
Refinement Types for TypeScript

Panagiotis Vekris Benjamin Cosman Ranjit Jhala
University of California, San Diego, USA
{pvekris, blcosman, jhala}@cs.ucsd.edu

Abstract
We present Refined TypeScript (RSC), a lightweight refine-
ment type system for TypeScript, that enables static verifica-
tion of higher-order, imperative programs. We develop a for-
mal system for RSC that delineates the interaction between
refinement types and mutability, and enables flow-sensitive
reasoning by translating input programs to an equivalent in-
termediate SSA form. By establishing type safety for the
intermediate form, we prove safety for the input programs.
Next, we extend the core to account for imperative and dy-
namic features of TypeScript, including overloading, type
reflection, ad hoc type hierarchies and object initialization.
Finally, we evaluate RSC on a set of real-world benchmarks,
including parts of the Octane benchmarks, D3, Transducers,
and the TypeScript compiler. We show how RSC success-
fully establishes a number of value dependent properties,
such as the safety of array accesses and downcasts, while
incurring a modest overhead in type annotations and code
restructuring.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features – Classes
and objects, Constraints, Polymorphism; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs –
Object-oriented constructs, Type structure

General Terms Languages, Verification

Keywords Refinement Types, TypeScript, Type Systems,
Immutability

1. Introduction
Modern scripting languages – like JavaScript, Python, and
Ruby – have popularized the use of higher-order constructs

that were once solely in the functional realm. This trend
towards abstraction and reuse poses two related problems
for static analysis: modularity and extensibility. First, how
should analysis precisely track the flow of values across
higher-order functions and containers or modularly account
for external code like closures or library calls? Second, how
can analyses be easily extended to new, domain specific
properties, ideally by developers, while they are designing
and implementing the code? (As opposed to by experts who
can at best develop custom analyses run ex post facto and are
of little use during development.)

Refinement types hold the promise of a precise, modular
and extensible analysis for programs with higher-order func-
tions and containers. Here, basic types are decorated with
refinement predicates that constrain the values inhabiting the
type [29, 40]. The extensibility and modularity offered by
refinement types have enabled their use in a variety of ap-
plications in typed, functional languages, like ML [28, 40],
Haskell [37], and F] [33]. Unfortunately, attempts to apply
refinement typing to scripts have proven to be impractical
due to the interaction of the machinery that accounts for im-
perative updates and higher-order functions [5] (§6).

In this paper, we introduce Refined TypeScript (RSC): a
novel, lightweight refinement type system for TypeScript, a
typed superset of JavaScript. Our design of RSC addresses
three intertwined problems by carefully integrating and ex-
tending existing ideas from the literature. First, RSC ac-
counts for mutation by using ideas from IGJ [42] to track
which fields may be mutated, and to allow refinements to de-
pend on immutable fields, and by using SSA-form to recover
path and flow-sensitivity. Second, RSC accounts for dynamic
typing by using a recently proposed technique called Two-
Phase Typing [39], where dynamic behaviors are specified
via union and intersection types, and verified by reduction to
refinement typing. Third, the above are carefully designed to
permit refinement inference via the Liquid Types [28] frame-
work to render refinement typing practical on real-world pro-
grams. Concretely, we make the following contributions:

• We develop a core calculus that permits locally flow-
sensitive reasoning via SSA translation and formalizes
the interaction of mutability and refinements via declara-
tive refinement type checking that we prove sound (§3).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLDI’16, June 13–17, 2016, Santa Barbara, CA, USA
c© 2016 ACM. 978-1-4503-4261-2/16/06...$15.00

http://dx.doi.org/10.1145/2908080.2908110

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 P
LD

I
 *

 A
rtifact * A

E
C

310

function reduce(a, f, x) {
var res = x;
for (var i = 0; i < a.length; i++)

res = f(res , a[i], i);
return res;

}

function minIndex(a) {
if (a.length ≤ 0) return -1;
function step(min , cur , i) {

return cur < a[min] ? i : min;
}
return reduce(a, step , 0);

}

Figure 1: Computing the Min-Valued Index with reduce

• We extend the core language to TypeScript by describing
how we account for its various dynamic and imperative
features; in particular we show how RSC accounts for
type reflection via intersection types, encodes interface
hierarchies via refinements and handles object initializa-
tion (§4).

• We implement rsc, a refinement type checker for Type-
Script, and evaluate it on a suite of real-world pro-
grams from the Octane benchmarks, Transducers, D3
and the TypeScript compiler 1. We show that RSC’s re-
finement typing is modular enough to analyze higher-
order functions, collections and external code, and ex-
tensible enough to verify a variety of properties from
classic array-bounds checking to program specific invari-
ants needed to ensure safe reflection: critical invariants
that are well beyond the scope of existing techniques for
imperative scripting languages (§5).

2. Overview
We begin with a high-level overview of refinement types
in RSC, their applications (§2.1), and how RSC handles
imperative, higher-order constructs (§2.2).

Types and Refinements A basic refinement type is a basic
type, e.g. number, refined with a logical formula from an
SMT decidable logic [24]. For example, the types

type nat = {v:number | 0 ≤ v}
type pos = {v:number | 0 < v}
type natN <n> = {v:nat | v = n}
type idx <a> = {v:nat | v < len(a)}

describe (the set of values corresponding to) non-negative
numbers, positive numbers, numbers equal to some value n,
and valid indexes for an array a, respectively. Here, len is an
uninterpreted function that describes the size of the array a.
We write t to abbreviate trivially refined types, i.e. {v:t |
true}; e.g. number abbreviates {v:number | true}.

1 Our implementation and benchmarks can be found at https://github.
com/UCSD-PL/refscript.

Summaries Function Types (x1 : T1, . . . , xn : Tn) ⇒ T,
where arguments are named xi and have types Ti and the
output is a T, are used to specify the behavior of functions.
In essence, the input types Ti specify the function’s precon-
ditions, and the output type T describes the postcondition.
Each input type and the output type can refer to the argu-
ments xi, yielding precise function contracts. For example,
(x :nat) ⇒ {ν :nat | x < ν} is a function type that de-
scribes functions that require a non-negative input, and en-
sure that the output exceeds the input.
Higher-Order Summaries This approach generalizes di-
rectly to precise descriptions for higher-order functions. For
example, reduce from Figure 1 can be specified as Treduce:

<A,B>(a:A[], f:(B, A, idx<a>)⇒B, x:B)⇒B (1)

This type is a precise summary for the higher-order behavior
of reduce: it describes the relationship between the input
array a, the step (“callback”) function f, and the initial value
of the accumulator, and stipulates that the output satisfies the
same properties B as the input x. Furthermore, it critically
specifies that the callback f is only invoked on valid indices
for the array a being reduced.

2.1 Applications
Next, we show how refinement types let programmers spec-
ify and statically verify a variety of properties — array safety,
reflection (value-based overloading), and downcasts — po-
tential sources of runtime problems that cannot be prevented
via existing techniques.

2.1.1 Array Bounds

Specification We specify safety by defining suitable refine-
ment types for array creation and access. For example, we
view read a[i], write a[i] = e and length access a.length
as calls get(a,i), set(a,i,e) and length(a) where

get : <T>(a:T[],i:idx <a>) ⇒ T
set : <T>(a:T[],i:idx <a>,e:T) ⇒ void
length : <T>(a:T[]) ⇒ natN <len(a)>

Verification Refinement typing ensures that the actual pa-
rameters supplied at each call to get and set are subtypes
of the expected values specified in the signatures, and thus
verifies that all accesses are safe. As an example, consider
the function that returns the “head” element of an array:

function head<T>(arr:NEArray <T>){
return arr [0];

}

The input type requires that arr be non-empty:
type NEArray <T> = {v:T[] | 0 < len(v)}

We convert arr[0] to get(arr,0) which is checked under
environment Γhead defined as arr : {ν :T[] | 0 < len(ν)}
yielding the subtyping obligation

Γhead ` {ν = 0} v idx 〈arr〉

311

https://github.com/UCSD-PL/refscript
https://github.com/UCSD-PL/refscript

which reduces to the logical verification condition (VC)

0 < len(arr)⇒ (ν = 0 ⇒ 0 ≤ ν < len(arr))

The VC is proved valid by an SMT solver [24], verifying
subtyping, and hence, the array access’ safety.

Path Sensitivity is obtained by adding branch conditions into
the typing environment. Consider

function head0(a:number []): number {
if (0 < a.length) return head(a);
return 0;

}

Recall that head should only be invoked with non-empty
arrays. The call to head above occurs under Γhead0 defined
as: a : number[], 0 < len(a) i.e. which has the binder for
the formal a, and the guard predicate established by the
branch condition. Thus, the call to head yields the obligation

Γhead0 ` {ν = a} v NEArray 〈number〉

yielding the valid VC

0 < len(a)⇒ (ν = a ⇒ 0 < len(ν))

Polymorphic, Higher-Order Functions Next, let us assume
that reduce has the type Treduce described in (1), and see
how to verify the array safety of minIndex (Figure 1). The
challenge here is to precisely track which values can flow
into min (used to index into a), which is tricky since those
values are actually produced inside reduce.

Types make it easy to track such flows: we need only de-
termine the instantiation of the polymorphic type variables
of reduce at this call site inside minIndex. The type of the
f parameter in the instantiated type corresponds to a signa-
ture for the closure step which will let us verify the clo-
sure’s implementation. Here, rsc automatically instantiates
(by building complex logical predicates from simple terms
that have been predefined in a prelude)

A 7→ number B 7→ idx 〈a〉 (2)

Let us reassure ourselves that this instantiation is valid,
by checking that step and 0 satisfy the instantiated type. If
we substitute (2) into Treduce we obtain the following types
for step and 0, i.e. reduce’s second and third arguments:

step:(idx <a>,number ,idx <a>)⇒idx <a> 0:idx <a>

The initial value 0 is indeed a valid idx<a> thanks to the
a.length check at the start of the function. To check step,
assume that its inputs have the above types:

min:idx <a>, curr:number , i:idx <a>

The body is safe as the index i is trivially a subtype of the
required idx<a>, and the output is one of min or i and hence,
of type idx<a> as required.

2.1.2 Overloading
Dynamic languages extensively use value-based overload-
ing to simplify library interfaces. For example, a library may
export
function $reduce(a, f, x) {

if (arguments.length ===3) return reduce(a,f,x);
return reduce(a.slice (1),f,a[0]);

}

The function $reduce has two distinct types depending on
its parameters’ values, rendering it impossible to statically
type without path-sensitivity. Such overloading is ubiqui-
tous: in more than 25% of TypeScript libraries, more than
25% of the functions are value-overloaded [39].
Intersection Types Refinements let us statically verify value-
based overloading via Two-Phase Typing [39]. First, we
specify overloading as an intersection type. For example,
$reduce gets the following signature, which is just the con-
junction of the two overloaded behaviors:
<A> (a:A[]+, f:(A, A, idx <a>)⇒A)⇒A // 1

<A,B>(a:A[] , f:(B, A, idx <a>)⇒B, x:B)⇒B // 2

The type A[]+ in the first conjunct indicates that the first
argument needs to be a non-empty array, so that the call to
slice and the access of a[0] both succeed.
Dead Code Assertions Second, we check each conjunct
separately, replacing ill-typed terms in each context with
assert(false). This requires the refinement type checker
to prove that the corresponding expressions are dead code,
as assert requires its argument to always be true:

assert : <A>(b:{v:bool | v = true}) ⇒ A

To check $reduce, we specialize it per overload context:
function $reduce1(a,f) {

if (arguments.length ===3) return assert(false);
return reduce(a.slice (1), f, a[0]);

}

function $reduce2(a,f,x) {
if (arguments.length ===3) return reduce(a,f,x);
return assert(false);

}

In each case, the “ill-typed” term (for the corresponding
input context) is replaced with assert(false). Refinement
typing easily verifies the asserts, as they respectively occur
under the inconsistent environments

Γ1
.
= arguments :{len(ν) = 2}, len(arguments) = 3

Γ2
.
= arguments :{len(ν) = 3}, len(arguments) 6= 3

which bind arguments to an array-like object corresponding
to the arguments passed to that function, and include the
branch condition under which the call to assert occurs.

2.2 Analysis
Next, we outline how rsc uses refinement types to ana-
lyze programs with closures, polymorphism, assignments,
classes and mutation.

312

2.2.1 Polymorphic Instantiation
rsc uses the framework of Liquid Typing [28] to automat-
ically synthesize the instantiations of (2). In a nutshell, rsc
(a) creates templates for unknown refinement type instan-
tiations, (b) performs type checking over the templates to
generate subtyping constraints over the templates that cap-
ture value-flow in the program, (c) solves the constraints via
a fixpoint computation (abstract interpretation).
Step 1: Templates Recall that reduce has the polymorphic
type Treduce. At the call-site in minIndex, the type variables
A, B are instantiated with the known base-type number. Thus,
rsc creates fresh templates for the (instantiated) A, B:

A 7→ {ν :number | κA} B 7→ {ν :number | κB}

where the refinement variables κA and κB represent the un-
known refinements. We substitute the above in the signature
for reduce to obtain a context-sensitive template

(a :κA[], (κB , κA, idx 〈a〉)⇒ κB , κB)⇒ κB (3)

Step 2: Constraints Next, rsc generates subtyping con-
straints over the templates. Intuitively, the templates describe
the sets of values that each static entity (e.g. variable) can
evaluate to at runtime. The subtyping constraints capture
the value-flow relationships e.g. at assignments, calls and
returns, to ensure that the template solutions – and hence
inferred refinements – soundly over-approximate the set of
runtime values of each corresponding static entity.

We generate constraints by performing type checking
over the templates. As a, 0, and step are passed in as argu-
ments, we check that they respectively have the types κA[],
κB and (κB , κA, idx 〈a〉)⇒ κB . Checking a and 0 yields
the subtyping constraints

Γ ` number[] v κA[] Γ ` {ν = 0} v κB

where Γ
.
= a :number[], 0 < len(a) from the else-guard

that holds at the call to reduce. We check step by checking
its body under the environment Γstep that binds the input
parameters to their respective types

Γstep
.
= min :κB , cur :κa, i :idx 〈a〉

As min is used to index into the array a we get

Γstep ` κB v idx 〈a〉

As i and min flow to the output type κB , we get

Γstep ` idx 〈a〉 v κB Γstep ` κB v κB

Step 3: Fixpoint The above subtyping constraints over the
κ variables are reduced via the standard rules for co- and
contra-variant subtyping, into Horn implications over the
κs. rsc solves the Horn implications via (predicate) abstract
interpretation [28] to obtain the solution κA 7→ true and
κB 7→ 0 ≤ ν < len(a) which is exactly the instantiation
in (2) that satisfies the subtyping constraints, and proves
minIndex is array-safe.

2.2.2 Assignments
Next, let us see how the signature for reduce in Figure 1 is
verified by rsc. Unlike in the functional setting, where re-
finements have previously been studied, here, we must deal
with imperative features like assignments and for-loops.

SSA Transformation We solve this problem in three steps.
First, we convert the code into SSA form, to introduce new
binders at each assignment. Second, we generate fresh tem-
plates that represent the unknown types (i.e. set of values)
for each Φ-variable. Third, we generate and solve the sub-
typing constraints to infer the types for the Φ-variables, and
hence, the “loop-invariants” needed for verification.

Let us see how this process lets us verify reduce from
Figure 1. First, we convert the body to SSA form (§3.3):

function reduce(a, f, x) {
var r0 = x, i0 = 0;
while[i2

.
= φ(i0, i1), r2

.
= φ(r0, r1)](i2 < a.length) {

r1 = f(r2, a[i2], i2);
i1 = i2 + 1;

}
return r2;

}

where i2 and r2 are the Φ-variables for i and r respectively.
Second, we generate templates for the Φ-variables:

i2 :{ν :number | κi2} r2 :{ν :B | κr2} (4)

We need not generate templates for the SSA variables i0, r0,
i1 and r1 as their types are those of the expressions they are
assigned. Third, we generate subtyping constraints as before;
the Φ-assignment generates additional constraints

Γ0 ` {ν = i0} v κi2 Γ1 ` {ν = i1} v κi2
Γ0 ` {ν = r0} v κr2 Γ1 ` {ν = r1} v κr2

where Γ0 is the environment at the “exit” of the basic block
where i0 and r0 are defined:

Γ0
.
= a :number[], x :B, i0 :natN 〈0〉, r0 :{ν :B | ν = x}

Similarly, the environment Γ1 includes bindings for vari-
ables i1 and r1. In addition, code executing the loop body
has passed the conditional check, so our path-sensitive envi-
ronment is strengthened by the corresponding guard:

Γ1
.
= Γ0, i1 :natN 〈i2 + 1〉, r1 :B, i2 < len(a)

Finally, the above constraints are solved to

κi2 7→ 0 ≤ ν < len(a) κr2 7→ true

which verifies that the “callback” f is indeed called with
values of type idx 〈a〉, as it is only called with i2 : idx 〈a〉,
obtained by plugging the solution into the template in (4).

313

type ArrayN <T,n> = {v:T[] | len(v) = n}
type grid <w,h> = ArrayN <number ,(w+2)*(h+2)>
type okW = natLE <this.w>
type okH = natLE <this.h>

class Field {
immutable w: pos;
immutable h: pos;
dens : grid <this.w, this.h>;

constructor(w:pos , h:pos , d:grid <w,h>) {
this.h = h; this.w = w; this.dens = d;

}
setDensity(x:okW , y:okH , d:number) {

var rowS = this.w + 2;
var i = x+1 + (y+1) * rowS;
this.dens[i] = d;

}
getDensity(x:okW , y:okH): number {

var rowS = this.w + 2;
var i = x+1 + (y+1) * rowS;
return this.dens[i];

}
reset(d:grid <this.w,this.h>) {

this.dens = d;
}

}

Figure 2: Two-Dimensional Arrays

2.2.3 Mutability
In the imperative, object-oriented setting (common in dy-
namic scripting languages), we must account for class and
object invariants and their preservation in the presence of
field mutation. For example, consider the code in Figure 2,
modified from the Octane Navier-Stokes benchmark.

Class Invariants Class Field implements a 2-dimensional
vector, “unrolled” into a single array dens, whose size is the
product of the width and height fields. We specify this in-
variant by requiring that width and height be strictly positive
(i.e. pos) and that dens be a grid with dimensions specified
by this.w and this.h. An advantage of SMT-based refine-
ment typing is that modern SMT solvers support non-linear
reasoning, which lets rsc specify and verify program spe-
cific invariants outside the scope of generic bound checkers.

Mutable and Immutable Fields The above invariants are
only meaningful and sound if fields w and h cannot be modi-
fied after object creation. We specify this via the immutable
qualifier, which is used by rsc to then (1) prevent updates
to the field outside the constructor, and (2) allow refine-
ments of fields (e.g. dens) to soundly refer to the values of
those immutable fields.

Constructors We can create instances of Field, by using
new Field(...) which invokes the constructor with the
supplied parameters. rsc ensures that at the end of the con-
structor, the created object actually satisfies all specified
class invariants i.e. field refinements. Of course, this only
holds if the parameters passed to the constructor satisfy

certain preconditions, specified via the input types. Conse-
quently, rsc accepts the first call, but rejects the second:

var z = new Field(3,7,new Array (45)); // OK
var q = new Field(3,7,new Array (44)); // BAD

Methods rsc uses class invariants to verify setDensity and
getDensity, that are checked assuming that the fields of
this enjoy the class invariants, and method inputs satisfy
their given types. The resulting VCs are valid and hence,
check that the methods are array-safe. Of course, clients
must supply appropriate arguments to the methods. Thus,
rsc accepts the first call, but rejects the second as the x co-
ordinate 5 exceeds the actual width (i.e. z.w), namely 3:

z.setDensity (2, 5, -5) // OK
z.getDensity (5, 2); // BAD

Mutation The dens field is not immutable and hence, may
be updated outside of the constructor. However, rsc requires
that the class invariants still hold, and this is achieved by en-
suring that the new value assigned to the field also satisfies
the given refinement. Thus, the reset method requires in-
puts of a specific size, and updates dens accordingly. Hence:

var z = new Field(3,7,new Array (45));
z.reset(new Array (45)); // OK
z.reset(new Array (5)); // BAD

3. Formal System
Next, we formalize the ideas outlined in §2. We intro-
duce our formal core FRSC (§3.1): an imperative, mutable,
object-oriented subset of Refined TypeScript, that resembles
the core of Safe TypeScript [27]. To ease refinement reason-
ing, we SSA-transform (§3.3) FRSC to a functional, yet still
mutable, intermediate language IRSC (§3.2) that closely fol-
lows the design of CFJ [25] (the language used to formalize
X10), which in turn is based on Featherweight Java [18]. We
then formalize our static semantics in terms of IRSC (§3.4),
prove them sound and connect them to those of FRSC (§3.5).

3.1 Source Language (FRSC)
The syntax of this language is given below. Meta-variable
e ranges over expressions, which can be variables x, con-
stants c, property accesses e.f, method calls e.m(e), object
creations new C(e), and cast operations <T>e. Statements
s include expressions, variable declarations, field updates,
assignments, concatenations, conditionals and empty state-
ments. Method declarations include a type signature, speci-
fying input and output types, and a body B, i.e. a statement
immediately followed by a returned expression. We distin-
guish between immutable and mutable class members, using
◦ f:T and � f:T , respectively. Finally, class and method
definitions are associated with an invariant predicate p.

314

e ::= x | c | this | e.f | e.m(e) | new C(e) | <T>e
s ::= e | var x = e | e.f = e | x = e | s; s |

if(e){s} else {s} | skip
B ::= s; return e
M̃ ::= m(x:T) {p} :T {B}
F ::= · | ◦ f:T | � f:T | F1; F2

C̃ ::= class C {p} extends R {F, M̃}

The core system does not formalize (a) method overload-
ing, which is orthogonal to the current contribution and has
been investigated in previous work [39], or (b) method over-
riding, which means that method names are distinct from the
ones defined in parent classes.

3.2 Intermediate Language (IRSC)
To maintain precision for stack-allocated variables, we trans-
form FRSC programs into equivalent (in a sense that we will
make precise in the sequel) programs in a functional lan-
guage IRSC through SSA renaming. In IRSC, statements are
replaced by let-bindings and new variables are introduced
for each reassigned variable in FRSC code. Thus, IRSC has
the following syntax:

e ::= x | c | this | e.f | e.m (e) | new C (e) |
e as T | e.f ← e | u 〈e〉 |

u ::= 〈 〉 | let x = e in 〈 〉 |
letif [x, x1, x2] (e) ?u1 : u2 in 〈 〉

F ::= · | ◦ f :T | � f :T | F1; F2

M̃ ::= · | def m
(
x:T

)
{p} : T = e | M̃1; M̃2

C̃ ::= class C {p} / R {F ; M̃}

The majority of the expression forms e are unsurprising.
An exception is the form of the SSA context u, which cor-
responds to the translation of a statement s and contains a
hole 〈 〉 that will hold the translation of the continuation of
s. Form u 〈e〉 fills the hole of u with expression e.

3.3 Static Single Assignment (SSA) Transformation
Figure 3 describes the SSA transformation, that uses trans-
lation environments δ to map FRSC variables x to IRSC
variables x. The translation of expressions e to e is routine;
as expected, S-VAR maps a variable x to its bindings x in
δ. The translating judgment for statements s has the form
δ
 s ↪→ u; δ′. The output environment δ′ is used for the
translation of the expression that will fill the hole in u.

The most interesting case is the conditional statement
(rule S-ITE). The condition expression and each branch are
translated separately. To compute the variables that get up-
dated in either branch (Φ-variables), we combine the pro-
duced translation states δ1 and δ2 as δ1 ./ δ2 defined as

{(x, x1, x2) | x 7→ x1 ∈ δ1, x 7→ x2 ∈ δ2, x1 6= x2}

Fresh Φ-variables x′ populate the output environment δ′ and
annotate the produced structure, along with the versions of
the Φ-variables at the end of each branch (x1 and x2).

Assignment statements introduce a new SSA variable
and bind it to the updated source-level variable (rule S-
ASGN). Statement sequencing is emulated with nesting SSA
contexts (rule S-SEQ); empty statements introduce a hole
(rule S-SKIP); and, finally, method declarations fill in the
hole introduced by the method statement with the translation
of the return expression (rule S-MDECL).
Consistency To validate our transformation, we provide a
consistency result that guarantees that stepping in the target
language preserves the transformation relation, after the pro-
gram in the source language has made an appropriate num-
ber of steps. We define a runtime configuration Q for FRSC
(resp. Q for IRSC) for a program P (resp. P) as:

P
.
= S; B P

.
= S; e

Q
.
= K; B Q

.
= K; e

K
.
= S; L; X; H K

.
= S;H

Similar to Safe TypeScript [27], a runtime state K consists
of class signatures S, a call stack X, a local store L of the
current stack frame and a heap H. The runtime state K for
IRSC only consists of signatures S and a heap H . SSA
consistency is established via a weak forward simulation
theorem that connects the dynamic semantics of the two
languages, expressed through the reduction rules

Q −→ Q′ Q −→ Q′

Rules for FRSC are adapted from Safe TypeScript and the
rules for IRSC are straightforward, so we leave the details to
the extended version [38]. Figure 4 presents some interesting
cases: (a) To emulate TypeScript’s type erasure, rule Q-CAST
of FRSC trivially steps a cast operation to the enclosed ex-
pression. The corresponding rule R-CAST of IRSC, on the
other hand, checks that the content of the cast location satis-
fies the cast type (Corollary 4 deems this check redundant).
(b) In rule R-LIF of IRSC, expression e is produced assum-
ing Φ-variables x, so as soon as the branch has been de-
termined, x are substituted for x1 or x2 (depending on the
branch) in e. This formulation allows us to perform all SSA-
related book-keeping in a single step, which is key to pre-
serving the invariant that IRSC steps faster than FRSC.

We also extend our SSA transformation judgment to run-
time configurations, leveraging the SSA environments that
have been statically computed for each program entity. A
global SSA environment ∆ is used to map each AST node
(e, s, etc.) to an SSA environment δ:

∆ ::= · | e 7→ δ | s 7→ δ | . . . | ∆1; ∆2

We assume that the compile-time SSA translation yields this
environment as a side-effect (e.g. δ
 e ↪→ e produces
e 7→ δ) and the top-level program transformation judg-
ment returns the net effect: P ↪→ P ∆. Hence, the
SSA transformation judgment for configurations becomes:

K; B
∆
↪−→ K; e. We can now state our simulation theorem as:

315

δ
 e ↪→ e δ
 s ↪→ u; δ′ δ
 B ↪→ e M̃ ↪→ M̃

S-VAR

δ
 x ↪→ δ (x)
S-THIS

δ
 this ↪→ this
S-VARDECL

δ
 e ↪→ e δ′ = δ[x 7→ x] x fresh

δ
 var x = e ↪→ let x = e in 〈 〉; δ′

S-ITE

δ
 e ↪→ e δ
 s1 ↪→ u1; δ1 δ
 s2 ↪→ u2; δ2
(x, x1, x2) = δ1 ./ δ2 δ′ = δ[x 7→ x′] x′ fresh

δ
 if(e){s1} else {s2} ↪→ letif [x′, x1, x2] (e) ?u1 : u2 in 〈 〉; δ′
S-ASGN

δ
 e ↪→ e
δ′ = δ[x 7→ x′] x′ fresh

δ
 x = e ↪→ let x′ = e in 〈 〉; δ′

S-DOTASGN
δ
 e ↪→ e δ
 e′ ↪→ e′

δ
 e.f = e′ ↪→ let _ = e.f ← e′ in 〈 〉; δ

S-SEQ

δ
 s1 ↪→ u1; δ1 δ1
 s2 ↪→ u2; δ2

δ
 s1; s2 ↪→ u1 〈u2〉 ; δ2

S-SKIP

δ
 skip ↪→ 〈 〉 ; δ

S-BODY
δ
 s ↪→ u; δ′ δ′
 e ↪→ e

δ
 s; return e ↪→ u 〈e〉
S-MDECL

toString (m) = toString (m) {x 7→ x}
 B ↪→ e m, x fresh

m(x:T) {p} :T {B} ↪→ def m
(
x:T

)
{p} : T = e

Figure 3: Selected SSA Transformation Rules

K; e −→ K′; e′

Q-CAST

K; <T>e −→ K; e

K; e −→ K ′; e′

R-CAST
Γ ` K.H (l):S;S ≤ T
K; l as T −→ K; l

R-LIF
c = true⇒ i = 1 c = false⇒ i = 2

K; letif [x, x1, x2] (c) ?u1 : u2 in e −→ K;ui 〈[xi/x] e〉

Figure 4: Selected Reduction Rules for FRSC and IRSC

Theorem 1 (Forward Simulation). If Q
∆
↪−→ Q, then:

(a) if Q is terminal, then ∃ Q′ s.t. Q −→∗ Q′ and Q′
∆
↪−→ Q

(b) if Q −→ Q′, then ∃ Q′ s.t. Q −→∗ Q′ and Q′
∆
↪−→ Q′

3.4 Static Semantics
We proceed by describing refinement checking for IRSC.

Types Type annotations on the source language are propa-
gated unaltered through the translation phase. Our type lan-
guage (shown below) resembles that of existing refinement
type systems [19, 25, 28]. A refinement type T may be an ex-
istential type or have the form {ν :N | p}, whereN is a class
name C or a primitive type B, and p is a logical predicate
(over some decidable logic) which describes the properties
that values of the type must satisfy. Type specifications (e.g.
method types) are existential-free, while inferred types may
be existentially quantified [20].

Logical Predicates Predicates p are logical formulas over
terms t. These terms can be variables x, primitive constants
c, the reserved value variable ν, the reserved variable this
to denote the containing object, field accesses t.f , uninter-
preted function applications f

(
t
)

and applications of terms

on built-in operators b, such as ==, <, +, etc.

T, S,R, U ::= ∃x:T1. T2 | {ν :N | p}
N ::= C | B
p ::= p1 ∧ p2 | ¬p | t
t ::= x | c | ν | this | t.f | f

(
t
)
| b
(
t
)

Structural Constraints Following CFJ, we reuse the notion
of an Object Constraint System, to encode constraints related
to the object-oriented nature of the program. Most of the
rules carry over to our system. A key extension in our setting
is we partitionC has I (that encodes inclusion of an element
I in a classC) into two cases:C hasMut I andC hasImm I ,
to account for elements that may be mutated. These elements
can only be fields (i.e. there is no mutation on methods).
Environments and Well-formedness A type environment Γ
contains type bindings x :T and guard predicates p that
encode path sensitivity. Γ is well-formed if all of its bindings
are well-formed. A refinement type is well-formed in an
environment Γ if all symbols (simple or qualified) in its
logical predicate (i) are bound in Γ, and (ii) correspond to
immutable fields of objects. We omit the rest of the well-
formedness rules as they are standard in refinement type
systems.

Besides well-formedness, our system’s main judgment
forms are those for subtyping and refinement typing [19].
Subtyping is defined by the judgment Γ ` S ≤ T . The
rules are standard among refinement type systems with ex-

316

Γ ` e : T Γ ` u . Γ′

T-VAR
Γ (x) = T

Γ ` x : self (T, x)
T-CST

Γ ` c : ty (c)
T-CTX

Γ ` u . x :S
Γ, x :S ` e : T

Γ ` u 〈e〉 : ∃x:S. T
T-FLD-I

Γ ` e : T z fresh
Γ, z :T ` z hasImm fi:Ti

Γ ` e.fi : ∃z:T. self (Ti, z.fi)

T-FLD-M
Γ ` e : T

Γ, z :T ` z hasMut gi : Ti
z fresh

Γ ` e.gi : ∃z:T. Ti

T-INV

Γ ` e : T, e : T
Γ, z :T ` z has

(
def m

(
z:R

)
{p} : S = e′

)
Γ, z :T , z :T ` T ≤ R, p z, z fresh

Γ ` e.m (e) : ∃z:T. ∃z:T . S

T-DOTASGN
Γ ` e1 : T1, e2 : T2

Γ, z1 : bT1c ` z1 hasMut f :S, T2 ≤ S
z1 fresh

Γ ` e1.f ← e2 : T2

T-NEW

Γ ` e :
(
T I, T M

)
` class (C) Γ, z :C ` fields (z) = ◦ f :R, � g:U

Γ, z :C, zI : self
(
T I, z.f

)
` T I ≤ R, T M ≤ U, inv (C, z) z, zI fresh

Γ ` new C (e) : ∃zI:T I. {ν :C | ν.f = zI ∧ inv (C, ν)}

T-CAST
Γ ` e : S Γ ` T

Γ ` S . T
Γ ` e as T : T

T-CTXEMP

Γ ` 〈 〉 . ·

T-LETIN
Γ ` e : T

Γ ` let x = e in 〈 〉 . x :T
T-LETIF

Γ ` e : S, S ≤ bool Γ, z :S, z ` u1 . Γ1 Γ, z :S,¬z ` u2 . Γ2

Γ, Γ1 ` Γ1 (x1) ≤ T Γ, Γ2 ` Γ2 (x2) ≤ T Γ ` T T fresh

Γ ` letif [x, x1, x2] (e) ?u1 : u2 in 〈 〉 . x :T

Figure 5: Static Typing Rules for IRSC

istential types. For example, the rule for subtyping between
two refinement types Γ ` {ν :N | p} ≤ {ν :N | p′} reduces
to a verification condition: Valid (J Γ K⇒ (J p K⇒ J p′ K)),
where JΓK is the embedding of environment Γ into our logic
accounting for both guard predicates and variable bindings:

JΓK .
=
∧
{p | p ∈ Γ} ∧

∧
{[x/ν] p, | x : {ν :N | p} ∈ Γ}

Here, we assume existential types are simplified to non-
existential bindings when they enter the environment.

Details regarding structural and well-formedness con-
straints, and subtyping rules are included in the extended
version [38].
Refinement Typing Rules Figure 5 contains rules of the
two forms of our typing judgements: Γ ` e : T and Γ `
u . Γ′. The first assigns a type T to an expression e under
an environment Γ, and the second checks the body of an
SSA context u under Γ and returns the environment Γ′ of the
variables introduced in u that are available when checking its
hole (rule T-CTX). Below, we discuss the novel rules:

[T-FLD-I] Immutable object parts can be assigned a more
precise type, by leveraging the preservation of their identity.
This notion, known as self-strengthening [20, 25], is defined
with the aid of the strengthening operator C:

{ν :N | p} C p′ .
= {ν :N | p ∧ p′}

(∃x:S. T) C p .
= ∃x:S. (T C p)

self (T, t)
.
= T C (ν = t)

[T-FLD-M] Here we avoid such strengthening, as the value
of field gi is mutable, so cannot appear in refinements.

[T-NEW] Similarly, only immutable fields are referenced in
the refinement of the inferred type at object construction.

[T-INV] Extracting the method signature using the has op-
erator has already performed the necessary substitutions to
account for the specific receiver object.

[T-CAST] Cast operations are checked statically obviating
the need for a dynamic check. This rule uses the notion of
compatibility subtyping (.), which is defined as:

Definition 1 (Compatibility Subtype). Γ ` S . T iff
〈S Γ−→ bT c〉 = R 6= fail with Γ ` R ≤ T .

Here, the operation bT c extracts the base type of T , and
〈T Γ−→ D〉 succeeds when under environment Γ we can
statically prove D’s invariants, starting from the invariants
contained in T . We use the predicate inv (D, ν) (as in CFJ)
to denote the conjunction of the class invariants of D and
its supertypes (with the necessary substitutions of this by
ν). We assume that part of these invariants is a predicate
that states inclusion in the specific class (instanceof (ν,D)).
Therefore, we can prove that T can safely be cast to D. For
the output of this operation it holds that: b〈T Γ−→ D〉c = D,
which enables the use of traditional subtyping. Formally:

〈{ν :_ | p} Γ−→ D〉 .=

{
D C p if (JΓK ∧ JpK)⇒ inv (D, ν)

fail otherwise

〈∃x:S. T
Γ−→ D〉 .= ∃x:S. 〈T Γ,x :S−−−−→ D〉

[T-DOTASGN] Only mutable fields may be reassigned.

317

[T-LETIF] To type conditional structures, we first infer a
type for the condition and then check each of the branches
u1 and u2, assuming that the condition is true or false,
respectively, to achieve path sensitivity. Each branch assigns
types to the Φ-variables which compose Γ1 and Γ2, and the
propagated types for these variables are fresh types operating
as upper bounds to their respective bindings in Γ1 and Γ2.

3.5 Type Safety
To state our safety results, we extend our type checking
judgment to runtime locations l with the use of a heap typing
Σ, mapping locations to types, and add a location typing
rule:

T-LOC
Σ (l) = T

Γ; Σ ` l : T

We establish type safety for IRSC in the form of a subject
reduction (preservation) and a progress theorem that connect
the static and dynamic semantics of IRSC. These theorems
employ the notions of heap and signature well-formedness:
Σ ` H and ` S.

Theorem 2 (Subject Reduction). If Γ; Σ ` e : T , K; e −→
K ′; e′ and Σ ` K.H then ∃T ′,Σ′ ⊇ Σ s.t. Γ; Σ′ ` e′ : T ′,
Γ ` T ′ . T , and Σ′ ` K ′.H .

Theorem 3 (Progress). If Γ; Σ ` e : T , ` S and Σ ` H
then either e is a value, or ∃ e′, H ′,Σ′ ⊇ Σ s.t. Σ′ ` H ′ and
S;H; e −→ S;H ′; e′.

We defer the proofs to the extended version [38]. As a
corollary of the Progress Theorem we get that cast operators
are guaranteed to succeed, hence they can safely be erased.

Corollary 4 (Safe Casts). Cast operations can safely be
erased when compiling to executable code.

With the use of our Simulation Theorem and extending
our checking judgment for terms in IRSC to runtime config-
urations (` Q), we can state a soundness result for FRSC:

Theorem 5. (FRSC Type Safety) If Q
∆
↪−→ Q and ` Q then

either Q is a terminal form, or ∃Q′ s.t. Q −→ Q′, Q′
∆
↪−→ Q′

and ` Q′.

4. Scaling to TypeScript
TypeScript (TS) extends JavaScript (JS) with modules,
classes and a lightweight type system that enables IDE sup-
port for auto-completion and refactoring. TS deliberately
eschews soundness [3] for backwards compatibility with
existing JS code. In this section, we show how to use re-
finement types to regain safety, by presenting the highlights
of Refined TypeScript (and our tool rsc), that scales the
core calculus from §3 up to TS by extending the support for
types (§4.1), reflection (§4.2), interface hierarchies (§4.3),
and imperative programming (§4.4).

4.1 Types
First, we discuss how rsc handles core TS features like
object literals, interfaces and primitive types.

Object Literal Types TS supports object literals, i.e. anony-
mous objects with field and method bindings. rsc types ob-
ject members in the same way as class members: method
signatures need to be explicitly provided, while field types
and mutability modifiers are inferred based on use, e.g. in:

var point = { x: 1, y: 2 }; point.x = 2;

the field x is updated and hence, rsc infers that x is mutable.

Interfaces TS supports named object types in the form of in-
terfaces, and treats them in the same way as their structurally
equivalent class types. For example, the interface

interface PointI { number x, y; }

is equivalent to a class PointC defined as

class PointC { number x, y; }

In rsc these two types are not equivalent, as objects of type
PointI do not necessarily have PointC as their constructor:

var pI = { x: 1, y: 2 }, pC = new PointC (1,2);
pI instanceof PointC; // returns false
pC instanceof PointC; // returns true

However, ` PointC ≤ PointI i.e. instances of the class
may be used to implement the interface.

Primitive Types We extend rsc’s support for primitive types
to model the corresponding types in TS. TS has undefined
and null types to represent the eponymous values, and treats
these types as the “bottom” of the type hierarchy, effectively
allowing those values to inhabit every type via subtyping.
rsc also includes these two types, but does not treat them
as “bottom” types. Instead rsc handles them as distinct
primitive types inhabited solely by undefined and null,
respectively, that can take part in unions. Consequently, the
following code is accepted by TS but rejected by rsc:

var x = undefined; var y = x + 1;

Unsound Features in TS include (1) treating undefined and
null as inhabitants of all types, (2) co-variant input sub-
typing, (3) allowing unchecked overloads, and (4) allowing
a special “dynamic” any type to be ascribed to any term.
rsc ensures soundness by (1) performing checks when non-
null (non-undefined) types are required (e.g. during field
accesses), (2) using the correct variance for functions and
constructors, (3) checking overloads via two-phase typing
(§2.1.2), and, (4) eliminating the any type.

Many uses of any (indeed, all uses, in our benchmarks §5)
can be replaced with a combination of union or intersection
types or downcasting, all of which are soundly checked via
path-sensitive refinements. In future work, we wish to sup-
port the full language, namely allow dynamically checked
uses of any by incorporating orthogonal dynamic techniques

318

from the contracts literature. We envisage a dynamic cast op-
eration castT :: (x: any) ⇒ {ν :T | ν = x}. It is straight-
forward to implement castT for first-order types T as a
dynamic check that traverses the value, testing that its com-
ponents satisfy the refinements [30]. Wrapper-based tech-
niques from the contracts/gradual typing literature should
then let us support higher-order types.

4.2 Reflection
JS programs make extensive use of reflection via “dynamic”
type tests. rsc statically accounts for these by encoding
type-tags in refinements. The following tests if x is a number
before performing an arithmetic operation on it:

var r = 1;
if (typeof x === "number") r += x;

We account for this idiomatic use of typeof by statically
tracking the “type” tag of values inside refinements using
uninterpreted functions (akin to the size of arrays). Thus,
values v of type boolean, number, string, etc. are re-
fined with the predicate ttag(v)= "boolean", ttag(v)=
"number", ttag(v)= "string", etc., respectively. Fur-

thermore, typeof has type

typeof : <A>(z:A) ⇒ {v:string | v = ttag(z)}

so the output type of typeof x and the path-sensitive guard
under which the assignment r = x + 1 occurs, ensures that
at the assignment x can be statically proven to be a number.
The above technique coupled with two-phase typing (§2.1.2)
allows rsc to statically verify reflective, value-overloaded
functions that are ubiquitous in TS [39].

4.3 Interface Hierarchies
JS programs frequently build up object hierarchies that rep-
resent unions of different kinds of values, and then use value
tests to determine which kind of value is being operated on.
In TS this is encoded by building up a hierarchy of inter-
faces, and then performing downcasts based on value tests2.
Implementing Hierarchies with Bit-vectors Figure 6 de-
scribes a slice of the hierarchy of types used by the Type-
Script compiler (tsc) v1.0.1.0. tsc uses bit-vector valued
flags to encode membership in a particular interface type, i.e.
discriminate between the different entities. (Older versions
of tsc used a class-based approach, where inclusion could
be tested via instanceof tests.) For example, the enumera-
tion TypeFlags above maps semantic entities to bit-vector
values used as masks that determine inclusion in a sub-
interface of Type. Suppose t of type Type. The invariant here
is that if t.flags masked with 0x00000800 is non-zero,
then t can be safely treated as an InterfaceType object, or
an ObjectType object, since the relevant flag emerges from
the bit-wise disjunction of the Interface flag with some
other flags.

2 rsc handles other type tests, e.g. instanceof, via an extension of the
technique used for typeof tests; we omit a discussion for space.

interface Type {
immutable flags: TypeFlags;
id: number;
symbol ?: Symbol;
...

}

interface ObjectType extends Type { ... }

interface InterfaceType extends ObjectType {
baseTypes: ObjectType [];
declaredProperties: Symbol [];
...

}

enum TypeFlags {
Any = 0x00000001 , String = 0x00000002 ,
Number = 0x00000004 , Class = 0x00000400 ,
Interface = 0x00000800 , Reference = 0x00001000 ,
Object = Class | Interface | Reference
...

}

Figure 6: Type hierarchies in the tsc compiler

Specifying Hierarchies with Refinements rsc allows devel-
opers to create and use Type objects with the above invariant
by specifying a predicate typeInv 3:

isMask <v,m,t> = mask(v,m) ⇒ impl(this ,t)
typeInv <v> = isMask <v, 0x00000001 , AnyType >

∧ isMask <v, 0x00000002 , StringType >
∧ isMask <v, 0x00003C00 , ObjectType >

and then refining TypeFlags with the predicate

type TypeFlags = {v:TypeFlags | typeInv <v>}

Intuitively, the refined type says that when v (that is the
flags field) is a bit-vector with the first position set to 1
the corresponding object satisfies the AnyType interface, etc.

Verifying Downcasts rsc verifies the code that uses ad hoc
hierarchies such as the above by proving the TS downcast
operations (that allow objects to be used at particular in-
stances) safe. For example, consider the following code that
tests if t implements the ObjectType interface before per-
forming a downcast from type Type to ObjectType that per-
mits the access of the latter’s fields:

function getPropertiesOfType(t: Type): Symbol [] {
if (t.flags & TypeFlags.Object) {

var o = <ObjectType >t;
[...]

}
}

tsc erases casts, thereby missing possible runtime errors.
The same code without the if-test, or with a wrong test
would pass the TypeScript type checker. rsc, on the other
hand, checks casts statically. In particular, <ObjectType>t
is treated as a call to a function with signature

3 Modern SMT solvers easily handle formulas over bit-vectors, including
operations that shift, mask bit-vectors, and compare them for equality.

319

(x:{A|impl(x,ObjectType)})⇒{v:ObjectType|v=x}

The if-test ensures that the immutable field t.flags masked
with 0x00003C00 is non-zero, satisfying the third line in the
type definition of typeInv, which in turn implies that t in
fact implements the ObjectType interface.

4.4 Imperative Features

Immutability Guarantees Our system uses ideas from Im-
mutability Generic Java [42] (IGJ) to provide statically
checked immutability guarantees. In IGJ a type reference is
of the form C<M,T>, where immutability argument M works
as proxy for the immutability modifiers of the contained
fields (unless overridden). It can be one of: Immutable (or
IM), when neither this reference nor any other reference
can mutate the referenced object; Mutable (or MU), when
this and potentially other references can mutate the object;
and ReadOnly (or RO), when this reference cannot mutate
the object, but some other reference may. Similar reasoning
holds for method annotations. IGJ provides deep immutabil-
ity, since a class’s immutability parameter is (by default)
reused for its fields; however, this is not a firm restriction
imposed by refinement type checking.
Arrays TS’s definitions file provides a detailed specification
for the Array interface. We extend this definition to account
for the mutating nature of certain array operations:

interface Array<M extends ReadOnly ,T> {
@Mutable pop(): T;
@Mutable push(x:T): number;
@Immutable get length (): {nat|v=len(this)}
@ReadOnly get length (): nat;
[...]

}

Mutating operations (push, pop, field updates) are only al-
lowed on mutable arrays, and the type of a.length encodes
the exact length of an immutable array a, and just a natural
number otherwise. For example, assume the following code:

for(var i = 0; i < a.length; i++) {
var x = a[i];
[...]

}

To prove the access a[i] safe we need to establish 0≤ i and
i < a.length. To guarantee that the length of a is constant,
a needs to be immutable, so rsc will flag an error unless
a: Array<IM,T>.
Object Initialization Our formal core (§3) treats constructor
bodies in a very limiting way: object construction is merely
an assignment of the constructor arguments to the fields of
the newly created object. In rsc we relax this restriction
in two ways: (a) We allow class and field invariants to be
violated within the body of the constructor, but checked for
at the exit. (b) We permit the common idiom of certain fields
being initialized outside the constructor, via an additional
mutability variant that encodes reference uniqueness. In both
cases, we still restrict constructor code so that it does not

leak references of the constructed object (this) or read any
of its fields, as they might still be in an uninitialized state.

(a) Internal Initialization: Constructors Type invariants do
not hold while the object is being “cooked” within the con-
structor. To safely account for this idiom, rsc defers the
checking of class invariants (i.e. the types of fields) by re-
placing: (a) occurrences of this.fi = ei, with _fi = ei,
where _fi are local variables, and (b) all return points with
a call ctor_init(_fi), where the signature for ctor_init
is: (x:T) ⇒ void. Thus, rsc treats field initialization in a
field- and path-sensitive way (through the usual SSA conver-
sion), and establishes the class invariants via a single atomic
step at the constructor’s exit (return).

(b) External Initialization: Unique References Sometimes
we want to allow immutable fields to be initialized outside
the constructor. Consider the code (adapted from tsc):

function createType(flags:TypeFlags):Type <IM> {
var r: Type <UQ> = new Type(checker , flags);
r.id = typeCount ++;
return r;

}

Field id is expected to be immutable. However, its initial-
ization happens after Type’s constructor has returned. Fixing
the type of r to Type<IM> right after construction would dis-
allow the assignment of the id field on the following line. So,
instead, we introduce Unique (or UQ), a new mutability type
that denotes that the current reference is the only reference
to a specific object, and hence, allows mutations to its fields.
When createType returns, we can finally fix the mutability
parameter of r to IM. We could also return Type<UQ>, ex-
tending the cooking phase of the current object and allowing
further initialization by the caller. UQ references obey stricter
rules to avoid leaking of unique references:

• they cannot be reassigned,
• they generally cannot be referenced, unless this occurs at

a context that guarantees that no aliases will be produced,
e.g. the context of e1 in e1.f = e2, or the context of a
returned expression, and

• they cannot be cast to types of a different mutability (e.g.
<C<IM>>x), as this would allow the same reference to be
subsequently aliased.

§6 discusses more expressive initialization approaches.

5. Evaluation
To evaluate rsc, we have used it to analyze a suite of JS
and TS programs, to answer two questions: (1) What kinds
of properties can be statically verified for real-world code?
(2) What kinds of annotations or overhead does verification
impose? Next, we describe the properties, benchmarks and
discuss the results.

Safety Properties We verify with rsc the following:

320

• Property Accesses rsc verifies that each field (x.f)
or method lookup (x.m(...)) succeeds. Recall that
undefined and null are not considered to inhabit the
types to which the fields or methods belong.

• Array Bounds rsc verifies that each array read (x[i]) or
write (x[i] = e) occurs within the bounds of the array
(x).

• Overloads rsc verifies that functions with overloaded
(i.e. intersection) types correctly implement the intersec-
tions in a path-sensitive manner as described in (§2.1.2).

• Downcasts rsc verifies that at each TS (down)cast of the
form <T>e, the expression e is indeed an instance of T.
This requires tracking program-specific invariants, e.g.
bit-vector invariants that encode hierarchies (§4.3).

5.1 Benchmarks
We ported a number of existing JS or TS programs to rsc.
We selected benchmarks that make heavy use of language
constructs relevant to the safety properties described above.
These include parts of the Octane test suite, developed by
Google as a JavaScript performance benchmark [12] and
already ported to TS by Rastogi et al. [27], the TS com-
piler [22], and the D3 [4] and Transducers [7] libraries:

• navier-stokes, which simulates two-dimensional fluid
motion over time; richards, which simulates a process
scheduler with several types of processes passing infor-
mation packets; splay, which implements the splay tree
data structure; and raytrace, which implements a ray-
tracer that renders scenes involving multiple lights and
objects; all from the Octane suite,

• transducers: a library that implements composable data
transformations, a JavaScript port of Hickey’s Clojure li-
brary, which is extremely dynamic in that some functions
have 12 (value-based) overloads,

• d3-arrays: the array manipulating routines from the
D3 [4] library, which makes heavy use of higher-order
functions as well as value-based overloading,

• tsc-checker, which includes parts of the TS com-
piler (v1.0.1.0), abbreviated as tsc. We check 15 func-
tions from compiler/core.ts and 14 functions from
compiler/checker.ts (for which we needed to import
779 lines of type definitions from compiler/types.ts).
These code segments were selected among tens of thou-
sands of lines of code comprising the compiler codebase,
because they exemplified interesting properties, like the
bit-vector based type hierarchies explained in §4.3.

Results Figure 7 quantitatively summarizes the results of our
evaluation. Overall, we had to add about 1 line of annotation
per 5 lines of code (529 for 2522 LOC). The vast majority
(334/529 or 63%) of the annotations are trivial, i.e. are
TS-like types of the form (x:nat)⇒ nat; 20% (104/529)

Benchmark LOC T M R Time (s)
navier-stokes 366 3 18 39 473
splay 206 18 2 0 6
richards 304 61 5 17 7
raytrace 576 68 14 2 15
transducers 588 138 13 11 12
d3-arrays 189 36 4 10 37
tsc-checker 293 10 48 12 62
TOTAL 2522 334 104 91

Figure 7: LOC is the number of non-comment lines of source
(computed via cloc v1.62). The number of RSC specifications
given as JML style comments is partitioned into T trivial anno-
tations i.e. TypeScript type signatures, M mutability annotations,
and R refinement annotations, i.e. those which actually mention in-
variants. Time is the number of seconds taken to analyze each file.

are trivial but have mutability information, and only 17%
(91/529) mention refinements, i.e. are definitions like type
nat = {v:number|0≤v} or dependent signatures like (a:T
[],n:idx<a>)⇒T. These numbers show rsc has annotation
overhead comparable to TS, as in 83% of the cases the
annotations are either identical to TS annotations or to TS
annotations with some mutability modifiers. Of course, in
the remaining 17% of the cases, the signatures are more
complex than the (non-refined) TS version.

Code Changes We had to modify the source in various
small (but important) ways to facilitate verification. The total
number of changes is summarized in Figure 8. The trivial
changes include the addition of type annotations (accounted
for above) and simple transformations to work around the
current limitations of our front-end, e.g. converting x++ to
x=x+1. The important classes of changes are the following:

• Control-Flow: Some programs had to be restructured to
work around rsc’s currently limited support for certain
control flow structures (e.g. break). We also modified
some loops to use explicit termination conditions.

• Classes and Constructors: As rsc does not yet support
default constructor arguments, we changed relevant new
calls in Octane to supply them explicitly, and refactored
navier-stokes to use traditional OO style classes and
constructors instead of JS records with function fields.

• Non-null Checks: In splay we added 5 explicit non-
null checks for mutable objects as proving those required
precise heap analysis that is outside rsc’s scope.

• Ghost Functions: navier-stokes has more than a hun-
dred (static) array access sites, most of which compute in-
dices via non-linear arithmetic (i.e. via computed indices
of the form arr[r*s + c]); SMT support for non-linear
integer arithmetic is brittle (and accounts for the anoma-
lous time for navier-stokes). We factored axioms
about non-linear arithmetic into ghost functions whose
types were proven once via non-linear SMT queries, and

321

Benchmark LOC ImpDiff AllDiff
navier-stokes 366 79 160
splay 206 58 64
richards 304 52 108
raytrace 576 93 145
transducers 588 170 418
d3-arrays 189 8 110
tsc-checker 293 9 47
TOTAL 2522 469 1052

Figure 8: LOC: number of non-comment lines of source (com-
puted via cloc v1.62). The number of lines changed is counted as
either ImpDiff: important changes, such as restructuring the orig-
inal JS code to account for limited support for control flow con-
structs, replacing records with classes and constructors, and adding
ghost functions; or AllDiff: the above plus trivial changes due to
the addition of plain or refined type annotations (Figure 7), and
simple edits to work around current limitations of our front-end.

which were then explicitly called at use sites to instan-
tiate the axioms (thereby bypassing non-linear analysis).
An example of such a function is:

/*@ mulThm :: (a:nat , b:{ number | b ≥ 2})
⇒ {boolean | a + a ≤ a * b} */

which, when instantiated via a call mulThm(x, y) estab-
lishes the fact that (at the call-site), x + x ≤ x * y. The
reported performance assumes the use of ghost functions.
In cases where they were not used RSC would time out.

5.2 Transducers (A Case Study)
We now delve deeper into one of our benchmarks: the Trans-
ducers library. At its heart this library is about reducing col-
lections, aka performing folds. A Transformer is anything
that implements three functions: init to begin computation,
step to consume one element from an input collection, and
result to perform any post-processing. One could imag-
ine rewriting reduce from Figure 1 by building a Trans-
former where init returns x, step invokes f, and result is
the identity4. The Transformers provided by the library are
composable - their constructors take, as a final argument,
another Transformer, and then all calls to the outer Trans-
former’s functions invoke the corresponding one of the inner
Transformer. This gives rise to the concept of a Transducer,
a function of type (Transformer)⇒Transformer and this
library’s namesake.

The main reason this library interests us is because some
of its functions are massively overloaded. Consider, for ex-
ample, the reduce function it defines. As discussed above,
reduce needs a Transformer and a collection. There are
two opportunities for overloading here. First of all, the main
ways that a Transformer is more general than a simple step

4 For simplicity of discussion we will henceforth ignore init and initializa-
tion in general, as well as some other details.

/*@ ((B, A) ⇒ B, , A[]) ⇒ B
(Transformer <A,B> , A[]) ⇒ B
((B, string) ⇒ B) , string) ⇒ B
(Transformer <string , B>, string) ⇒ B
...

*/
function reduce(xf, col) {

xf = (typeof xf == "function") ? wrap(xf) : xf;
if (isString(col)) return stringReduce(xf,col);
if (isArray(col)) return arrayReduce(xf,col);
[...]

}

Figure 9: Sample adapted from Transducers benchmark

function is that it can be stateful and that it defines the
result post-processing step. Most of the time the user does
not need these features, in which case the Transformer is just
a wrapper around a step function. Thus for convenience, the
user is allowed to pass in either a full-fledged Transformer
or a step function which will automatically get wrapped into
one. Secondly, the collection being reduced can be a stun-
ning array of options: an array, a string (i.e. a collection of
characters, which are themselves just strings), an arbitrary
object (i.e., in JS, a collection of key-value pairs), an it-
erator (an object that defines a next function that iterates
through the collection), or an iterable (an object that de-
fines an iterator function that returns an iterator). Each
of these collections needs to be dispatched to a type-specific
reduce function that knows how to iterate over that kind of
collection. In each overload, the type of the collection must
match the type of the Transformer or step function. Thus our
reduce begins as shown in Figure 9. Considering all five
possible types of collections and the option between a step
function or a Transformer, reduce has ten distinct overloads!

5.3 Unhandled Cases
This section outlines and explains some pitfalls of RSC.

Complex Constructor Patterns Due to our limited internal
initialization scheme, certain common constructor patterns
are not supported by RSC. For example, the code below:

class A<M extends RO> {
f: nat;
constructor () { this.setF (1); }
setF(x: number) { this.f = x; }

}

Currently, RSC does not allow method invocations on the
object under construction in the constructor, as it cannot
track the (value of the) updates happening in the method
setF. Note that this case is supported by IGJ. Section (§6)
includes approaches that could lift this restriction.

Recovering Unique References RSC cannot recover the
Unique state for objects after they have been converted to
Mutable (or other state), as it lacks a fine-grained alias track-
ing mechanism. Assume, for example the function distinct
below taken from the TS compiler v1.0.1.0:

322

1 function distinct <T>(a: T[]): T[] {
2 var res: T[] = [];
3 for (var i = 0, n = a.length; i < n; i++) {
4 var current = a[i];
5 for (var j = 0; j < res.length; j++) {
6 if (res[j] === current)
7 break;
8 }
9 if (j === res.length)

10 res.push(current);
11 }
12 return res;
13 }

Array res is defined at line 2 so it is initially typed as
Array<UQ,T>. At lines 5–8 it is iterated over, so to prove the
access at line 6 safe, we need to treat res as an immutable
array. However, at line 10 an element is pushed on res,
which requires res to be mutable. Our system cannot handle
the interleaving of these two kinds of operations that (in
addition) appear in a tight loop (lines 3–11). However, §6
includes approaches that could allow support for such cases.
Annotations per Function Overload A weakness of RSC,
that stems from the use of Two-Phase Typing [39] in han-
dling intersection types, is cases where type checking re-
quires annotations under a specific signature overload. Con-
sider for example the following code, which is a variation of
the reduce function presented in §2:

1 /*@ <A> (a:A[]+,f:(A,A,idx <a>)⇒A) ⇒ A

2 <A,B>(a:A[] ,f:(B,A,idx <a>)⇒B,x:B) ⇒ B
3 */
4 function reduce(a, f, x) {
5 var r, s;
6 if (arguments.length === 3) {
7 r = x; s = 0;
8 }
9 else {

10 r = a[0]; s = 1;
11 }
12 for (var i = s; i < a.length; i++)
13 r = f(r, a[i], i);
14 return r;
15 }

Checking the function body for the second overload
(line 2) is problematic: without an annotation on r, its type at
the end of the conditional will be B + (A + undefined) (r
collects values from x and a[0], at lines 7 and 10), instead of
the intended B. This causes an error when r is passed to func-
tion f at line 13, expected to have type B, which cannot be
overcome even with refinement checking, since this code is
no longer guarded by the check on the length of arguments
(line 7). A solution would be for the user to annotate the type
of r as B at its definition at line 5, but only for the specific
(second) overload. The assignment at line 10 will be invalid,
but this is acceptable since that branch is provably (by the
refinement checking phase [39]) dead. This option, however,
is currently not available.

6. Related Work
RSC is related to several distinct lines of work.

Types for Dynamic Languages Original approaches incor-
porate flow analysis in the type system, using mechanisms
to track aliasing and flow-sensitive updates [1, 35]. Typed
Racket’s occurrence typing narrows the type of unions based
on control dominating type tests, and its latent predicates
lift the results of tests across higher-order functions [36].
DRuby [10] uses intersection types to represent summaries
for overloaded functions. TeJaS [21] combines occurrence
typing with flow analysis to analyze JS [21]. Unlike RSC
none of the above reason about relationships between values
of multiple program variables, which is needed to account
for value-overloading and richer program safety properties.

Program Logics At the other extreme, one can encode types
as formulas in a logic, and use SMT solvers for all the anal-
ysis (subtyping). DMinor explores this idea in a first-order
functional language with type tests [2]. The idea can be
scaled to higher-order languages by embedding (nesting) the
typing relation inside the logic [6]. DJS combines nested re-
finements with alias types [31], a restricted separation logic,
to account for aliasing and flow-sensitive heap updates to
obtain a static type system for a large portion of JS [5]. DJS
proved to be extremely difficult to use. First, the program-
mer had to spend a lot of effort on manual heap related an-
notations; a task that became especially cumbersome in the
presence of higher-order functions. Second, nested refine-
ments precluded the possibility of refinement inference, fur-
ther increasing the burden on the user. In contrast, mutability
modifiers have proven to be lightweight [42] and two-phase
typing lets rsc use liquid refinement inference [28], yield-
ing a system that is more practical for real-world programs.
Extended Static Checking [9] uses Floyd-Hoare style first-
order contracts (pre-, post-conditions and loop invariants)
to generate verification conditions discharged by an SMT
solver. Refinement types can be viewed as a generalization
of Floyd-Hoare logics that uses types to compositionally ac-
count for polymorphic higher-order functions and containers
that are ubiquitous in modern languages like TS.

X10 [25] is a language that extends an object-oriented
type system with constraints on the immutable state of
classes. Compared to X10, in RSC: (a) we make mutabil-
ity parametric [42], and extend the refinement system ac-
cordingly, (b) we crucially obtain flow-sensitivity via SSA
transformation, and path-sensitivity by incorporating branch
conditions, (c) we account for reflection by encoding tags
in refinements and two-phase typing [39], and (d) our de-
sign ensures that we can use liquid type inference [28] to
automatically synthesize refinements.

Analyzing TypeScript Feldthaus et al. present a hybrid anal-
ysis to find discrepancies between TS interfaces [41] and
their JS implementations [8], and Rastogi et al. extend TS
with an efficient gradual type system that mitigates the un-
soundness of TS’s type system [27].

Object and Reference Immutability rsc builds on existing
methods for statically enforcing immutability. In particular,

323

we build on Immutability Generic Java which encodes object
and reference immutability using Java generics [42]. Subse-
quent work extends these ideas to allow (1) richer ownership
patterns for creating immutable cyclic structures [43], (2)
unique references, and ways to recover immutability after
violating uniqueness, without requiring alias analysis [13].

Reference immutability has recently been combined with
rely-guarantee logics (originally used to reason about thread
interference), to allow refinement type reasoning. Gordon et
al. [14] treat references to shared objects like threads in rely-
guarantee logics, and so multiple aliases to an object are al-
lowed only if the guarantee condition of each alias implies
the rely condition for all other aliases. Their approach al-
lows refinement types over mutable data, but resolving their
proof obligations depends on theorem-proving, which hin-
ders automation. Militão et al. present Rely-Guarantee Pro-
tocols [23] that can model complex aliasing interactions,
and, compared to Gordon’s work, allow temporary inconsis-
tencies, can recover from shared state via ownership track-
ing, and resort to more lightweight proving mechanisms.

The above extensions are orthogonal to rsc; in the future,
it would be interesting to see if they offer practical ways for
accounting for (im)mutability in TS programs.

Object Initialization A key challenge in ensuring immutabil-
ity is accounting for the construction phase where fields are
initialized. We limit our attention to lightweight approaches
i.e. those that do not require tracking aliases, capabilities or
separation logic [11, 31]. Haack and Poll [17] describe a
flexible initialization schema that uses secret tokens, known
only to stack-local regions, to initialize all members of cyclic
structures. Once initialization is complete the tokens are con-
verted to global ones. Their analysis is able to infer the points
where new tokens need to be introduced and committed. The
Masked Types [26] approach tracks, within the type system,
the set of fields that remain to be initialized. X10’s hard-
hat flow-analysis based approach to initialization [44] and
Freedom Before Commitment [32] are the most permissive
of the lightweight methods, allowing, unlike rsc, method
dispatches or field accesses in constructors.

7. Conclusions and Future Work
We have presented RSC which brings SMT-based modu-
lar and extensible analysis to dynamic, imperative, class-
based languages by harmoniously integrating several tech-
niques. First, we restrict refinements to immutable variables
and fields (cf. X10 [34]). Second, we make mutability para-
metric (cf. IGJ [42]) and recover path- and flow-sensitivity
via SSA. Third, we account for reflection and value over-
loading via two-phase typing [39]. Finally, our design en-
sures that we can use liquid type inference [28] to automati-
cally synthesize refinements. Consequently, we have shown
how rsc can verify a variety of properties with a mod-
est annotation overhead similar to TS. Finally, our experi-
ence points to several avenues for future work, including:

(1) more permissive but lightweight techniques for object
initialization [44], (2) automatic inference of trivial types via
flow analysis [16], (3) verification of security properties, e.g.
access-control policies in JS browser extensions [15].

Acknowledgments
We would like to thank our anonymous reviewers and our
shepherd Cormac Flanagan for their feedback, and Alexan-
der Bakst for his helpful comments on earlier drafts of
this paper. This work was supported by NSF Grants CNS-
1223850, CNS-0964702 and gifts from Microsoft Research.

References
[1] C. Anderson, P. Giannini, and S. Drossopoulou. Towards Type

Inference for JavaScript. In Proceedings of ECOOP, 2005.

[2] G. M. Bierman, A. D. Gordon, C. Hriţcu, and D. Langworthy.
Semantic Subtyping with an SMT Solver. In Proceedings of
ICFP, 2010.

[3] G. M. Bierman, M. Abadi, and M. Torgersen. Understanding
TypeScript. In Proceedings of ECOOP, 2014.

[4] M. Bostock. http://d3js.org/.

[5] R. Chugh, D. Herman, and R. Jhala. Dependent Types for
JavaScript. In Proceedings of OOPSLA, 2012.

[6] R. Chugh, P. M. Rondon, and R. Jhala. Nested Refinements:
A Logic for Duck Typing. In Proceedings of POPL, 2012.

[7] Cognitect Labs. https://github.com/cognitect-labs/
transducers-js.

[8] A. Feldthaus and A. Møller. Checking Correctness of Type-
Script Interfaces for JavaScript Libraries. In Proceedings of
OOPLSA, 2014.

[9] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended Static Checking for Java. In
Proceedings of PLDI, 2002.

[10] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static Type
Inference for Ruby. In Proceedings of the Symposium on
Applied Computing, 2009.

[11] P. Gardner, S. Maffeis, and G. D. Smith. Towards a program
logic for JavaScript. In Proceedings of POPL, 2012.

[12] Google Developers. https://developers.google.com/
octane/.

[13] C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and
J. Duffy. Uniqueness and Reference Immutability for Safe
Parallelism. In Proceedings of OOPSLA, 2012.

[14] C. S. Gordon, M. D. Ernst, and D. Grossman. Rely-guarantee
References for Refinement Types over Aliased Mutable Data.
In Proceedings of PLDI, 2013.

[15] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified
Security for Browser Extensions. In Proceedings of the IEEE
Symposium on Security and Privacy, 2011.

[16] S. Guo and B. Hackett. Fast and Precise Hybrid Type Infer-
ence for JavaScript. In Proceeding of PLDI, 2012.

[17] C. Haack and E. Poll. Type-Based Object Immutability with
Flexible Initialization. In Proceedings of ECOOP, 2009.

324

http://d3js.org/
https://github.com/cognitect-labs/transducers-js
https://github.com/cognitect-labs/transducers-js
https://developers.google.com/octane/
https://developers.google.com/octane/

[18] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java:
A Minimal Core Calculus for Java and GJ. ACM Trans.
Program. Lang. Syst., May 2001.

[19] K. Knowles and C. Flanagan. Hybrid Type Checking. ACM
Trans. Program. Lang. Syst., Feb. 2010.

[20] K. Knowles and C. Flanagan. Compositional Reasoning and
Decidable Checking for Dependent Contract Types. In Pro-
ceedings of PLPV, 2008.

[21] B. S. Lerner, J. G. Politz, A. Guha, and S. Krishnamurthi. Te-
JaS: Retrofitting Type Systems for JavaScript. In Proceedings
of DLS, 2013.

[22] Microsoft Corporation. TypeScript v1.4. http://www.
typescriptlang.org/.

[23] F. Militão, J. Aldrich, and L. Caires. Rely-Guarantee Proto-
cols. In Proceedings of ECOOP, 2014.

[24] G. Nelson. Techniques for Program Verification. Technical
Report CSL81-10, Xerox Palo Alto Research Center, 1981.

[25] N. Nystrom, V. Saraswat, J. Palsberg, and C. Grothoff. Con-
strained Types for Object-oriented Languages. In Proceedings
of OOPSLA, 2008.

[26] X. Qi and A. C. Myers. Masked Types for Sound Object
Initialization. In Proceedings of POPL, 2009.

[27] A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris.
Safe & Efficient Gradual Typing for TypeScript. In Proceed-
ings of POPL, 2015.

[28] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid Types. In
Proceedings of PLDI, 2008.

[29] J. Rushby, S. Owre, and N. Shankar. Subtypes for Specifica-
tions: Predicate Subtyping in PVS. IEEE TSE, 1998.

[30] E. L. Seidel, N. Vazou, and R. Jhala. Type Targeted Testing.
In Proceedings of ESOP, 2015.

[31] F. Smith, D. Walker, and G. Morrisett. Alias Types. In
Proceedings of ESOP, 2000.

[32] A. J. Summers and P. Mueller. Freedom Before Commitment:
A Lightweight Type System for Object Initialisation. In Pro-
ceedings of OOPSLA, 2011.

[33] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan,
and J. Yang. Secure Distributed Programming with Value-
dependent Types. In Proceedings of ICFP, 2011.

[34] O. Tardieu, N. Nystrom, I. Peshansky, and V. Saraswat. Con-
strained Kinds. In Proceedings of OOPSLA, 2012.

[35] P. Thiemann. Towards a Type System for Analyzing
JavaScript Programs. In Proceedings of ESOP, 2005.

[36] S. Tobin-Hochstadt and M. Felleisen. Logical Types for Un-
typed Languages. In Proceedings of ICFP, 2010.

[37] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-
Jones. Refinement Types for Haskell. In Proceedings of ICFP,
2014.

[38] P. Vekris, B. Cosman, and R. Jhala. Refinement Types for
TypeScript (Extended version). http://arxiv.org/abs/
1604.02480.

[39] P. Vekris, B. Cosman, and R. Jhala. Trust, but Verify: Two-
Phase Typing for Dynamic Languages. In Proceedings of
ECOOP, 2015.

[40] H. Xi and F. Pfenning. Dependent Types in Practical Program-
ming. In Proceedings of POPL, 1999.

[41] B. Yankov. http://definitelytyped.org.

[42] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, and M. D.
Ernst. Object and Reference Immutability Using Java Gener-
ics. In Proceedings of ESEC/FSE, 2007.

[43] Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Own-
ership and Immutability in Generic Java. In Proceedings of
OOPSLA, 2010.

[44] Y. Zibin, D. Cunningham, I. Peshansky, and V. Saraswat.
Object Initialization in X10. In Proceedings of ECOOP, 2012.

325

http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://arxiv.org/abs/1604.02480
http://arxiv.org/abs/1604.02480
http://definitelytyped.org

	Introduction
	Overview
	Applications
	Array Bounds
	Overloading

	Analysis
	Polymorphic Instantiation
	Assignments
	Mutability

	Formal System
	Source Language (FRSC)
	Intermediate Language (IRSC)
	Static Single Assignment (SSA) Transformation
	Static Semantics
	Type Safety

	Scaling to TypeScript
	Types
	Reflection
	Interface Hierarchies
	Imperative Features

	Evaluation
	Benchmarks
	Transducers (A Case Study)
	Unhandled Cases

	Related Work
	Conclusions and Future Work

