ (n+ 1)

[Demo]
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III 
Synthesis TerminatesSynthesis Terminates



Synthesis Terminates
def PLE(D, A, G):
  …
  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)
  …
  return IsValid(A* ⟹ G)

Why does PLE terminate?



Why does PLE terminate?

def PLE(D, A, G):
  …
  while A ⊂ A*:
    A  = A*
    A* = Unfold(D, A)
  …
  return IsValid(A* ⟹ G)

(Implicit) Tree of Logical Steps
fi(ti) unfolds to body with fj(tj)

f1(t1)

f2(t2) f3(t3)

… … … …



Why does PLE terminate?

PLE diverges 
⇒ Tree is infinite 
⇒ infinite Logical Path 
⇒ infinite Concrete Trace

Reflected Functions Terminate!  
(Required for soundness)

Logical Path
Concrete Trace⇒

f1(t1)

f2(t2) f3(t3)

… … … …



Logical Path Concrete Trace⇒

D, A ` f(t) 7�! f 0(t0)

Logical Steps

A implies guard of f(t)  whose body has f ’(t’)f 0(t0)f(t)



Logical Path Concrete Trace⇒

are Must-Abstractions

8� 2 [[A]]. �(f(t)) ,!⇤ C[�(f 0(t0))]

Logical Steps

Then

If D, A ` f(t) 7�! f 0(t0)

A implies guard of f(t)  whose body has f ’(t’)f 0(t0)f(t)



Logical Path Concrete Trace⇒

are Must-Abstractions

8� 2 [[A]]. �(f(t)) ,!⇤ C[�(f 0(t0))]

Logical Steps

Then

If D, A ` f(t) 7�! f 0(t0)

If A, every evaluation of        transitions to(t’)f 0(t0)f(t)



Logical Path Concrete Trace⇒

Then

If D, A ` f1(t1) 7�! f2(t2) 7�! . . .

8� 2 [[A]]. �(f1(t1)) ,!⇤ C2[�(f2(t2))] ,!⇤ . . .

If A, every evaluation of        transitions to(t’)f 0(t0)f(t)



Logical Path Concrete Trace⇒

Then

If D, A ` f1(t1) 7�! f2(t2) 7�! . . .

8� 2 [[A]]. �(f1(t1)) ,!⇤ C2[�(f2(t2))] ,!⇤ . . .

i.e.

Then

If infinite logical path [[A]],       not empty*

infinite concrete trace.

*A is satisfiable



Why does PLE terminate?

PLE(D,A,G) diverges 

⇒ Tree is infinite 
⇒ infinite Logical Path 
⇒ infinite Concrete Trace

infinite logical path
infinite concrete trace.



Why does PLE terminate?

PLE(D,A,G) diverges 

⇒ Tree is infinite 
⇒ infinite Logical Path 
⇒ infinite Concrete Trace

infinite logical path
infinite concrete trace.



PLE(D,A,G) diverges 

⇒ Tree is infinite 
⇒ infinite Logical Path 
⇒ infinite Concrete Trace

infinite logical path
infinite concrete trace.

∴  PLE(D,A,G) terminates!

Synthesis Terminates
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Laws 
Transitivity, Associativity…

Optimizations 
Optimization preserves behavior … 

 Code Invariants  
Higher-order Contract Specifications… 

 Functional Correctness 
Equivalence w.r.t. to reference implementation 
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IV 
Reasoning about Functions

Equational Proofs 
Synthesized by Logical Evaluation



, Synthesized by Logical Evaluation
Equational ProofsEquational Proofs 

Synthesized by Logical Evaluation

SMT Automation is Great … 
Short, Readable, High-level Proofs

… Except when A Proof Fails! 
Counterexamples for true but unprovable facts?



?
Reasoning about Functions

Equational Proofs, Synthesized by Logical Evaluation



bit.ly/liquidhaskell

https://github.com/ucsd-progsys/liquidhaskell



