
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Data-Driven Techniques for Type Error Diagnosis

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Eric Lee Seidel

Committee in charge:

Professor Ranjit Jhala, Chair
Professor William Griswold
Professor Philip Guo
Professor James Hollan
Professor Sorin Lerner

2017

Copyright

Eric Lee Seidel, 2017

All rights reserved.

The Dissertation of Eric Lee Seidel is approved and is acceptable in quality and

form for publication on micro�lm and electronically:

Chair

University of California, San Diego

2017

iii

EPIGRAPH

Types are the leaven of computer programming;
They make it digestible.

Robin Milner

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 A Running Example . 2
1.2 The Hindley-Milner Type System . 2
1.3 Prior Work on Diagnosing Type Errors . 7

1.3.1 Localizing Type Errors . 7
1.3.2 Explaining Type Errors . 10
1.3.3 Fixing Type Errors . 12

1.4 Our Contributions . 12

Chapter 2 A Dataset of Novice Type Errors . 14

Chapter 3 Dynamic Witnesses for Static Type Errors . 18
3.1 Overview . 21

3.1.1 Generating Witnesses . 21
3.1.2 Visualizing Witnesses . 24

3.2 Type-Error Witnesses . 25
3.2.1 Syntax . 26
3.2.2 Semantics . 27
3.2.3 Generality . 30
3.2.4 Search Algorithm . 35

3.3 Explaining Type Errors With Traces . 38
3.3.1 Tracing Semantics . 38
3.3.2 Interactive Debugging . 39

3.4 Evaluation . 41
3.4.1 Methodology . 43
3.4.2 Witness Coverage . 44
3.4.3 How safe are the “safe” programs? . 45
3.4.4 Witness Complexity . 50

v

3.4.5 Qualitative Evaluation of Witness Utility . 52
3.4.6 Quantitative Evaluation of Witness Utility . 56
3.4.7 Locating Errors with Witnesses . 60
3.4.8 Discussion . 62

3.5 Related Work . 64

Chapter 4 Learning To Blame . 67
4.1 Overview . 70

4.1.1 Step 1: Acquiring a Blame-Labeled Training Set . 72
4.1.2 Step 2: Representing Programs as Vectors . 73
4.1.3 Step 3: Feature Discovery . 74
4.1.4 Step 4: Generating Feedback . 75

4.2 Learning to Blame . 76
4.2.1 Features . 77
4.2.2 Labels . 80
4.2.3 Learning Algorithms . 80

4.3 Evaluation . 83
4.3.1 Methodology . 85
4.3.2 Blame Accuracy . 87
4.3.3 Feature Utility . 89
4.3.4 Threats to Validity . 93
4.3.5 Interpreting Speci�c Predictions . 95
4.3.6 Blame Utility . 99

4.4 Limitations . 102
4.5 Related Work . 104

Chapter 5 Conclusion . 106
5.1 Future Work . 108

Appendix A Proofs for Section 3.2 . 113

Appendix B NanoMaLy User Study . 117
B.1 Version A . 118
B.2 Version B . 121

Appendix C Nate User Study . 124
C.1 Version A . 125
C.2 Version B . 127

References . 129

vi

LIST OF FIGURES

Figure 1.1. (left) An ill-typed OCaml program that should sum the elements of a list,
highlighting the location blamed by the OCaml compiler. (right) The error
reported by OCaml. 2

Figure 1.2. A simple λ-calculus with integers and lists. 3

Figure 1.3. Free variable computation and application of substitutions. 4

Figure 1.4. A Hindley-Milner-style type system for the language in Figure 1.2. 5

Figure 1.5. AlgorithmW, adapted to our language. 6

Figure 1.6. A selection of rules from algorithmM, extended to our language. 8

Figure 2.1. The OCaml-Top editor. 15

Figure 2.2. Format of the post-processed interaction events as JSON objects. 16

Figure 3.1. (top-left) The ill-typed sumList function highlighting the error location
reported by OCaml. (bottom-left) Dynamically witnessing the type error
in sumList, showing only function call-return pairs. (right) The same
trace, fully expanded to show each small-step reduction in the computation. 19

Figure 3.2. The reduction graph for 1+2+3, highlighting the edges produced by reduc-
ing 1+2+3 to 3+3. 24

Figure 3.3. Syntax of λH . 26

Figure 3.4. Narrowing values . 29

Figure 3.5. Generating values . 30

Figure 3.6. Evaluation relation for λH . 31

Figure 3.7. The dynamic type of a value. 33

Figure 3.8. Generating a saturated application. 37

Figure 3.9. Generating witnesses. 38

Figure 3.10. A sequence of interactions with the trace of sumList [1]. 40

Figure 3.11. Rules for computing the next term given a visualization state V , selected
term e and command. 41

vii

Figure 3.12. Results of our coverage testing. Our random search successfully �nds
witnesses for 76–83% of the programs in under one second, improving to
84–85% in under 10 seconds. 44

Figure 3.13. Distribution of test outcomes. In both datasets we detect actual type errors
at least 77% of the time, unbound variables or constructors 4% of the time,
and diverging loops 2–3% of the time. For the remaining 15–16% of the
programs we are unable to provide any useful feedback. 45

Figure 3.14. Results of our investigation into programs where NanoMaLy did not
produce a witness. A “*” denotes that the percentage is an estimate based
on a random sampling of 50 programs. 46

Figure 3.15. Complexity of the generated traces. Over 80% of the combined traces have
a jump complexity of at most 10, with an average complexity of 7 and a
median of 5. 51

Figure 3.16. A classi�cation of students’ explanations and �xes for type errors, given
either OCaml’s error message or NanoMaLy’s jump-compressed trace. . . 59

Figure 3.17. Accuracy of type error localization. NanoMaLy’s witness-based pre-
dictions outperform OCaml by 21 points, and are competitive with the
state-of-the-art tools Mycroft and SHErrLoc. 62

Figure 4.1. (left) An ill-typed OCaml program that should sum the elements of a list,
with highlights indicating three possible blame assignments. (right) The
error reported by OCaml. 71

Figure 4.2. Syntax of λML . 77

Figure 4.3. A high-level API for converting program pairs to feature vectors and labels. 77

Figure 4.4. Results of our comparison of type error localization techniques. 89

Figure 4.5. Results of our experiments on feature utility. 91

Figure 4.6. A classi�cation of students’ explanations and �xes for type errors, given
either SHErrLoc or Nate’s blame assignment. 101

viii

LIST OF TABLES

Table 4.1. Example Feature Vectors . 75

ix

ACKNOWLEDGEMENTS

I am indebted to a great many people for helping me through these �ve years.

First, I want to thank Ranjit Jhala for being such a great advisor. He has always been

supremely supportive and is brimming with ideas for interesting projects, even when you feel

like you have none of your own. He also has a brilliant ability to force you to keep trying

(usually failing) to explain your ideas, until �nally he decides to step in and summarize what

you’ve been struggling to say with the utmost clarity and precision. Finally, I want to thank

Ranjit for pushing me to investigate using machine learning to predict the source of type errors;

I was quite reluctant at �rst, but it turned out to be a very enlightening and productive direction!

I also thank Bill Griswold, Philip Guo, Jim Hollan, and Sorin Lerner for serving on my

committee. In particular, I want to thank Jim for inviting me to his research group meetings and

Bill for reading so many papers with me in my early years here. Thanks also to Ingolf Krueger,

who enabled this great experience by recruiting me to UC San Diego in the �rst place.

Next, I want to thank all of my collaborators. Wes Weimer seems to have an endless

supply of insightful questions that helped guide my research, and he also provided invaluable

assistance in designing and running our user studies. Kamalika Chaudhuri and Huma Sibghat

helped me quickly get up to speed in the foreign �eld of machine learning, and ensured that our

models and experiments were on sound footing.

I want to thank my many labmates in the PL group at UCSD for making my time here

so enjoyable. In particular, I thank Alexander Bakst, Valentin Robert, Zach Tatlock, and Niki

Vazou for welcoming me into the group and providing a supportive environment.

I also want to thank Gabrielle Allen and Douglas Troeger for being early mentors

during my undergraduate career. Gab invited me to work with her research group at LSU, which

made me realize that I actually do enjoy programming when I have a purpose, and led to three

publications before I even started grad school. Dr. Troeger inspired and nurtured my interest in

functional programming with his Programming Paradigms course at CCNY. I surely wouldn’t

have even applied to grad school without them.

Last but not least, I want to thank my family for being supportive throughout this whole

x

experience. Grad school can be very di�cult at times, to put it lightly, but my parents, my sister,

and my wife Megan never wavered in their support and con�dence that I could persevere.

Published Materials Adapted for this Dissertation

Chapter 1 contains material adapted from the following publications: E. L. Seidel, R.

Jhala, and W. Weimer. Dynamic witnesses for static type errors (or, ill-typed programs usually

go wrong). In ICFP ’16, 2016; E. L. Seidel, R. Jhala, and W. Weimer. Dynamic witnesses for static

type errors (or, ill-typed programs usually go wrong). In submission to J. Funct. Programming,

2017; and E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala. Learning to blame:

localizing novice type errors with data-driven diagnosis. In submission to OOPSLA ’17, 2017.

The dissertation author was the primary investigator and author of these papers.

Chapter 3, in part, is a reprint of the material as it appears, or may appear, in: E. L.

Seidel, R. Jhala, and W. Weimer. Dynamic witnesses for static type errors (or, ill-typed programs

usually go wrong). In ICFP ’16, 2016; and E. L. Seidel, R. Jhala, and W. Weimer. Dynamic

witnesses for static type errors (or, ill-typed programs usually go wrong). In submission to J.

Funct. Programming, 2017. The dissertation author was the primary investigator and author of

these papers.

Chapter 4, in part, has been submitted for publication of the material as it may appear

in: E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala. Learning to blame: local-

izing novice type errors with data-driven diagnosis. In submission to OOPSLA ’17, 2017. The

dissertation author was the primary investigator and author of this paper.

xi

VITA

2012 Bachelor of Science, City College of New York

2016 Master of Science, University of California, San Diego

2017 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

E. L. Seidel, R. Jhala, and W. Weimer. Dynamic witnesses for static type errors (or, ill-typed
programs usually go wrong). In ICFP ’16, 2016

T. Elliott, L. Pike, S. Winwood, P. Hickey, J. Bielman, J. Sharp, E. Seidel, and J. Launchbury. Guilt
free ivory. In Haskell ’15, 2015

E. L. Seidel, N. Vazou, and R. Jhala. Type targeted testing. In ESOP ’15, 2015

N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Re�nement types for haskell.
In ICFP ’14, 2014

N. Vazou, E. L. Seidel, and R. Jhala. LiquidHaskell: experience with re�nement types in the real
world. In Haskell ’14, 2014

E. L. Seidel. Metadata management in scienti�c computing. JOCSE, 3(2), 2012

W. L. Khoo, E. L. Seidel, and Z. Zhu. Designing a virtual environment to evaluate multimodal
sensors for assisting the visually impaired. In ICCHP ’12, 2012

G. Allen, F. Lö�er, E. Schnetter, and E. L. Seidel. Component speci�cation in the cactus
framework: the cactus con�guration language. In GRID ’10, 2010

E. L. Seidel, G. Allen, S. Brandt, F. Lö�er, and E. Schnetter. Simplifying complex software
assembly: the component retrieval language and implementation. In TG ’10, 2010

xii

ABSTRACT OF THE DISSERTATION

Data-Driven Techniques for Type Error Diagnosis

by

Eric Lee Seidel

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Ranjit Jhala, Chair

Static type systems are a powerful tool for reasoning about the safety of programs.

Global type inference eliminates one of the prime complaints against static types, that the

annotation burden is too high. However, this introduces its own problems as the type checker

must now make assumptions about what the programmer intended to do. A single incorrect

assumption can lead the type checker to erroneously blame an expression far from the actual

error the programmer made, which can be particularly confusing for newcomers who have not

yet constructed a mental model for how the type checker works.

In this dissertation we present a pair of complementary techniques to localize and

explain type errors, with an emphasis on the errors encountered by novice users.

xiii

We tackle the localization problem by using machine learning to learn a model of the

errors made by students in an introductory course. Then, we use the model to produce a ranked

list of likely error locations in new programs. Our models can be trained on a modest amount

of data, e.g. a single instance of a course, and we envision a future where each introductory

course is accompanied by a model of its students’ errors.

To better explain the error to novice users, we present a runtime error that the type

system would have prevented. We interleave type-checking and execution to search for a set of

program inputs that would lead execution to a bad state, and present the execution trace to the

user in an interactive debugger. This allows the user to explore why their program was rejected,

and connects the dynamic (runtime) semantics to the static (typing) semantics.

We have evaluated our techniques empirically using a new dataset of ill-typed student

programs collected from two instances of an undergraduate programming languages course at

UC San Diego. We have also performed user studies with novice users, comparing the output of

our techniques with the state of the art in type error diagnosis. Our results show that these are

practical, lightweight techniques for improving the error messages produced by type checkers.

xiv

Chapter 1

Introduction

Static type systems are a marvelous invention. They allow programmers to rule out,

at compile-time, entire classes of run-time failures, ranging from the mundane but ubiquitous

null-pointer dereference to the construction of invalid SQL queries [22, 58] and beyond. Lan-

guages like OCaml and Haskell make the value-proposition for types even more appealing by

automatically synthesizing the types for all program terms, without troubling the programmer

for any annotations. Unfortunately, this automation comes at a price. Type annotations signify

the programmer’s intent, and help to correctly blame the erroneous sub-term when the code is

ill-typed. In the absence of such signi�ers, automatic type inference algorithms are prone to

report type errors far from their source [111]. While this can seem like a minor annoyance to

veteran programmers, Joosten et al. [46] have found that novices often focus their attention on

the location reported and disregard the message.

In this dissertation we present two new, complementary techniques designed to help

localize and explain type errors, drawing inspiration from the �elds of automated program testing

and machine learning. In the rest of this chapter we will set the stage for our contributions.

First, we will motivate the program of type error diagnosis with a simple example, and will

review the state of the art in type error diagnosis. Then, we will outline our novel contributions

to the �eld.

1

2

1 let rec sumList xs =
2 match xs with
3 | [] -> []

4 | h::t -> h + sumList t

This expression has type 'a list
but an expression was expected of type int

Figure 1.1. (left) An ill-typed OCaml program that should sum the elements of a list,
highlighting the location blamed by the OCaml compiler. (right) The error reported by OCaml.

1.1 A Running Example

Consider the OCaml program in Figure 1.1, which is supposed to sum the integers in a

list. This program was written by an undergraduate student at UC San Diego, and works as

follows. In functional languages like OCaml, lists are recursively de�ned as either the empty

list (written [] and pronounced “nil”), or a single element h followed by the rest of the list t

(written h::t and pronounced “h cons t”)1. Given an input xs, the student matches it against

the two forms a list can take. In the [] case she returns another empty list [], and in the h::t

case she adds h to the recursive sum of t.

The observant reader will notice that this program is incorrect, given any non-empty

list of integers, the addition on line 4 will attempt to add an integer to [], which is an invalid

operation. In fact, the program is ill-typed and the OCaml compiler rejects it with the error

message in Figure 1.1. Unfortunately, OCaml’s error blames the recursive call to sumList,

explaining that sumList returns a list, while the + operator requires an int. The real error is

on line 3, where the student returns [] rather than 0 as the sum of an empty list.

As we will see throughout the rest of this chapter, this rather simple program is su�cient

to illustrate many of the di�culties of automatically locating the source of a type error, and

explaining it to the programmer.

1.2 The Hindley-Milner Type System

To illustrate the di�culty of pinpointing the source of type errors, let us consider the

λ-calculus in Figure 1.2. In addition to the usual variables, λ-abstractions, and applications, we
1These variable names are conventional, h stands for “head” and t for “tail”.

3

Expressions e ::= x | λx .e | e e | let x = e in e
| n | e + e

| [] | e :: e | match e
{
[] → e

x :: x → e

n ::= 0, 1,−1, . . .

Types t ::= α | int | t → t | [t]
s ::= ∀α .t

Environments Γ ::= {x : s}

Substitutions θ ::= {α 7→ t}

Figure 1.2. A simple λ-calculus with integers and lists.

have equipped the language with integers and lists, so that it can easily represent our sumList

program. The types of our language are split into monomorphic types t and polymorphic types s .

To describe type inference, we will also need type environments and substitutions. A

type environment Γ is a mapping from program variables x to (polymorphic) types s , written

{x : s}, and denotes that each variable xi has a quanti�ed type si . Type environments are used

to propagate typing information from outer expressions to inner expressions. Types and type

environments may have free type variables. The free variables of a type, written FV (s) and

de�ned in Figure 1.3, are all type variables that are not quanti�ed over. The free variables of

a type environment is the union of the free variables of the types it contains. A substitution

is a mapping from type variables α to types t , written {α 7→ t} and de�ned in Figure 1.3, and

denotes that each type variable αi has been re�ned to a type ti . A substitution may be applied to

a type or type environment, written θ (s), and replaces free variables by the corresponding type.

The application of a substitution may similarly be lifted to operate over type environments.

The composition of two substitutions, written θ2θ1, denotes the substitution formed by �rst

applying θ1 and then θ2. Substitutions are used to propagate typing information from inner

expressions back to the outer expressions.

OCaml’s type system, like many other typed functional languages, is based on the

Hindley-Milner type system [44, 70], which we have extended to our language in Figure 1.4.

4

FV (α) = {α }
FV (int) = ∅

FV (t1 → t2) = FV (t1) ∪ FV (t2)
FV (∀α .t) = FV (t) − α

θ (α) =

{
t if α 7→ t ∈ θ

α otherwise
θ (int) = int

θ (t1 → t2) = θ (t1) → θ (t2)
θ (∀α .t) = {α ′ 7→ t ′ | α ′ < α }(t)

Figure 1.3. Free variable computation and application of substitutions.

The type system is written as a set of inference rules for typing judgments of the form Γ ` e : t ,

which can be read as “in the environment Γ, the expression e has type t .”

As written, this system cannot be used as an algorithm for computing the type of an

expression. For instance, consider the Lam rule. The premise says that e should have type t2 in

an environment where x has type t1, but where did t1 come from? We have no way of knowing

at this point what choice of t1 will lead to a successful type inference, and trying all types is

not an option as there are an in�nite number. Thus, a type inference algorithm must defer the

choice of t1 until it has examined the body e to determine how x is used.

The traditional Damas-Milner AlgorithmW [25], extended to our language in Figure 1.5,

solves this issue by binding x to a fresh type variable α (i.e. one that does not occur in the

environment). It takes as input a typing environment Γ and an expression e , and returns a

substitution θ and an inferred type t . In the λ case, it then applies the substitution to the function

type α → t before returning it, crucially re�ning α based on the body of the lambda.

A key component of AlgorithmW is Robinson’s uni�cation algorithm,U [90], which

takes two types t1 and t2 and returns a substitution θ such that θ (t1) = θ (t2). For example,

U(α1 → int, [int] → α2) = {α1 7→ [int], α2 7→ int}. It is the combination of fresh type

variables to defer the choice of concrete types and Robinson’sU to instantiate them that allows

W to e�ciently compute the type of any expression without any user annotations.

Unfortunately, that is also precisely the source of the poor error messages associated

with type inference. Uni�cation is not guaranteed to succeed, e.g. there is no substitution of

type variables that would unify int and [int].W traverses the program from the bottom up,

collecting typing constraints at each expression, and halts with an error when it detects an

5

Typing Γ ` e : t

Var
Γ(x) = ∀α .t α ′ are fresh

Γ ` x : {α 7→ α ′}(t)
Lam

Γ ∪ {x : t1} ` e : t2
Γ ` λx .e : t1 → t2

App
Γ ` e1 : t1 → t2 Γ ` e2 : t1

Γ ` e1 e2 : t2
Let

Γ ` e1 : t1 α = FV (t1) − FV (Γ)
Γ ∪ {x : ∀α .t1} ` e2 : t2
Γ ` let x = e1 in e2 : t2

Lit
Γ ` n : int

Plus
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Nil
α is fresh
Γ ` [] : [α]

Cons
Γ ` e1 : t Γ ` e2 : [t]

Γ ` e1 :: e2 : [t]

Match
Γ ` e1 : t1 Γ ` e2 : t2 Γ ∪ {x1 : t1, x2 : [t1]} ` e3 : t2

Γ ` match e1

{
[] → e2

x1 :: x2 → e3
: t2

Figure 1.4. A Hindley-Milner-style type system for the language in Figure 1.2.

inconsistent constraint during a call toU. Thus, the placement of calls toU determines which

expression will be blamed when a program is ill-typed.

Given our sumList programW will infer that the [] case returns a list while the h::t

case returns an integer, which violates the Match rule’s constraint that both branches must

have the same type t2. This violation will manifest as an error in the second U call inW’s

match case, andW will thus blame the entire match expression even though the error was in

the base case.

In this caseW’s error report is actually not so bad, a well-written error message could

convey that the error is due to the two branches having di�erent types, which may be su�cient

to isolate the source in the base case. But in general, this behavior of bubbling up of typing

constraints from the leaves of the program can produce very poor errors [57, see Fig. 1 for a

particularly pathological example].

6

W : Γ × e → θ × t

W(Γ, x) = let Γ(x) = ∀α .t
in (∅, {α 7→ α ′}(t)), α ′ are fresh

W(Γ, λx .e) = let (θ , t) =W(Γ ∪ {x : α }, e), α is fresh
in (θ , θ (α → t))

W(Γ, e1 e2) = let (θ1, t1) =W(Γ, e1)
(θ2, t2) =W(θ1(Γ), e2)
θ3 = U(θ2(t1), t2 → α), α is fresh

in (θ3θ2θ1, θ3(α))
W(Γ, let x = e1 in e2) = let (θ1, t1) =W(Γ, e1)

α = FV (t1) − FV (Γ)
Γ′ = Γ ∪ {x1 : ∀α .t1}
(θ2, t2) =W(θ1(Γ

′), e2)
in (θ2θ1, t2)

W(Γ, n) = (∅, int)
W(Γ, e1 + e2) = let (θ1, t1) =W(Γ, e1)

(θ2, t2) =W(θ1(Γ), e2)
θ3 = U(θ2(t1), int)
θ4 = U(t2, int)

in (θ4θ3θ2θ1, int)
W(Γ, []) = (∅, [α]), α is fresh
W(Γ, e1 :: e2) = let (θ1, t1) =W(Γ, e1)

(θ2, t2) =W(θ1(Γ), e2)
θ3 = U(t2, θ2([t1]))

in (θ3θ2θ1, θ3(t2))

W(Γ, match e1

{
[] → e2

x1 :: x2 → e3
) = let (θ1, t1) =W(Γ, e1)

θ2 = U(t1, [α]), α is fresh
(θ3, t2) =W(θ2(Γ), e2)
Γ′ = Γ ∪ {x1 : α , x2 : [α]}
(θ4, t3) =W(θ3θ2(Γ

′), e3)
θ5 = U(t3, θ4(t2))

in (θ5θ4θ3θ2θ1, θ5(t3))

Figure 1.5. AlgorithmW, adapted to our language.

7

1.3 Prior Work on Diagnosing Type Errors

AlgorithmW’s poor error reports were noticed soon after its introduction [111], and

improving them has been a popular area of research ever since. In this section we will review the

state of the art in type error diagnosis according to the following three high-level approaches:

1. localizing errors to a speci�c (set of) term(s);

2. explaining the error to the programmer; and

3. automatically �xing the error for the programmer.

1.3.1 Localizing Type Errors

The location reported by a type error is likely to be the �rst place the programmer looks

for issues, so providing an accurate location could greatly reduce the time spent debugging.

Alternate Traversal Strategies

Noting that the placement of uni�cation calls determines where errors are reported,

several authors have proposed alternate traversal strategies. Lee et al. [57] describe a “folklore”

algorithmM that traverses the program top down, rather than from the bottom up, pushing

constraints inward from outer expressions. Thus, whileW returned both a substitution and a

type,M takes an expected type as input, and returns only a substitution. Lee et al. also prove

thatM always terminates sooner thatW would, i.e. at an expression deeper in the tree.

Figure 1.6 contains a selection ofM’s rules that are relevant to the error in our sumList

program. Note how the match rule no longer does any uni�cation, it just makes a series of

recursive calls. Rather, the + rule is now responsible for checking that its surrounding context

expects it to return an int. This is a subtle change fromW’s behavior, but as a resultM will

blame the + expression for producing an int rather than the match expression. This is better,

though still not ideal as the actual error is in the [] case.

Another issue, present in both algorithmM andW, is that constraints are propagated

from one branch to others, known as the “left-to-right” bias [69]. This bias is the reason thatM

8

M : Γ × e × t → θ
M(Γ, e1 + e2, t) = let θ1 = U(t , int)

θ2 =M(θ1(Γ), e1, int)
θ3 =M(θ2θ1(Γ)), e2, int)

in θ3θ2θ1

M(Γ, match e1

{
[] → e2

x1 :: x2 → e3
, t) = let θ1 =M(Γ, e1, [α1]), α1 is fresh

θ2 =M(θ1(Γ), e2, t)
Γ′ = Γ ∪ {x1 : α1, x2 : [α1]}
θ3 =M(θ2θ1(Γ

′)), e3, θ2(t))
in θ3θ2θ1

Figure 1.6. A selection of rules from algorithmM, extended to our language.

(and most type-checkers in practice) blames the h::t case rather than the [] case; however,

it is not limited to expressions that create a branch in the program’s control-�ow. Rather, the

constraint propagation happens between branches of the program’s abstract syntax tree. See, e.g.

the e1 e2 case ofW — we apply the substitution θ1 from e1 to the environment when checking

e2. Thus, any expression with multiple children will be subject to the left-to-right bias.

Instead of propagating the constraints collected in one branch to others, McAdam

[69] and Yang [115] suggest a symmetric traversal that checks each branch independently of

the others and then reports an error when merging two inconsistent sets of constraints from

the branches. Mechanically, this means that we no longer apply the substitution from one

branch to the other, but rather unify the substitutions from both branches after they have been

individually checked. An important, and unfortunate, consequence of unifying substitutions

between branches is that we can no longer implement type variables with mutable references to

avoid the overhead of passing explicit substitutions around, as is commonly done in production-

grade compilers. One might also think that we would be right back at the issue we observed

with algorithmW, with an error reported at the match expression, but Yang annotates each

constraint with its source location, so that they can report the con�ict between the [] on line 3

and the + on line 4.

9

Type Error Slicing

Tip et al. [107] and Haack et al. [37] extend the idea of McAdam and Yang, and compute

a full type error slice, i.e. all of the sub-expressions that are required for the error to manifest

and no more. For example, one type error slice for sumList would be the match expression and

its two children, the [] and the + expression, which [37] would report as follows:

Type error: type constructor clash, endpoints list vs. int.

match .. with | [] -> [] | h::t -> .. + ..

There is at least one other error slice for sumList, which includes the [], the +, the recursive

sumList call, and the let rec binder, which captures the issue that a list can be passed back

through the recursive call to the + operator. In general there may be many distinct error slices

for the same error, and while computing one slice can be done e�ciently, computing all slices is

exponential.

Neubauer et al. [75] present a decidable type system based on discriminative sum types,

in which all terms are typeable and type derivations contain all type errors in a program. They

then use the typing derivation to slice out the parts of the expression related to each error. Rahli

et al. [85, 86] investigate what is required to support slicing for a full programming language,

and present a type error slicer for the entirety of SML. Sagonas et al. [93] use type error slices

to explain errors in the optional Dialyzer [63] system for Erlang. Schilling [94] shows how to

how to turn any type checker into a slicer by treating it as a black-box.

A drawback of type error slicers is that they typically involve rewriting the type checker

to use a specialized constraint language and solver. Production compilers for languages like

OCaml and Haskell generally feature more advanced type languages than Hindley-Milner

with heavily optimized type checkers, so the prospect of a full rewrite to support slicing is

probably quite daunting.

Further, while type error slicers can guarantee enough information to diagnose an error,

they can fall into the opposite trap of providing too much information, producing a slice that is

not much smaller than the original program. In other words, a type error slicer will produce

10

every possible expression that could be blamed for the error, but some expressions are more

likely to be at fault than others.

Finding Likely Sources of Errors

Thus, recent work has focused on �nding the most likely source of a type error. Zhang

et al. [118, 119] use Bayesian reasoning to search the constraint graph for constraints that

participate in many unsatis�able paths and relatively few satis�able paths, based on the intuition

that the program should be mostly correct. Pavlinovic et al. [79, 80] translate the localization

problem into a MaxSMT problem, asking an o�-the-shelf solver to �nd the smallest set of

constraints that can be removed such that the resulting system is satis�able. Loncaric et al.

[65] improve the scalability of Pavlinovic et al. by reusing the existing type checker as a theory

solver in the Nelson-Oppen [74] style, and thus require only a MaxSAT solver. All three of

these techniques support weighted constraints to incorporate knowledge about the frequency of

di�erent errors, but only Pavlinovic et al. use the weights, setting them to the size of the term

that induced the constraint.

Of these three techniques, only Pavlinovic et al. can isolate the source of the type error

in sumList to the [] case, as they weight constraints by expression size. Zhang et al. and

Loncaric et al. cannot distinguish between the erroneous [] and the correct +, and present both

as equally likely sources.

1.3.2 Explaining Type Errors

The techniques we have discussed so far have focused primarily on the task of localizing

a type error, but a good error report should also explain the error. Wand [111], Beaven et al. [6],

and Duggan et al. [27] attempt to explain type errors by collecting the chain of inferences made

by the type checker — essentially the typing derivation — and presenting them to the user. For

example, an explanation of the error in sumList in the style of Beaven et al. might look like the

following:

A type error was detected in the case analysis of >> xs <<.

11

The types of the two branches,

>> 'a list << and >> int <<,

are not unifiable.

** Why does the >> [] << branch have type >> 'a list << ?

The expression >> [] << has type >> 'a list << .

** Why does the >> h::t << branch have type >> int << ?

The >> + << operator returns a value of type >> int << .

Such explanations, when presented in natural language, can become quite lengthy. As an

attempt to compress the explanation Yang et al. [116] present a visualization of the inference

process. Gast [34] produces a slice enhanced by arrows showing the data�ow from sources

with di�erent types to a shared sink, borrowing the insight of data�ows-as-explanations from

MrSpidey [31].

Interactive Explanations

Static explanations of type errors, as seen above, run the risk of overwhelming the user

with too much information, it may be preferable to treat type error diagnosis as an interactive

debugging session. Bernstein et al. [8] extend the type inference procedure to handle open

expressions (i.e. with unbound variables). This allows users to interactively query the type

checker for the types of sub-expressions. Thus, a user may be able to quickly examine the

expressions she believes to be relevant rather than having to sift through a static explanation.

Still, the user may have a fundamental misunderstanding of the type system, leading

her to engage in a long series of queries that are not actually relevant to the error. As a remedy,

Chitil [19] proposes algorithmic debugging of type errors, presenting the user with a sequence

of yes-or-no questions about the inferred types of sub-expressions. Thus, she will be guided by

the system to a speci�c explanation for the error in a �nite amount of time.

12

Programmatic Explanations

The best explanation of a type error, however, might be given by an expert, e.g. the

compiler or library author. Hage et al. [38] catalog a set of heuristics for improving the quality

of error messages by examining errors made by novices. Marceau et al. [67, 68] study the

e�ectiveness of error messages in novice environments and present suggestions for improving

their quality and consistency. Heeren et al. [41], Christiansen [20], and Serrano et al. [102]

extend the ability to customize error messages to library authors, enabling domain-speci�c

errors. The 8.0 release of the Glasgow Haskell Compiler2 incorporates these ideas, allowing

library authors to supply custom errors when type-class resolution or type-family reduction

fail, but not for ordinary uni�cation failures.

1.3.3 Fixing Type Errors

Finally, some techniques go beyond explaining or locating a type error, and actually

attempt to �x the error automatically. Lerner et al. [60] searches for �xes by enumerating

a set of local mutations to the program and querying the type checker to see if the error

remains. Chen et al. [17] use a notion of variation-based typing to track choices made by the

type checker and enumerate potential changes that would �x the error. They also extend the

algorithmic debugging technique of Chitil by allowing the user to enter the expected type of

speci�c sub-expressions and suggesting �xes based on these desired types [18].

1.4 Our Contributions

The thesis of this dissertation is that we can adapt the wealth of work in automated

program testing and machine learning to the task of providing better diagnostic information for

type errors. To that end we present three concrete contributions:

1. In Chapter 2 we present a dataset of novice interactions with the OCaml type checker,

which will form the backbone of our evaluation. This dataset contains thousands of
2https://ghc.haskell.org/trac/ghc/wiki/Proposal/CustomTypeErrors

https://ghc.haskell.org/trac/ghc/wiki/Proposal/CustomTypeErrors

13

ill-typed programs from over one hundred di�erent students, the largest set of novice

type errors we are aware of.

2. In Chapter 3 we use techniques from automated program testing to search for witnesses

to type errors, i.e. input vectors that would cause the program to crash. Once we have

found a witness, we compute an execution trace that demonstrates how the program

goes wrong, and provide an interactive debugger with which students can explore the

erroneous computation.

3. In Chapter 4 we use machine learning techniques to learn a model of where type errors are

most likely to occur in our students’ programs. This model allows us to make signi�cantly

more accurate predictions of where the error is most likely to be found.

Our contributions are presented and evaluated in the context of OCaml programs

written by novice programmers, but they are not restricted to this domain. Rather, we chose

OCaml as the target language as it has a powerful type system with global inference, showcasing

both the advantages of static typing and the limitations of type inference. We use novice

programs for our benchmarks as we feel novices are the most in need of assistance in diagnosing

type errors. In our experience, working with the type system is quite pleasant once you have

gotten used to it; however, getting to that point can be di�cult.

Endnotes

Acknowledgments

This chapter contains material adapted from the following publications: E. L. Seidel,

R. Jhala, and W. Weimer. Dynamic witnesses for static type errors (or, ill-typed programs usually

go wrong). In ICFP ’16, 2016; E. L. Seidel, R. Jhala, and W. Weimer. Dynamic witnesses for static

type errors (or, ill-typed programs usually go wrong). In submission to J. Funct. Programming,

2017; and E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala. Learning to blame:

localizing novice type errors with data-driven diagnosis. In submission to OOPSLA ’17, 2017.

The dissertation author was the primary investigator and author of these papers.

Chapter 2

A Dataset of Novice Type Errors

In this chapter we describe a collection of novice interactions with the OCaml compiler

— including, importantly, type errors — that we gathered at UC San Diego over two quarters of

the undergraduate CSE 130 course (IRB #140608). We have made the anonymized data publicly

available [97], and hope that other researchers will �nd it as valuable as we have.

The CSE 130 course is an upper-level (i.e. generally consisting of third- and fourth-year

students) course that introduces students to typed functional languages, speci�cally OCaml. For

most students, this course will be their �rst exposure to both functional programming and type

systems with global inference. We generally spend the �rst �ve weeks covering basic functional

programming in OCaml, and then spend the last �ve weeks in Scala covering more advanced

concepts like traits and monads (in the guise of for-yield comprehensions). In the OCaml

portion of the course we cover standard functional idioms like (tail-) recursion, higher-order

functions, and user-de�ned algebraic datatypes.

We recruited students from two instances of the course, Spring 2014 (SP14) and Fall

2015 (FA15), to use an instrumented version of the OCaml-Top1 editor, which logged each of

their interactions with the OCaml top-level system. 46 students from the SP14 quarter and 56

students from the FA15 quarter participated, for a total of 102 participants. The participants used

our instrumented editor to complete the �rst three programming assignments, which involved

writing 23 OCaml programs.

Figure 2.1 shows the main interface of OCaml-Top, which contains an editor pane on
1https://www.typerex.org/ocaml-top.html

14

https://www.typerex.org/ocaml-top.html

15

Figure 2.1. The OCaml-Top editor.

the left and an instance of the OCaml top-level interpreter on the right. The students interact

with the top-level system by selecting text in the editor and pressing the “play” button in the

toolbar, which sends the selected text to the interpreter for evaluation. The editor also maintains

a o�set into the open �le to track how much of the �le has been evaluated; this allows it to

intelligently send the next de�nition to the interpreter if no text is selected. The toolbar also has

a “stop” button to abort evaluation (e.g. to abort in�nite loops), a “rewind” button to restart the

interpreter, and a “fast-forward” button to load the entire �le into the interpreter. OCaml-Top

always sends each de�nition to the interpreter individually, even when using the “fast-forward”

button, this will become important when we extract ill-typed programs from the interactions.

We instrumented OCaml-Top to record each of the student’s interactions with the

top-level interpreter. Speci�cally, we modi�ed it to log an event each time a student pressed

one of the four interaction buttons on the toolbar (or used the equivalent keyboard shortcuts).

This gives rise to three kinds of interaction events:

Eval The student sent one or more de�nitions to be evaluated by the interpreter, by pressing

either “play” or “fast-forward”. In addition to logging the event, we logged both the o�sets

into the �le that mark delimit the evaluated text, and the list of evaluated de�nitions.

Abort The student aborted evaluation by pressing “stop”.

Stop The student restarted the interpreter by pressing “rewind”.

16

{
"file": "hw1.ml" | "hw2.ml" | "hw3.ml",
"time": number ,
"body": string ,
"cursor": number ,
"event": {

"type": "abort" | "eval" | "stop",
"region": {

"start": number ,
"stop": number

}
},
"ocaml": [{

"in": string ,
"out": string ,
"type": "scope" | "syntax" | "type" | "",
"min": string

}]
}

Figure 2.2. Format of the post-processed interaction events as JSON objects.

For each event we also recorded the �lename to identify the homework the student was working

on, the current UNIX timestamp, the entire body of the �le, and the o�set of the cursor into the

�le. Thus, for each participating student we can see and replay, with �ne granularity, the steps

they took to solve the programming assignments.

We then post-processed the interaction traces to add the OCaml interpreter’s responses

to the students’ submissions. Recall that OCaml-Top always sends single top-level de�nitions

to the interpreter, which maintains an environment of de�ned types and functions. This is

inconvenient for extracting ill-typed programs, as the vast majority of submitted de�nitions

will depend on other de�nitions that were submitted previously. Thus, we modi�ed the OCaml

interpreter to track dependencies between top-level function and type de�nitions, so that for

each de�nition a student submitted, we could produce a self-contained, minimal program that

would have the same behavior.

For each submitted de�nition, we collected the interpreter’s response and the minimal

self-contained program, and classi�ed the response as either a syntax error, a scoping error

(e.g. an unbound variable), a type error, or no error. As we are primarily concerned with type

17

errors in this work, we did not capture the actual result of evaluating the de�nition, i.e. the

resulting value, but it would be easy to extend the replay procedure to do so. We then stored

the post-processed interaction traces as sequences of JSON objects, in the format described by

Figure 2.2. From this format it is quite convenient to run various analyses, e.g. what are the

hardest assignments (measured by time spent or by errors encountered), what is the relative

frequency of various errors, etc., though for this work we will only use the dataset as a source

of type errors and �xes.

Chapter 3

Dynamic Witnesses for Static Type Errors

We have noticed a common theme in the existing literature on type error diagnosis:

errors are always presented in terms of the static type system, and yet (static) type systems are

meant to rule out certain types of dynamic errors. We believe this may be particularly confusing

for novice users, who must simultaneously develop a mental model of the dynamic (evaluation)

semantics and the static (typing) semantics of the language they are learning. Furthermore,

given the rise of dynamic languages like Python and Javascript as teaching languages, novices

may be more familiar with reasoning about the dynamic semantics of a program than the static

semantics. Thus, by connecting the static type error to the dynamic error it would prevent, we

might help novices understand the type system better.

In this chapter we propose a new approach that explains static type errors by dynamically

witnessing how an ill-typed program goes wrong. We have developed NanoMaLy, an interactive

tool that uses the source of the ill-typed function to automatically synthesize the result on the

bottom-left in Figure 3.1, which shows how the recursive calls reduce to a con�guration where

the program “goes wrong” — i.e. the int value 0 is to be added to the list value []. We achieve

this via three concrete contributions.

1. Finding Witnesses

Our �rst contribution is an algorithm for searching for witnesses to type errors, i.e. inputs

that cause a program to go wrong (§ 3.2). This problem is tricky when we cannot rely on static

type information, as we must avoid the trap of spurious inputs that cause irrelevant problems

18

19

1 let rec sumList xs =
2 match xs with
3 | [] -> []

4 | h::t -> h + sumList t

Figure 3.1. (top-left) The ill-typed sumList function highlighting the error location reported
by OCaml. (bottom-left) Dynamically witnessing the type error in sumList, showing only
function call-return pairs. (right) The same trace, fully expanded to show each small-step
reduction in the computation.

that would be avoided by picking values of a di�erent, relevant type. We solve this problem

by developing a novel operational semantics that combines evaluation and type inference. We

execute the program with holes — values whose type is unknown — as the inputs. A hole remains

abstract until the evaluation context tells us what type it must have, for example the parameters

to an addition operation must both be integers. Our semantics conservatively instantiates holes

with concrete values, dynamically inferring the type of the input until the program goes wrong.

We prove that our procedure synthesizes general witnesses, which means, intuitively, that if a

witness is found for a given ill-typed function, then, for all (inhabited) input types, there exist

values that can make the function go wrong.

Given a witness to a type error, the novice may still be at a loss. The standard OCaml

interpreter and debugging infrastructure expect well-typed programs, so they cannot be used to

investigate how the witness causes the program to crash. More importantly, the execution itself

may be quite long and may contain details not relevant to the actual error.

20

2. Visualizing Witnesses

Our second contribution is an interactive visualization of the execution of purely

functional OCaml programs, well-typed or not (§ 3.3). We extend the semantics to also build

a reduction graph which records all of the small-step reductions and the context in which

they occur. The graph lets us visualize the sequence of steps from the source witness to the

stuck term. The user can interactively expand the computation to expose intermediate steps

by selecting an expression and choosing a traversal strategy. The strategies include many of

the standard debugging moves, e.g. stepping forward or into or over calls, as well stepping or

jumping backward to understand how a particular value was created, while preserving a context

of the intermediate steps that allow the user to keep track of a term’s provenance.

We introduce a notion of jump-compressed traces to abstract away the irrelevant details

of a computation. A jump-compressed trace includes only function calls and returns. For

example, the trace in the bottom-left of Figure 3.1 is jump-compressed. Jump-compressed traces

are similar to stack traces in that both show a sequence of function calls that lead to a crash.

However, jump-compressed traces also show the return values of successful calls, which can be

useful in understanding why a particular path was taken.

3. Evaluating Witnesses

Of course, the problem of �nding witnesses is undecidable in general. In fact, due to

the necessarily conservative nature of static typing, there may not even exist any witnesses for

a given ill-typed program. Thus, our approach is a heuristic that is only useful if it can �nd

compact witnesses for real-world programs. Our third contribution is an extensive evaluation of

our approach on two di�erent sets of ill-typed programs obtained by instrumenting compilers

used in beginner’s classes (§ 3.4). The �rst is the UW dataset [60], standard in the literature,

comprising 284 ill-typed programs. The second comes from the new dataset described in

Chapter 2, comprising 4,407 ill-typed programs. We show that for both datasets, our technique

is able to generate witnesses for around 85% of the programs, in under a second in the vast

majority of cases. Furthermore, we show that a simple interactive strategy yields compact

21

counterexample traces with at most 5 steps for 60% of the programs, and at most 10 steps for

over 80% of the programs. We can even use witnesses to localize type errors with a simple

heuristic that treats the values in a “stuck” term as sources of typing constraints and the term

itself as a sink, achieving around 70% accuracy in locating the source of the error.

The ultimate purpose of an error report is to help the programmer comprehend and �x

problematic code. Thus, our �nal contribution is a user study that compares NanoMaLy’s dy-

namic witnesses against OCaml’s type errors along the dimension of comprehensibility (§ 3.4.6).

Our study �nds that students given one of our witnesses are consistently more likely to correctly

explain and �x a type error than those given the standard error message produced by the OCaml

compiler.

All together, our results show that in the vast majority of cases, (novices’) ill-typed

programs do go wrong, and that the witnesses to these errors can be helpful in understanding the

source of the error. This, in turn, opens the door to a novel dynamic way to explain, understand,

and appreciate the bene�ts of static typing.

3.1 Overview

We start with an overview of our approach to explaining (static) type errors using

witnesses that (dynamically) show how the program goes wrong. We illustrate why generating

suitable inputs to functions is tricky in the absence of type information. Then we describe

our solution to the problem and highlight the similarity to static type inference, Finally, we

demonstrate our visualization of the synthesized witnesses.

3.1.1 Generating Witnesses

Our goal is to �nd concrete values that demonstrate how a program “goes wrong”.

Problem: Which inputs are bad?

One approach is to randomly generate input values and use them to execute the program

until we �nd one that causes the program to go wrong. Unfortunately, this approach quickly

runs aground. Recall the erroneous sumList function from Figure 3.1. What types of inputs

22

should we test sumList with? Values of type int list are fair game, but values of type, say,

string or bool will cause the program to go wrong in an irrelevant manner. Concretely, we

want to avoid testing sumList with any type other than int list because any other type

would cause it to get stuck immediately in the match expression.

Solution: Don’t generate inputs until forced.

Our solution is to avoid generating a concrete value for the input at all, until we can be

sure of its type. The intuition is that we want to be as lenient as possible in our tests, so we

make no assumptions about types until it becomes clear from the context what type an input

must have. This is actually quite similar in spirit to type inference.

To defer input generation, we borrow the notion of a “hole” from SmallCheck [92]. A

hole — written να — is a placeholder for a value ν of some unknown type α . We leave all inputs

as uninstantiated holes until they are demanded by the program, e.g. due to a built-in operation

like the match expression.

Narrowing Input Types

Primitive operations, data construction, and case-analysis narrow the types of values.

For concrete values this amounts to a runtime type check, we ensure that the value has a type

compatible with the expected type. For holes, this means we now know the type it should have

(or in the case of compound data we know more about the type) so we can instantiate the hole

with a value. The value may itself contain more holes, corresponding to components whose

type we still do not know. Consider the fst function:

let fst p = match p with

(a, b) -> a

The case analysis tells us that p must be a pair, but it says nothing about the contents of the

pair. Thus, upon reaching the case-analysis we would generate a pair containing fresh holes

for the fst and snd component. Notice the similarity between instantiation of type variables

and instantiation of holes. We can compute an approximate type for fst by approximating the

23

types of the (instantiated) input and output, which would give us:

fst : (α1 * α2) -> α1

We call this type approximate because we only see a single path through the program, and thus

will miss narrowing points that only occur in other paths.

Returning to sumList, given a hole as input we will narrow the hole to a list1 upon

reaching the match expression. At this point we construct a random list2 with new holes as

the values for the instantiation and concrete execution takes over. Assuming we have generated

a non-empty list, we will move into the h::t branch and reach the + expression, which will

narrow h to a concrete int. We will then recurse via sumList t until we reach the last element

of the list, at which point sumList t will return the empty list [] and the program will crash

as expected at the + expression.

Witness Generality

We show in § 3.2.3 that our lazy instantiation of holes produces general witnesses. That

is, we show that if “executing” a function with a hole as input causes the function to “go wrong”,

then there is no possible type for the function. In other words, for any types you might assign to

the function’s inputs, there exist values that will cause the function to go wrong.

Problem: How many inputs does a function take?

There is another wrinkle, though; how did we know that sumList takes a single argu-

ment instead of two (or none)? It is clear, syntactically, that sumList takes at least one argument,

but in a higher-order language with currying, syntax can be deceiving. Consider the following

de�nition:

let incAllByOne = List.map (+ 1)

Is incAllByOne a function? If so, how many arguments does it take? The OCaml compiler

deduces that incAllByOne takes a single argument because the type of List.map says it takes
1At this point we do not know it must be an int list.
2With standard heuristics [21] to favor small values.

24

Figure 3.2. The reduction graph for 1+2+3, highlighting the edges produced by reducing 1+2+3
to 3+3.

two arguments, and it is partially applied to (+ 1). As we are dealing with ill-typed programs

we do not have the luxury of typing information.

Solution: Search for saturated application.

We solve this problem by deducing the number of arguments via an iterative process.

We add arguments one-by-one until we reach a saturated application, i.e. until evaluating the

application returns a value other than a lambda.

3.1.2 Visualizing Witnesses

We have described how to reliably �nd witnesses to type errors in OCaml, but this does

not fully address our original goal — to explain the errors. Having identi�ed an input vector

that triggers a crash, a common next step is to step through the program with a debugger to

observe how the program evolves. The existing debuggers and interpreters for OCaml assume

a type-correct program, so unfortunately we cannot use them o�-the-shelf. Instead we extend

our search for witnesses to produce an execution trace.

Reduction Graph

Our trace takes the form of a reduction graph, which records small-step reductions in

the context in which they occur. For example, evaluating the expression 1+2+3 would produce

the graph in Figure 3.2. Notice that when we transition from 1+2+3 to 3+3 we collect both that

25

edge and an edge from the sub-term 1+2 to 3. These additional edges allow us to implement

two common debugging operations post-hoc: “step into” to zoom in on a speci�c function call,

and “step over” to skip over uninteresting computations.

Interacting with the graph

The reduction graph is useful for formulating and executing traversals, but displaying it

all at once would quickly become overwhelming. Our interaction begins by displaying a big-step

reduction, i.e. the witness followed by the stuck term. The user can then progressively �ll in the

hidden steps of the computation by selecting a visible term and choosing one of the applicable

traversal strategies — described in § 3.3 — to insert another term into the visualization.

Jump-compressed Witnesses

It is rare for the initial state of the visualization to be informative enough to diagnose

the error. Rather than abandon the user, we provide a short-cut to expand the witness to a jump-

compressed trace, which contains every function call and return step. The jump-compressed

trace abstracts the computation as a sequence of call-response pairs, providing a high-level

overview of steps taken to reach the crash, and a high level of compression compared to the

full trace. For example, the jump-compressed trace in Figure 3.1 contains 4 nodes compared

to the 19 in the fully expanded trace. Our benchmark suite of student programs shows that

jump-compression is practical, with an average jump-compressed trace size of 7 nodes and a

median of 5.

3.2 Type-Error Witnesses

Next, we formalize the notion of type error witnesses as follows. First, we de�ne a

core calculus within which we will work (§ 3.2.1). Second, we develop a (non-deterministic)

operational semantics for ill-typed programs that precisely de�nes the notion of awitness (§ 3.2.2).

Third, we formalize and prove a notion of generality for witnesses, which states, intuitively, that

if we �nd a single witness then for every possible type assignment there exist inputs that are

guaranteed to make the program “go wrong” (§ 3.2.3). Finally, we re�ne the operational semantics

26

Expressions e ::= e | stuck
e ::= v | x | e e | e + e
| if e then e else e

| 〈e, e〉 | match e
{
〈x ,x〉 → e

| e :: e | []

| match e

{
[] → e

x :: x → e

Values v ::= n | b | λx .e | να

| 〈v,v〉 | l
l ::= v ::t v | []t

Integers n ::= 0, 1,−1, . . .
Booleans b ::= true | false

Types t ::= bool | int | fun

| t × t | [t] | α

Substitutions σ ::= {να11 7→ vn , . . . ,ν
αn
n 7→ vn}

θ ::= {α1 7→ tn , . . . ,αn 7→ tn}

Contexts C ::= • | C e | v C
| C + e | v +C
| if C then e else e
| 〈C, e〉 | 〈v,C〉

| match C
{
〈x ,x〉 → e

| C :: e | v :: C

| match C

{
[] → e

x :: x → e

Figure 3.3. Syntax of λH

into a search procedure that returns concrete (general) witnesses for ill-typed programs § (3.2.4).

We have formalized and tested our semantics and generality theorem in PLT-Redex [30]. Detailed

proofs for the theorems in this section can be found in Appendix A.

3.2.1 Syntax

Figure 3.3 describes the syntax of λH , a simple lambda calculus with integers, booleans,

pairs, and lists. As we are speci�cally interested in programs that do go wrong, we include an

explicit stuck term in our syntax. We write e to denote terms that may be stuck, and e to

denote terms that may not be stuck.

27

Holes

Recall that a key challenge in our setting is to �nd witnesses that are meaningful and

do not arise from choosing values from irrelevant types. We solve this problem by equipping

our term language with a notion of a hole, written να , which represents an unconstrained value

ν that may be replaced with any value of an unknown type α . Intuitively, the type holes α can

be viewed as type variables that we will not generalize over. A normalized value is one that is

not a hole, but which may internally contain holes. For example 〈ν1[α1],ν2[α2]〉 is a normalized

value.

Substitutions

Our semantics ensure the generality of witnesses by incrementally re�ning holes, �lling

in just as much information as is needed locally to make progress (inspired by the manner in

which SmallCheck uses lazy evaluation [92]). We track how the holes are incrementally �lled in,

by using value (resp. type) substitutions σ (resp. θ) that map value (resp. type) holes to values

(resp. types). The substitutions let us ensure that we consistently instantiate each hole with the

same (partially de�ned) value or type, regardless of the multiple contexts in which the hole

appears. This ensures we can report a concrete (and general) witness for any (dynamically)

discovered type errors.

A normalized value substitution is one whose co-domain is comprised of normalized

values. In the sequel, we will assume and ensure that all value substitutions are normalized. We

ensure additionally that the co-domain of a substitution does not refer to any elements of its

domain, i.e. when we extend a substitution with a new binding we apply the substitution to

itself. We will use the notation θ + {α 7→ t} for the extension of a type (resp. value) substitution,

to distinguish it from a simple set union.

3.2.2 Semantics

Recall that our goal is to synthesize a value that demonstrates why (and how) a function

goes wrong. We accomplish this by combining evaluation with type inference, giving us a form

28

of dynamic type inference. Each primitive evaluation step tells us more about the types of

the program values. For example, addition tells us that the addends must be integers, and an

if-expression tells us the condition must be a boolean. When a hole appears in such a context,

we know what type it must have in order to make progress and can �ll it in with a concrete

value.

The evaluation relation is parameterized by a pair of functions, narrow (narrow) and

generate (gen), that “dynamically” perform type-checking and hole-�lling respectively.

Narrowing Types

The procedure narrow(v, t ,σ ,θ), de�ned in Figure 3.4, takes as input a value v , a type t ,

and the current value and type substitutions, and re�nes v to have type t by yielding a triple

of either the same value and substitutions, or yields the stuck state if no such re�nement is

possible. In the case where v is a hole, it �rst checks in the given σ to see if the hole has already

been instantiated and, if so, returns the existing instantiation. For convenience, narrow uses a

variant of Robinson’sU [90] that uni�es a set of types, and that takes and updates an existing

substitution. As the value substitution is normalized, in the �rst case of narrow we do not

need to narrow the result of the substitution, the sub-hole will be narrowed when the context

demands it.

Generating Values

The (non-deterministic) gen(t ,θ) in Figure 3.5 takes as input a type t and returns a value

of that type. For base types the procedure returns an arbitrary value of that type. For functions

it returns a lambda with a new hole denoting the return value. For unconstrained types (denoted

by α) it yields a fresh hole constrained to have type α (denoted by να). When generating a [t]

we must take care to ensure the resulting tree is well-typed. For a polymorphic type [α] or

α1 × α2 we will place holes in the generated value; they will be lazily �lled in later, on demand.

29

narrow : v × t × σ × θ → 〈v ∪ stuck,σ ,θ〉

narrow(να , t ,σ ,θ) �



〈v,σ ,θ ′〉 if

v = σ (να),

θ ′ = U({α , t , ty(v)},θ)

〈stuck,σ ,θ〉 if v = σ (να)

〈v,σ + {να 7→ v},θ ′〉 if

θ ′ = U({α , t},θ),

v = gen(t ,θ ′)
narrow(n, int,σ ,θ) � 〈n,σ ,θ〉

narrow(b, bool,σ ,θ) � 〈b,σ ,θ〉

narrow(λx .e, fun,σ ,θ) � 〈λx .e,σ ,θ〉

narrow(〈v1,v2〉, t1 × t2,σ ,θ) � 〈〈v1,v2〉,σ ,θ
′′〉 if

θ ′ = U({ty(v1), t1},θ),
θ ′′ = U({ty(v2), t2},θ ′)

narrow([]t1 , [t2],σ ,θ) � 〈[]t1 ,σ ,θ ′〉 if θ ′ = U({t1, t2},θ)

narrow(v1 ::t1 v2, [t2],σ ,θ) � 〈v1 ::t1 v2,σ ,θ ′〉 if θ ′ = U({t1, t2},θ)

narrow(v, t ,σ ,θ) � 〈stuck,σ ,θ〉

Figure 3.4. Narrowing values

Steps and Traces

Figure 3.6 describes the small-step contextual reduction semantics for λH . A con-

�guration is a triple 〈e,σ ,θ〉 of an expression e or the stuck term stuck, a value substi-

tution σ , and a type substitution θ . We write 〈e,σ ,θ〉 ↪→ 〈e′,σ ′,θ ′〉 if the state 〈e,σ ,θ〉

transitions in a single step to 〈e′,σ ′,θ ′〉. A (�nite) trace τ is a sequence of con�gurations

〈e0,σ0,θ0〉, . . . , 〈en ,σn ,θn〉 such that ∀0 ≤ i < n, we have 〈ei ,σi ,θi 〉 ↪→ 〈ei+1,σi+1,θi+1〉. We

write 〈e,σ ,θ〉 ↪→τ 〈e′,σ ′,θ ′〉 if τ is a trace of the form 〈e,σ ,θ〉, . . . , 〈e′,σ ′,θ ′〉. We write

〈e,σ ,θ〉 ↪→∗ 〈e′,σ ′,θ ′〉 if 〈e,σ ,θ〉 ↪→τ 〈e′,σ ′,θ ′〉 for some trace τ .

Primitive Reductions

Primitive reduction steps — addition, if-elimination, function application, and data

construction and case analysis — use narrow to ensure that values have the appropriate type

(and that holes are instantiated) before continuing the computation. Importantly, beta-reduction

does not type-check its argument, it only ensures that “the caller” v1 is indeed a function.

30

gen : t × θ → v
gen(α ,θ) � gen(θ (α),θ) if α ∈ dom(θ)
gen(int,θ) � n non-det.
gen(bool,θ) � b non-det.
gen(t1 × t2,θ) � 〈gen(t1,θ), gen(t2,θ)〉
gen([t],θ) � l non-det.
gen(fun,θ) � λx .να ν , α are fresh
gen(α ,θ) � να ν is fresh

Figure 3.5. Generating values

Recursion

Our semantics lacks a built-in fix construct for de�ning recursive functions, which

may surprise the reader. Fixed-point operators often cannot be typed in static type systems, but

our system would simply approximate its type as fun, apply it, and move along with evaluation.

Thus we can use any of the standard �xed-point operators and do not need a built-in recursion

construct.

3.2.3 Generality

A key technical challenge in generating witnesses is that we have no (static) type

information to rely upon. Thus, we must avoid the trap of generating spurious witnesses that

arise from picking irrelevant values, when instead there exist perfectly good values of a di�erent

type under which the program would not have gone wrong. We now show that our evaluation

relation instantiates holes in a general manner. That is, given a lambda-term f , if we have

〈f να ,∅,∅〉 ↪→∗ 〈stuck,σ ,θ〉, then for every concrete type t , we can �nd a value v of type t

such that f v goes wrong.

Theorem 1 (Witness Generality). For any lambda f , if 〈f να ,∅,∅〉 ↪→τ 〈stuck,σ ,θ〉, then for

every (inhabited 3) type t there exists a valuev of type t such that 〈f v,∅,∅〉 ↪→∗ 〈stuck,σ ′,θ ′〉.

We need to develop some machinery in order to prove this theorem. First, we show

how our evaluation rules encode a dynamic form of type inference, and then we show that the
3All types in λH are inhabited, but in a larger language like OCaml this may not be true.

31

Evaluation 〈e,σ ,θ〉 ↪→ 〈e,σ ,θ〉

Plus-G

〈n1,σ
′,θ ′〉 = narrow(v1, int,σ ,θ)

〈n2,σ
′′,θ ′′〉 = narrow(v2, int,σ ′,θ ′)

n = n1 + n2

〈C [v1 +v2] ,σ ,θ〉 ↪→ 〈C [n] ,σ
′′,θ ′′〉

Plus-B1
〈stuck,σ ′,θ ′〉 = narrow(v1, int,σ ,θ)

〈C [v1 +v2] ,σ ,θ〉 ↪→ 〈stuck,σ
′,θ ′〉

Plus-B2
〈stuck,σ ′,θ ′〉 = narrow(v2, int,σ ,θ)

〈C [v1 +v2] ,σ ,θ〉 ↪→ 〈stuck,σ
′,θ ′〉

If-G1
〈true,σ ′,θ ′〉 = narrow(v, bool,σ ,θ)

〈C [if v then e1 else e2] ,σ ,θ〉 ↪→ 〈C [e1] ,σ
′,θ ′〉

If-G2
〈false,σ ′,θ ′〉 = narrow(v, bool,σ ,θ)

〈C [if v then e1 else e2] ,σ ,θ〉 ↪→ 〈C [e2] ,σ
′,θ ′〉

If-B
〈stuck,σ ′,θ ′〉 = narrow(v, bool,σ ,θ)

〈C [if v then e1 else e2] ,σ ,θ〉 ↪→ 〈stuck,σ
′,θ ′〉

App-G
〈λx .e,σ ′,θ ′〉 = narrow(v1, fun,σ ,θ)

〈C [v1 v2] ,σ ,θ〉 ↪→ 〈C [e [v2/x]] ,σ
′,θ ′〉

App-B
〈stuck,σ ′,θ ′〉 = narrow(v1, fun,σ ,θ)

〈C [v1 v2] ,σ ,θ〉 ↪→ 〈stuck,σ
′,θ ′〉

Match-Pair-G
α1,α2 are fresh 〈〈v1,v2〉,σ1,θ1〉 = narrow(v,α1 × α2,σ ,θ)

〈C
[
match v

{
〈x1,x2〉 → e

]
,σ ,θ〉 ↪→ 〈C [e [v1/x1] [v2/x2]] ,σ1,θ1〉

Match-Pair-B
α1,α2 are fresh 〈stuck,σ1,θ1〉 = narrow(v,α1 × α2,σ ,θ)

〈C
[
match v

{
〈x1,x2〉 → e

]
,σ ,θ〉 ↪→ 〈stuck,σ1,θ1〉

Figure 3.6. Evaluation relation for λH

32

Evaluation (ctd.) 〈e,σ ,θ〉 ↪→ 〈e,σ ,θ〉

Nil-G α is fresh
〈C [[]] ,σ ,θ〉 ↪→ 〈C [[]α] ,σ ,θ〉

Cons-G

t = ty(v1)
〈v ′2,σ2,θ2〉 = narrow(v2, [t],σ1,θ1)

〈C [v1 :: v2] ,σ ,θ〉 ↪→ 〈C
[
v1 ::t v ′2

]
,σ2,θ2〉

Cons-B

t = ty(v1)
〈stuck,σ2,θ2〉 = narrow(v2, [t],σ1,θ1)

〈C [v1 :: v2] ,σ ,θ〉 ↪→ 〈stuck,σ2,θ2〉

Match-List-G1
α is fresh 〈[]t ,σ1,θ1〉 = narrow(v, [α],σ ,θ)

〈C

[
match v

{
[] → e1

x1 :: x2 → e2

]
,σ ,θ〉 ↪→ 〈C [e1] ,σ1,θ1〉

Match-List-G2
α is fresh 〈v1 ::t v2,σ1,θ1〉 = narrow(v1, [α],σ ,θ)

〈C

[
match v

{
[] → e1

x1 :: x2 → e2

]
,σ ,θ〉 ↪→ 〈C [e2 [v1/x1] [v2/x2]] ,σ1,θ1〉

Match-List-B
α is fresh 〈stuck,σ1,θ1〉 = narrow(v, [α],σ ,θ)

〈C

[
match v

{
[] → e1

x1 :: x2 → e2

]
,σ ,θ〉 ↪→ 〈stuck,σ1,θ1〉

Figure 3.6. Evaluation relation for λH (ctd.)

33

ty(n) � int

ty(b) � bool

ty(λx .e) � fun

ty(〈v1,v2〉) � ty(v1) × ty(v2)
ty([]t) � [t]
ty(v1 ::t v2) � [t]
ty(να) � α

Figure 3.7. The dynamic type of a value.

witnesses found by evaluation are indeed maximally general.

The Type of a Value

The dynamic type of a value v is de�ned as a function ty(v) shown in Figure 3.7.

The types of primitive values are de�ned in the natural manner. The types of functions are

approximated, which is all that is needed to ensure an application does not get stuck. For

example,

ty(λx .x + 1) = fun

instead of int→ int. The types of (polymorphic) trees are obtained from the labels on their

values, and the types of tuples directly from their values.

Dynamic Type Inference

We can think of the evaluation of f να as synthesizing a partial instantiation of α ,

and thus dynamically inferring a (partial) type for f ’s input. We can extract this type from

an evaluation trace by applying the �nal type substitution to α . Formally, we say that if

〈f να ,∅,∅〉 ↪→τ 〈e,σ ,θ〉, then the partial input type of f up to τ , written ρτ (f), is θ (α).

Compatibility

A type s is compatible with a type t , written s ∼ t , if ∃θ . θ (s) = θ (t). That is, two types

are compatible if there exists a type substitution that maps both types to the same type. A value

v is compatible with a type t , written v ∼ t , if ty(v) ∼ t , that is, if the dynamic type of v is

34

compatible with t .

Type Re�nement

A type s is a re�nement of a type t , written s � t , if ∃θ .s = θ (t). In other words, s is a

re�nement of t if there exists a type substitution that maps t directly to s . A type t is a re�nement

of a value v , written t � v , if t � ty(v), i.e. if t is a re�nement of the dynamic type of v .

Preservation

We prove two preservation lemmas. First, we show that each evaluation step re�nes

the partial input type of f , thus preserving type compatibility.

Lemma 2. If τ � 〈f να ,∅,∅〉, . . . , 〈e,σ ,θ〉 and τ ′ � τ , 〈e,σ ,θ〉 ↪→ 〈e ′,σ ′,θ ′〉 (i.e. τ ′ is a

single-step extension of τ) and ρτ (f) , ρτ ′(f) then θ ′ = θ + {α1 7→ t1, . . . ,αn 7→ tn}.

Proof. By case analysis on the evaluation rules. α does not change, so if the partial input types

di�er then θ , θ ′. Only narrow can change θ , viaU, which can only extend θ . �

Second, we show that at each step of evaluation, the partial input type of f is a re�nement

of the instantiation of να .

Lemma 3. For all traces τ � 〈f να ,∅,∅〉, . . . , 〈e,σ ,θ〉, ρτ (f) � σ (να).

Proof. By induction on τ . In the base case τ = 〈f να ,∅,∅〉 and α trivially re�nes να . In the

inductive case, consider the single-step extension of τ , τ ′ = τ , 〈e ′,σ ′,θ ′〉. We show by case

analysis on the evaluation rules that if ρτ (f) � σ (να), then ρτ ′(f) � σ
′(να). �

Incompatible Types Are Wrong

For all types that are incompatible with the partial input type up to τ , there exists a

value that will cause f to get stuck in at most k steps, where k is the length of τ .

Lemma 4. For all types t , if 〈f να ,∅,∅〉 ↪→τ 〈e,σ ,θ〉 and t � ρτ (f), then there exists a v such

that ty(v) = t and 〈f v,∅,∅〉 ↪→∗ 〈stuck,σ ′,θ ′〉 in at most k steps, where k is the length of τ .

35

Proof. We can construct v from τ as follows. Let

τi = 〈f ν
α ,∅,∅〉, . . . , 〈ei−1,σi−1,θi−1〉, 〈ei ,σi ,θi 〉

be the shortest pre�x of τ such that ρτi (f) � t . We will show that ρτi−1(f) must contain some

other hole α ′ that is instantiated at step i . Furthermore, α ′ is instantiated in such a way that

ρτi (f) � t . Finally, we will show that if we had instantiated α ′ such that ρτi (f) ∼ t , the current

step would have gotten stuck.

By Lemma 2 we know that θi = θi−1 + {α1 7→ t1, . . . ,αn 7→ tn}. We will assume,

without loss of generality, that θi = θi−1 + {α
′ 7→ t ′}. Since θi−1 and θi di�er only in α ′

but the resolved types di�er, we have α ′ ∈ ρτi−1(f) and ρτi (f) = ρτi−1(f) [t
′/α ′]. Let s be a

concrete type such that ρτi−1(f) [s/α ′] = t . We show by case analysis on the evaluation rules

that 〈ei−1,σi−1,θi−1 + {α ′ 7→ s}〉 ↪→ 〈stuck,σ ,θ〉.

Finally, by Lemma 3 we know that ρτi−1(f) � σi−1(ν
α) and thus α ′ ∈ σi−1(να). Let

u = gen(s,θ) and v = σi−1(να)
[
u/ν ′α

′]
[s/α ′]. 〈f v,∅,∅〉 ↪→∗ 〈stuck,σ ,θ〉 in i steps. �

Proof of Theorem 1. Suppose τ witnesses that f gets stuck, and let s = ρτ (f). We show that

all types t have stuck-inducing values by splitting cases on whether t is compatible with s .

Case s ∼ t : Let τ = 〈f να ,∅,∅〉, . . . , 〈stuck,σ ,θ〉. The value v = σ (να) demonstrates that

f v gets stuck.

Case s � t : By Lemma 4, we can derive a v from τ such that ty(v) = t and f v gets stuck.

�

3.2.4 Search Algorithm

So far, we have seen how a trace leading to a stuck con�guration yields a general witness

demonstrating that the program is ill-typed (i.e. goes wrong for at least one input of every type).

In particular, we have shown how to non-deterministically �nd a witnesses for a function of a

single argument.

36

We must address two challenges to convert the semantics into a procedure for �nding

witnesses. First, we must resolve the non-determinism introduced by gen. Second, in the

presence of higher-order functions and currying, we must determine how many concrete values

to generate to make execution go wrong (as we cannot rely upon static typing to provide this

information.)

The witness generation procedure GenWitness is formalized in Figure 3.9. Next, we

describe its input and output, and how it addresses the above challenges to search the space of

possible executions for general type error witnesses.

Inputs and Outputs

The problem of generating inputs is undecidable in general. Our witness generation

procedure takes two inputs: (1) a search bound k which is used to de�ne the number of traces

to explore4 and (2) the target expression e that contains the type error (which may be a curried

function of multiple arguments). The witness generation procedure returns a list of (general)

witness expressions, each of which is of the form e v1 . . .vn . The empty list is returned when

no witness can be found after exploring k traces.

Modeling Semantics

We resolve the non-determinism in the operational semantics (§ 3.2.2) via the procedure

eval : e → 〈v ∪ stuck,σ ,θ〉∗

Due to the non-determinism introduced by gen, a call eval(e) returns a list of possible results of

the form 〈v ∪ stuck,σ ,θ〉 such that 〈e,∅,∅〉 ↪→∗ 〈v ∪ stuck,σ ,θ〉.

Currying

We address the issue of currying by de�ning a procedure Saturate(e), de�ned in Fig-

ure 3.8, that takes as input an expression e and produces a saturated expression of the form
4We assume, without loss of generality, that all traces are �nite.

37

Saturate : e → e
Saturate(e) = case eval(e) of
〈λx .e,σ ,θ〉, . . . → Saturate(e να) (ν ,α are fresh)
_ → e

Figure 3.8. Generating a saturated application.

e να11 . . . ν
αn
n that does not evaluate to a lambda. This is achieved with a simple loop that keeps

adding holes to the target application until evaluating the term yields a non-lambda value.

Generating Witnesses

Finally, Figure 3.9 summarizes the overall implementation of our search for witnesses

with the procedure GenWitness(k, e), which takes as input a bound k and the target expression

e , and returns a list of witness expressions e v1 . . .vn that demonstrate how the input program

gets stuck. The search proceeds as follows.

1. We invoke Saturate(e) to produce a saturated application esat .

2. We take the �rst k traces returned by eval on the target esat , and

3. We extract the substitutions corresponding to the stuck traces, and use them to return

the list of witnesses.

We obtain the following corollary of Theorem 1:

Corollary (Witness Generation). If

GenWitness(k, e) = 〈e v1 . . .vn ,σ ,θ〉, . . .

then for all types t1 . . . tn there exist valuesw1 . . .wn such that

〈e w1 . . .wn ,∅,∅〉 ↪→∗ 〈stuck,σ ′,θ ′〉

Proof. For any function f of multiple arguments, we can de�ne f ′ as the uncurried version of

f that takes all of its arguments as a single nested pair, and then apply Theorem 1 to f ′. �

38

GenWitness : Nat × e → e∗

GenWitness(n, e) = {σ (esat) | σ ∈ Σ}
where

esat = Saturate(e) (1)
res = take(n, eval(esat)) (2)
Σ = {σ | 〈stuck,σ ,θ〉 ∈ res} (3)

Figure 3.9. Generating witnesses.

3.3 Explaining Type Errors With Traces

A trace, on its own, is too detailed to be a good explanation of the type error. One

approach is to use the witness input to step through the program with a debugger to observe

how the program evolves. This route is problematic for two reasons. First, existing debuggers

and interpreters for typed languages (e.g. OCaml) typically require a type-correct program as

input. Second, we wish to have a quicker way to get to the essence of the error, e.g. by skipping

over irrelevant sub-computations, and focusing on the important ones.

In this section we present a novel way to debug executions. First, we develop a notion

of a reduction graphs and extend our semantics with a form of tracing so that they incrementally

collect the edges in the graph (§ 3.3.1). Next, we express a set of common interactive debugging

steps as graph traversals (§ 3.3.2), yielding an novel interactive debugger that allows the user to

e�ectively visualize how the program goes (wrong).

3.3.1 Tracing Semantics

Reduction Graphs

A steps-to edge is a pair of expressions e1 e2, which intuitively indicates that e1

reduces, in a single step, to e2. A reduction graph is a set of steps-to edges:

G ::= {e e, . . .}

39

Tracing Semantics

We extend the transition relation (§ 3.2.2) to collect the set of edges corresponding to

the reduction graph. Concretely, we extend the operational semantics to a relation of the form

〈e,σ ,θ ,G〉 ↪→ 〈e ′,σ ′,θ ′,G ′〉 where G ′ collects the edges of the transition.

Collecting Edges

Next, we describe the general recipe for extending a transition rule to collect edges.

The general recipe for collecting steps-to edges is to record the consequent of each original

rule in the trace. That is, each original judgment 〈e,σ ,θ〉 ↪→ 〈e ′,σ ′,θ ′〉 becomes 〈e,σ ,θ ,G〉 ↪→

〈e ′,σ ′,θ ′,G ∪ {e e ′}〉. As the translation is mechanical, we will not discuss it further.

3.3.2 Interactive Debugging

Next, we show how to build a visual interactive debugger from the traced semantics,

by describing the visualization state i.e. what the user sees at any given moment, the set of

commands available to user and what they do, and �nally how we use a command to update the

visualization state. In what follows, for clarity of exposition, we assume we have a (global) trace:

〈e0,∅,∅,∅〉 ↪→ 〈en ,σ ,θ ,G〉, where e0 and en are the initial and �nal expressions respectively.

Visualization State

A visualization state V is a directed graph whose vertices are expressions and whose

edges are such that each vertex has at most one predecessor and at most one successor. In

other words, the visualization state looks like a set of linear lists of expressions as shown in

Figure 3.10. The initial state is the graph containing a single edge linking the initial and �nal

expressions.

Visualization Context

The visualization context of each expression e in the visualization stateV is the (unique)

linear chain in which the expression e belongs. We write Root(V , e) for the �rst (or root)

expression appearing in the visualization context of e in V .

40

Figure 3.10. A sequence of interactions with the trace of sumList [1]. The stuck term is red,
in each node the redex is highlighted. Thick arrows denote a multi-step transition, thin arrows
denote a single-step transition. We start in step 1. In step 2 we jump forward from the witness
to the next function call. In step 3 we step into the recursive sumList [] call, which spawns a
new “thread” of execution. In step 4 we take a single step forward from sumList [].

Commands

Our debugger supports the following commands, each of which is parameterized by a

single expression (vertex) selected from the (current) visualization state:

• StepF, StepB: show the result of a single step forward or backward respectively,

• JumpF, JumpB: show the result of taking multiple steps (a “big” step) upto the �rst

beta-reduction forward or backward respectively,

• StepInto: show the result of stepping into a function call in a sub-term, isolating it from

the context,

• StepOver: show the result of skipping over a function call in a sub-term.

41

StepF(V , e) � e ′ where e e ′ ∈ G

StepB(V , e) � e ′ where e ′ e ∈ G and e ′ ∈ Path(V , e)

JumpF(V , e) �

{
e ′ if e ′ = v v ′

JumpF(V , e ′) otherwise
where e ′ = StepF(V , e)

JumpB(V , e) �

{
e ′ if e ′ = v v ′

JumpB(V , e ′) otherwise
where e ′ = StepB(V , e)

StepInto(V , e) � e ′ [v ′/x] if e = C[v v ′] and v v ′ e ′ [v ′/x]

StepOver(V , e) � C[v ′′] if e = C[v v ′] and v v ′ ∗ v ′′ ∈ G

Path(V , e) � {e ′ | Root(V , e) ∗ e ′ ∈ G and e ′ ∗ e ∈ G}

Figure 3.11. Rules for computing the next term given a visualization state V , selected term e
and command.

Update

Figure 3.11 shows how we compute the next expression (to be added to the visualization

state) given the current visualization state V , command Cmd and selected expression e . It is

straightforward to then update the visualization graph by adding the new term before (resp.

after) the selected expression e if the command was a step or jump forward (resp. backward), or

to create a new visualization context if the command was StepInto.

3.4 Evaluation

We have implemented a prototype of our search procedure and trace visualization for

a purely functional subset of OCaml — with polymorphic types and records, but no modules,

objects, or polymorphic variants — in a tool called NanoMaLy. We treat explicit type signatures,

e.g. (x : int), as primitive operations that narrow the type of the wrapped value. In our

implementation we instantiated gen with a simple random generation of values, which we will

show su�ces for the majority of type errors.

42

Evaluation Goals

There are four questions we seek to answer with our evaluation:

1. Witness Coverage (§ 3.4.2, 3.4.3) How many ill-typed programs admit witnesses?

2. Witness Complexity (§ 3.4.4) How complex are the traces produced by the witnesses?

3. Witness Utility (§ 3.4.5, 3.4.6) How helpful are the witnesses in debugging type errors?

4. Witness-based Blame (§ 3.4.7) Can witnesses be used to locate the source of an error?

In the sequel we present our experimental methodology (§ 3.4.1) and then answer the

above questions. However, for the impatient reader, we �rst summarize our main results:

1. Most Type Errors Admit Witnesses

Our prime result is that the vast majority of static type errors, around 85%, do in

fact admit a dynamic witness. Further, NanoMaLy e�ciently synthesizes witnesses with its

randomized search; it can synthesize a witness for over 75% of programs in under one second,

i.e. fast enough for interactive use.

2. Jump-Compressed Traces Are Small

We �nd that our jump-compression heuristic e�ectively abstracts the pedestrian details

of computation, compressing the median trace with 14–15 single-step reductions to only 4

jumps. Over 80% of programs have a jump-compressed trace with at most 10 jumps, providing a

bird’s-eye view from which we can launch a more in-depth investigation.

3. Witnesses Help Novices

A witness should also help programmers understand and �x type errors. We use a set

of ill-typed student programs to show that NanoMaLy’s witnesses e�ectively demonstrate the

runtime error that the type system prevented. Furthermore, we �nd, in a study of undergraduate

students, that NanoMaLy’s witnesses lead to more accurate diagnoses and �xes of type errors

than OCaml’s type error messages.

43

4. Witnesses Assign Blame

Finally, we present a simple heuristic that allows us to use witnesses to automatically

assign blame for type errors. We treat the values inside the stuck term as sources of typing

constraints and the stuck term itself as a sink, producing a slice of the program that likely contains

the error. Using this heuristic, NanoMaLy’s witnesses are competitive with the state-of-the-art

localization tools Mycroft and SHErrLoc.

3.4.1 Methodology

We answer the �rst two questions on two sets of ill-typed programs, i.e. programs

that were rejected by the OCaml compiler because of a type error. The �rst dataset comes

from the Spring 2014 dataset described in Chapter 2, which includes 4,407 distinct, ill-typed

OCaml programs from a cohort of 46 students. The second dataset — widely used in the

literature — comes from a graduate-level course at the University of Washington [61], from

which we extracted 284 ill-typed programs. Both datasets contain relatively small programs, the

largest being 348 SLoC; however, they demonstrate a variety of functional programming idioms

including (tail) recursive functions, higher-order functions, and polymorphic and algebraic data

types.

We answer the third question in two steps. First, we present a qualitative evaluation

of NanoMaLy’s traces on a selection of programs drawn from the UCSD dataset. Second,

we present a quantitative user study of students in the University of Virginia’s Spring 2016

undergraduate Programming Languages (CS 4501) course. As part of an exam, we presented the

students with ill-typed OCaml programs and asked them to (1) explain the type error, and (2)

�x the type error (IRB #2014009900). For each problem the students were given the ill-typed

program and either OCaml’s error message or NanoMaLy’s jump-compressed trace.

We answer the last question on a subset of the UCSD dataset. For each ill-typed program

compiled by a student, we identify the student’s �x by searching for the �rst type-correct

program that the student subsequently compiled. We then use an expression-level di� [59] to

determine which sub-expressions changed between the ill-typed program and the student’s �x,

44

Figure 3.12. Results of our coverage testing. Our random search successfully �nds witnesses
for 76–83% of the programs in under one second, improving to 84–85% in under 10 seconds.

and treat those expressions as the source of the type error.

3.4.2 Witness Coverage

We ran our search algorithm on each program for 1,000 iterations, with the entry point

set to the function that OCaml had identi�ed as containing a type error. Due to the possibility of

non-termination we set a timeout of one minute total per program. We also added a naïve check

for in�nite recursion; at each recursive function call we check whether the new arguments are

identical to the current arguments. If so, the function cannot possibly terminate and we report

an error. While not a type error, in�nite recursion is still a clear bug in the program, and thus

valuable feedback for the user.

Results

The results of our experiments are summarized in Figures 3.12 and 3.13. In both datasets

our tool was able to �nd a witness for over 75% of the programs in under one second, i.e. fast

enough to be integrated as a compile-time check. If we extend our tolerance to a 10 second

timeout, we reach 84% coverage, and if we allow a 60 second search, we hit a maximum of

45

Figure 3.13. Distribution of test outcomes. In both datasets we detect actual type errors at least
77% of the time, unbound variables or constructors 4% of the time, and diverging loops 2–3%
of the time. For the remaining 15–16% of the programs we are unable to provide any useful
feedback.

84–85% coverage. Interestingly, while the vast majority of witnesses corresponded to a type-

error, as expected, 4% triggered an unbound variable error (even though OCaml reported a type

error) and 3% triggered an in�nite recursion error. For the remaining 15–16% of programs we

were unable to provide any useful feedback as they either completed 1,000 tests successfully, or

timed out after one minute. While a more advanced search procedure, e.g. dynamic-symbolic

execution, could likely uncover more errors, our experiments suggest that type errors are coarse

enough (or that novice programs are simple enough) that these techniques are not necessary.

3.4.3 How safe are the “safe” programs?

An immediate question arises regarding the 15–16% of programs for which we could

not synthesize a witness: are they actually safe (i.e. is the type system being too conservative),

or did NanoMaLy simply fail to �nd a witness?

To answer this question, we investigated the 732 UCSD programs for which we failed

to �nd a witness. We used a combination of automatic and manual coding to categorize these

programs into four classes. The �rst class is easily detected by NanoMaLy itself, and thus

46

Figure 3.14. Results of our investigation into programs where NanoMaLy did not produce a
witness. A “*” denotes that the percentage is an estimate based on a random sampling of 50
programs.

admits a precise count. This left us with 504 programs that required manual coding; we selected

a random sample of 50 programs to investigate, and will report results based on that sample.

Figure 3.14 summarizes the results of our investigation — we note the classes that were based

on the random sample with a “*”.

Ad-Hoc Polymorphism

We found that for 5% programs NanoMaLy got stuck when it tried to compare two

holes. OCaml provides polymorphic equality and comparison operators, overloading them

for each type. While convenient to use, they pose a challenge for NanoMaLy’s combination

of execution and inference. For example, consider the following ill-typed factorial function,

parameterized by a lower bound.

let rec fac n m =

if n <= m then

true

else

n * fac (n - 1) m

47

When given fac, NanoMaLy will generate two fresh holes να11 and να22 and proceed directly into

the n <= m comparison. We cannot (yet) instantiate either hole because we have no constraints

on the αs (we know they must be equal, but nothing else), and furthermore we do not know

what constraints we may encounter later on in the program. Thus, we cannot perform the

comparison and proceed, and must give up our search for a witness, even though one obviously

exists, any pair of n and m such that n <= m is false.

Extending NanoMaLy with support for symbolic execution would alleviate this issue,

as we could then begin symbolically executing the program until we learn how to instantiate n

and m. Alternatively, we could speculatively instantiate both n and m with some arbitrary type,

and proceed with execution until we discover a type error. This speculative instantiation is,

of course, unsound; we would have to take care to avoid reporting frivolous type errors that

were caused by such instantiations. We would need to track which holes were instantiated

speculatively to distinguish type errors that would have happened regardless, as in fac, from

type errors that were caused by our instantiation.

Further, suppose that our speculative instantiation induces a frivolous type error. For

example, suppose we are given

let bad x y =

if x < y then

x *. y

else

0.0

and choose to (speculatively) instantiate x and y as ints and proceed down the “true” branch.

We will quickly discover this was the wrong choice, as they are immediately narrowed to floats.

We must now backtrack and try a di�erent instantiation, but we no longer need to choose one

at random. Since our instantiation was speculative, and x and y were originally holes, we can

treat the *. operator as a normal narrowing point with two holes. This tells us that the correct

instantiation was in fact float, and we can then proceed as normal from the backtracking point

with a concrete choice of floats. Thus, it appears that speculative instantiation of holes may

48

be a useful, lightweight alternative to symbolic execution for our purposes.

Non-Parametric Function Type *

5% of programs lack a witness in our semantics due to our non-parametric fun type for

functions. Recall that our goal is to expose the runtime errors that would have been prevented

by the type systems. At runtime, it is always safe to call a function, thus we give functions a

simple type fun that says they may be applied, but says nothing about their inputs or outputs.

But consider the following clone function, which is supposed to produce a list containing n

copies of the input x.

let rec clone x n =

if n > 0 then

clone [x] (n - 1)

else

[]

Unfortunately, the student instead constructs an n-level nested list containing a single x. The

OCaml compiler rejects this program because the recursive call to clone induces a cyclic typing

constraint 'a = 'a list, capturing the fact that each call increases the nesting of the list.

NanoMaLy fails to catch this because we do not track the types of the inputs to clone.

We note, however, that clone cannot go wrong; it is perfectly safe to repeatedly enclose

a list inside another (disregarding the fact that the nested list is never returned). Still, such a

function would be very di�cult to call safely, as the programmer would have to reason about the

dependency between the input n and the nesting of the output list, which cannot be expressed

in OCaml’s type system.

Thus, it is not particularly satisfying that NanoMaLy fails to produce a witness here; a

possible solution could be to track the types of the inputs, and demonstrate to the user how

they change between recursive calls. This would require maintaining a typing environment

of variables in addition to the environments we maintain for holes. We would have to modify

the rule App-G from Figure 3.6 to additionally narrow the function’s type against the concrete

49

inputs. However, we would want to ensure that this narrow cannot fail — it is preferable to

report a stuck term as that provides a fuller view of the error. Rather, we would note which

evaluation steps induced incompatible type re�nements, and if a traditional witness cannot be

found, we could then report a trace expanded to show precisely these steps. This represents

only a modest extension to our semantics, and would be interesting to explore further.

Dead Code and “Safe” Function Calls *

4% of programs contained type errors that were unreachable, either because they were

dead code, or because the student called the function with inputs that could not trigger the

error.

1% contained type errors that were unreachable by any inputs, often due to overlapping

patterns in a match expression. While technically safe, dead code is generally considered a

maintenance risk, as the programmer may not realize that it is dead [112] or may accidentally

bring it back to life [103]. Thus, a warning like that provided by OCaml’s pattern exhaustiveness

checker would be helpful.

A further 3% included a function call where the student supplied ill-typed inputs, but

the path induced by the call did not contain an error. Consider the following assoc function,

which looks up a key in an association list, returning a default if it cannot be found.

let rec assoc (d, k, l) = match l with

| (ki, vi)::tl ->

if ki = k then

vi

else

assoc (d, k, tl)

| _ -> d

let _ = assoc ([], 123, [(123, "sad"); (321, "happy")])

The student’s de�nition of assoc is correct, but OCaml rejects their subsequent call because the

50

default value [] is incompatible with the string values in the list. In this particular call the key

123 is in the list, so the default will not be used (even if it were, there would not be an error) and

OCaml’s complaint is moot. Of course, OCaml cannot be expected to know that this particular

call is safe, its type system is not sophisticated enough to express the necessary conditions.

Witness Exists *

We found that only 2% of programs admit a witness that NanoMaLy was unable to

discover. Slightly over half involved synthesizing a pair of specially-crafted inputs that would

result in the function returning values of incompatible types. The rest required synthesizing an

input that would trigger a particular path through the program, and would likely have been

caught by symbolic execution.

Summary

Our investigation suggests that the vast majority of programs for which we fail to �nd

a witness do not, in fact, admit a witness. These programs were generally cases where OCaml’s

type system was overly conservative. Of course, the conservatism is somewhat justi�ed as

each case pointed to code that would be di�cult to use or maintain; it would be interesting to

investigate how demonstrate these issues in an intuitive manner.

3.4.4 Witness Complexity

For each of the ill-typed programs for which we could �nd a witness, we measure the

complexity of the generated trace using two metrics.

1. Single-step: The size of the trace after expanding all of the single-step edges from the

witness to the stuck term, and

2. Jump-compressed: The size of the jump-compressed trace.

51

Figure 3.15. Complexity of the generated traces. Over 80% of the combined traces have a jump
complexity of at most 10, with an average complexity of 7 and a median of 5.

52

Results

The results of the experiment are summarized in Figure 3.15. The average number

of single-step reductions per trace is 17 for the UCSD dataset (42 for the UW dataset) with a

maximum of 2,745 (resp. 982) and a median of 15 (resp. 15). The average number of jumps per

trace is 7 (resp. 9) with a maximium of 353 (resp. 221) and a median of 4 (resp. 4). In both datasets

about 60% of traces have at most 5 jumps, and 80% or more have at most 10 jumps.

3.4.5 Qualitative Evaluation of Witness Utility

Next, we present a qualitative evaluation that compares the explanations provided by

NanoMaLy’s dynamic witnesses with the static reports produced by the OCaml compiler and

SHErrLoc, a state-of-the-art fault localization approach [118]. In particular, we illustrate, using

a series of examples drawn from student programs in the UCSD dataset, how NanoMaLy’s

jump-compressed traces can get to the heart of the error. Our approach highlights the con�icting

values that cause the program to get stuck, rather that blaming a single one, shows the steps

necessary to reach the stuck state, and does not assume that a function is correct just because

it type-checks. For each example we will present: (1) the code; (2) the error message returned

OCaml; (3) the error locations returned by OCaml and SHErrLoc ; and (4) NanoMaLy’s

jump-compressed trace.

Example: Recursion with Bad Operator

The recursive function sqsum should square each element of the input list and then

compute the sum of the result.

1 let rec sqsum xs = match xs with

2 | [] -> 0

3 | h::t -> sqsum t @ (h * h)

Unfortunately the student has used the list-append operator @ instead of +. Both OCaml and

SHErrLoc blame the wrong location, the recursive call sqsum t, with the message

This expression has type

53

int

but an expression was expected of type

'a list

NanoMaLy produces a trace showing how the evaluation of sqsum [1] gets stuck.

The trace highlights the entire stuck term (not just the recursive call), emphasizing the con�ict

between int and list rather than assuming one or the other is correct.

Example: Recursion with Bad Base Case

The function sumList should add up the elements of its input list.

1 let rec sumList xs = match xs with

2 | [] -> []

3 | y::ys -> y + sumList ys

Unfortunately, in the base case, it returns [] instead of 0. SHErrLoc blames the base case, and

OCaml assumes the base case is correct and blames the recursive call on line 3:

This expression has type

'a list

but an expression was expected of type

int

Both of the above are parts of the full story, which is summarized by NanoMaLy’s trace showing

how sumList [1; 2] gets stuck at 2 + [].

54

The trace clari�es (via the third step) that the [] results from the recursive call sumList [],

and shows how it is incompatible with the subsequent + operation.

Example: Bad Helper Function that Type-Checks

The function digitsOfInt should return a list of the digits of the input integer.

1 let append x xs =

2 match xs with

3 | [] -> [x]

4 | _ -> x :: xs

5

6 let rec digitsOfInt n =

7 if n <= 0 then

8 []

9 else

10 append (digitsOfInt (n / 10)) [n mod 10]

Unfortunately, the student’s append function conses an element onto a list instead of appending

two lists. Though incorrect, append still type-checks and thus OCaml and SHErrLoc blame

the use-site on line 10.

This expression has type

int

but an expression was expected of type

55

'a list

In contrast, NanoMaLy makes no assumptions about append, yielding a trace that illustrates

the error on line 4, by highlighting the con�ict in consing a list onto a list of integers.

Example: Higher-Order Functions

The higher-order function wwhile is supposed to emulate a traditional while-loop. It

takes a function f and repeatedly calls f on the �rst element of its output pair, starting with the

initial b, till the second element is false.

1 let rec wwhile (f,b) =

2 match f with

3 | (z, false) -> z

4 | (z, true) -> wwhile (f, z)

5

6 let f x =

7 let xx = x * x in

8 (xx, (xx < 100))

9

10 let _ = wwhile (f , 2)

The student has forgotten to apply f at all on line 2, and just matches it directly against a pair.

This faulty wwhile de�nition nevertheless typechecks, and is assumed to be correct by both

56

OCaml and SHErrLoc which blame the use-site on line 10.

This expression has type

int -> int * bool

but an expression was expected of type

'a * bool

NanoMaLy synthesizes a trace that draws the eye to the true error: the match expression on

line 2, and highlights the con�ict in matching a function against a pair pattern.

By highlighting con�icting values, i.e. the source and sink of the problem, and not making

assumption about function correctness, NanoMaLy focusses the user’s attention on the piece

of code that is actually relevant to the error.

3.4.6 Quantitative Evaluation of Witness Utility

We assigned four problems to the 60 students in the course: the sumList, digitsOfInt,

and wwhile programs from § 3.4.5, as well as the following append program

1 let append x l =

2 match x with

3 | [] -> l

4 | h::t -> h :: t :: l

which triggers an occurs-check error on line 4. For each problem the students were given the

ill-typed program and either OCaml’s error or NanoMaLy’s jump-compressed trace; the full

57

user study is available in Appendix B. Due to the nature of an in-class exam, not every student

answered every question; we received between 13 and 28 (out of a possible 30) responses for

each problem-tool pair.

We then instructed four annotators (one of whom is an author, the other three are

teaching assistants at UCSD) to classify the answers as correct or incorrect. We performed an

inter-rater reliability (IRR) analysis to determine the degree to which the annotators consistently

graded the exams. As we had more than two annotators assigning nominal (“correct” or

“incorrect”) ratings we used Fleiss’ kappa [32] to measure IRR. Fleiss’ kappa is measured on a

scale from 1, indicating total agreement, to −1, indicating total disagreement, with 0 indicating

random agreement.

Finally, we used a one-sided Mann-Whitney U test [66] to determine the signi�cance

of our results. The null hypothesis was that the responses from students given NanoMaLy’s

witnesses were drawn from the same distribution as those given OCaml’s errors, i.e. NanoMaLy

had no e�ect. Since we used a one-sided test, the alternative to the null hypothesis is that

NanoMaLy had a positive e�ect on the responses. We reject the null hypothesis in favor of the

alternative if the test produces a signi�cance level p < 0.05, a standard threshold for determining

statistical signi�cance.

Threats to Validity

Measuring understanding is a di�cult task; the following summarize the threats to the

validity of our results.

Construct. We used the correctness of the student’s explanation of, and �x for, the

type error as a proxy for her understanding, but it is possible that other metrics would produce

di�erent results.

Internal. We assigned students randomly to two groups. The �rst was given OCaml’s

errors for append and digitsOfInt, andNanoMaLy’s trace for sumList and wwhile; the second

was given the opposite assignment of errors and traces. This assignment ensured that: (1) each

58

student was given OCaml and NanoMaLy problems; and (2) each student was given an “easy”

and “hard” problem for both OCaml and NanoMaLy. Students without su�cient knowledge

of OCaml could a�ect the results, as could the time-constrained nature of an exam. For these

reasons we excluded any answers left blank from our analysis.

External. Our experiment used students in the process of learning OCaml, and thus

may not generalize to all developers. The four programs were chosen manually, via a random

selection and �ltering of the programs in the UCSD dataset. In some cases we made minor

simplifying edits (e.g. alpha-renaming, dead-code removal) to the programs to make them more

understandable in the short timeframe of an exam; however, we never altered the resulting

type-error. A di�erent selection of programs may lead to di�erent results.

Conclusion. We collected exams from 60 students, though due to the nature of the

study not every student completed every problem. The number of complete submissions ranges

from 13 (for the NanoMaLy version of wwhile) to 28 (for the OCaml version of sumList), out

of a maximum of 30 per program-tool pair. Our results are statistically signi�cant in only 2 out

of 8 tests; however, collecting more responses per test pair was not possible as it would require

having students answer the same problem twice (once with OCaml and once with NanoMaLy).

Results

The measured kappa values wereκ = 0.72 for the explanations andκ = 0.83 for the �xes;

while there is no formal notion for what consititutes strong agreement [54], kappa values above

0.60 are often called “substantial” agreement [55]. Figure 3.16 summarizes a single annotator’s

results, which show that students given NanoMaLy’s jump-compressed trace were consistently

more likely to correctly explain and �x the type error than those given OCaml’s error message.

Across each problem the NanoMaLy responses were marked correct 10 − 30% more often than

the OCaml responses, which suggests that the students who had access to NanoMaLy’s traces

had a better understanding of the type errors; however, only the append tests were statistically

signi�cant at p < 0.05.

59

Figure 3.16. A classi�cation of students’ explanations and �xes for type errors, given ei-
ther OCaml’s error message or NanoMaLy’s jump-compressed trace. The students given
NanoMaLy’s jump-compressed trace consistently scored better (≥ 10%) than those given
OCaml’s type error. We report the result of a one-sided Mann-Whitney U test for statistical
signi�cance in parentheses.

60

3.4.7 Locating Errors with Witnesses

We have seen that NanoMaLy can e�ectively synthesize witnesses to explain the

majority of (novice) type errors, but a good error report should also help locate the source of

the error. Thus, our �nal experiment seeks to use NanoMaLy’s witnesses as localizations.

As discussed in § 3.4.1, we recorded each interaction of our students with the OCaml

top-level system. This means that, in addition to collecting ill-typed programs, we collected

subsequent, �xed versions of the same programs. For each ill-typed program compiled by a

student, we identify the student’s �x by searching for the �rst type-correct program that the

student subsequently compiled. We then use an expression-level di� [59] to determine which

sub-expressions changed between the ill-typed program and the student’s �x, and treat those

expressions as the source of the type error.

Not all ill-typed programs will have an associated �x; furthermore, at some point a “�x”

becomes a “rewrite”. We do not wish to consider the “rewrites”, so we discard outliers where

the fraction of expressions that have changed is more than one standard deviation above the

mean, establishing a di� threshold of 40%. This accounts for roughly 14% of programs pairs we

discovered, leaving us with 2,710 program pairs.

For each pair of an ill-typed program and its �x, we run NanoMaLy and collect two

sets of source locations: (1) the source location corresponding to the stuck term; and (2) the

source locations that produced the values inside the stuck term. Intuitively, these two classes

of locations correspond to sinks and sources for typing constraints. For example, in the sqsum

program from § 3.4.5 the stuck term is 0 @ 1. This corresponds to the call to @ on line 3, and

contains the literal 0 from line 2 and the value 1 produced by the * on line 3.

We compare NanoMaLy’s witness-based predictions against a baseline of the OCaml

compiler as well as the state-of-the-art localization tools SHErrLoc and Mycroft. SHEr-

rLoc [118] attempts to predict the most likely source of a type error by searching the typing

constraint graph for constraints that participate in many unsatis�able paths and few satis�able

paths. Mycroft [65] reduces the localization problem to MaxSAT by searching for a minimal

subset of constraints that can be removed, such that the resulting system is satis�able. Both tools

61

produce a set of equally-likely expressions to blame for the error (in practice the set contains

only a few expressions), similar to NanoMaLy’s witness-based predictions.

We evaluate each tool based on whether any of its predictions identi�es a changed

expression. There were a number of programs where Mycroft or SHErrLoc encountered an

unsupported language feature or timed out after one minute, or where NanoMaLy failed to

produce a witness. We discard all such programs in our evaluation to level the playing �eld,

around 15% for each tool, leaving us with a benchmark set of 1,759 programs.

Threats to Validity

Our benchmarks were drawn from students in an undergraduate course at UCSD and

may not be representative of other student bodies. We mitigate this threat with a large empirical

evaluation of 1,759 programs, drawn from a cohort of 46 students. A similar threat is that

students are not industrial programmers, thus our results may not translate to large-scale

software engineering. However, in our experience programmers are able to construct a mental

model of type systems after su�cient exposure, at which point traditional error reports may

su�ce. We are thus particularly interested in aiding novice programmers as they learn to work

with the type system.

Our de�nition of the next well-typed program as the intended ground truth answer is

another threat to validity. Students might submit multiple well-typed “rewrites” between the

initial ill-typed program and the �nal intended answer. Our approach to discarding outliers

is intended to mitigate this threat. A similar threat is our removal of programs where any of

the tools could not produce an answer. It may be, for example, that Mycroft and SHErrLoc

are particularly e�ective on programs that do not admit dynamic witnesses. Finally, our use of

student �xes as oracles for the source of type errors assumes that students are able to correctly

identify the source. As the students are in the process of learning OCaml and the type system,

this assumption may be faulty, expert users may disagree with the student �xes. We believe,

however, that it is reasonable to use student �xes as oracles, as the student is the best judge of

what she intended to do.

62

Figure 3.17. Accuracy of type error localization. NanoMaLy’s witness-based predictions
outperform OCaml by 21 points, and are competitive with the state-of-the-art tools Mycroft
and SHErrLoc.

Results

Figure 3.17 summarizes our results, which show that NanoMaLy’s witnesses are com-

petitive with Mycroft and SHErrLoc in automatically locating the source of a type error.

NanoMaLy, Mycroft, and SHErrLoc all outperform the OCaml compiler, which is not surpris-

ing given that they can produce multiple possible error locations, while the OCaml compiler is

limited to one predicted error location. Interestingly, while all tools have a median of 2 predicted

error locations per program, Mycroft and SHErrLoc have a long tail with a maximum of 22

(resp. 11) locations, while NanoMaLy’s maximum is 5 locations. We also note that while My-

croft and SHErrLoc were designed speci�cally to localize type errors, NanoMaLy’s foremost

purpose is to explain them, we consider its ability to localize type errors an added bene�t.

3.4.8 Discussion

To summarize, our experiments demonstrate that NanoMaLy �nds witnesses to type

errors: (1) with high coverage in a timespan amenable to compile-time analysis; (2) with traces

that have a low median complexity of 5 jumps; (3) that are more helpful to novice programmers

63

than traditional type error messages; and (4) that can be used to automatically locate the source

of a type error.

There are, of course, drawbacks to our approach. Four that stand out are: (1) coverage

limits due to random generation; (2) dealing with explosions in the size of generated traces; (3)

our use of a non-parametric function type; and (4) handling ad-hoc polymorphism.

Random Generation

Random test generation has di�culty generating highly constrained values, e.g. red-

black trees or a pair of equal integers. If the type error is hidden behind a complex branch

condition NanoMaLy may not be able to trigger it. Exhaustive testing and dynamic-symbolic

execution can address this short-coming by performing an exhaustive search for inputs (resp.

paths through the program). As our experiments show, however, novice programs do not appear

to require more advanced search techniques, likely because they tend to be simple.

Trace Explosion

Though the average complexity of our generated traces is low in terms of jumps, there

are some extreme outliers. We cannot reasonably expect a novice user to explore a trace

containing 50+ terms and draw a conclusion about which pieces contributed to the bug in their

program. Enhancing our visualization to slice out program paths relevant to speci�c values [81],

would likely help alleviate this issue, allowing users to highlight a confusing value and ask:

“Where did this come from?”

Non-Parametric Function Type

As we discussed in § 3.4.3 some ill-typed programs lack a witness in our semantics due

to our use of a non-parametric type fun for functions. These programs cannot “go wrong”,

strictly speaking, but would be very di�cult to use in practice. We also note that many of

these programs induce cyclic typing constraints, causing in�nite-type errors, which in our

experience can be particularly di�cult to debug (and to explain to novices). Better support for

these programs would be welcome. For example, we might track how the types of inputs change

64

between recursive calls. If we cannot �nd a traditional witness, we could then produce a trace

expanded to show these particular steps.

Ad-Hoc Polymorphism

Also discussed in § 3.4.3, our approach can only support ad-hoc polymorphism (e.g.

type-classes in Haskell or polymorphic comparison functions in OCaml) in limited cases where

we have enough typing information at the call-site to resolve the overloading. This issue is

uncommon in OCaml (we detected it in around 5% of our benchmarks), but it would surely be

exacerbated by a language like Haskell, which makes heavy use of overloading. We suspect

that either dynamic-symbolic execution or speculative instantiation of holes would allow us to

handle ad-hoc polymorphism, but defer a proper treatment to future work.

3.5 Related Work

In this section we connect our work to related e�orts in testing and program exploration.

Running Ill-Typed Programs

Vytiniotis et al. [110] extend the Haskell compiler GHC to support compiling ill-typed

programs, but their intent is rather di�erent from ours. Their goal was to allow programmers to

incrementally test refactorings, which often cause type errors in distant functions. They replace

any expression that fails to type check with a runtime error, but do not check types at runtime.

Bayne et al. [5] also provide a semantics for running ill-typed (Java) programs, but in constrast

transform the program to perform nearly all type checking at run-time. The key di�erence

between Bayne et al. and our work is that we use the dynamic semantics to automatically search

for a witness to the type error, while their focus is on incremental, programmer-driven testing.

Testing

NanoMaLy is at its heart a test generator, and as such, builds on a rich line of work.

Our use of holes to represent unknown values is inspired by the work of Runciman, Naylor,

and Lindblad [64, 73, 92], who use lazy evaluation to drastically reduce the search space for

65

exhaustive test generation, by grouping together equivalent inputs by the set of values they

force. An exhaustive search is complete (up to the depth bound), if a witness exists it will be

found, but due to the exponential blowup in the search space the depth bound can be quite

limited without advanced grouping and �ltering techniques. Our search is not exhaustive;

instead we use random generation to �ll in holes on demand. Random test generation [21, 24,

78] is by its nature incomplete, but is able to check larger inputs than exhaustive testing as a

result.

Instead of enumerating values, which may trigger the same path through the program,

one might enumerate paths. Dynamic-symbolic execution [14, 35, 106] combines symbolic

execution (to track which path a given input triggers) with concrete execution (to ensure

failures are not spurious). The system collects a path condition during execution, which tracks

symbolically what conditions must be met to trigger the current path. Upon successfully

completing a test run, it negates the path condition and queries a solver for another set of inputs

that satisfy the negated path condition, i.e. inputs that will not trigger the same path. Thus, it

can prune the search space much faster than techniques based on enumerating values, but is

limited by the expressiveness of the underlying solver.

Our operational semantics is amenable to dynamic-symbolic execution, one would

just need to collect the path condition and replace our implementation of gen by a call to the

solver. We chose to use lazy, random generation instead because it is e�cient, does not incur the

overhead of an external solver, and produces high coverage for our domain of novice programs.

A function’s type is a theorem about the its behavior. Thus, NanoMaLy’s witnesses

can be viewed as counter-examples, thereby connecting it to work on using test cases to �nd

counter-examples prior to starting a proof [15, 101].

Program Exploration

Flanagan et al. [31] describe a static debugger for Scheme, which helps the programmer

interactively visualize problematic source-sink �ows corresponding to soft-typing errors. The

debugger allows the user to explore an abstract reduction graph computed from a static value

66

set analysis of the program. In contrast, NanoMaLy generates witnesses and allows the user

to explore the resulting dynamic execution. Perera et al. [81] present a tracing semantics for

functional programs that tags values with their provenance, enabling a form of backwards

program slicing from a �nal value to the sequence of reductions that produced it. Notably,

they allow the user to supply a partial value — containing holes — and present a partial slice,

containing only those steps that a�ected the the partial value. This system is designed to answer

questions of the form “Where did this value come from?” and thus is focused on backward

exploration. In contrast, our visualization supports forward and backward exploration, though

our backward steps are more limited. Speci�cally, we do not support selecting a value and

inserting the intermediate terms that preceded it while ignoring unrelated computation steps.

Endnotes

Acknowledgments

This chapter, in part, is a reprint of the material as it appears, or may appear, in: E. L.

Seidel, R. Jhala, and W. Weimer. Dynamic witnesses for static type errors (or, ill-typed programs

usually go wrong). In ICFP ’16, 2016; and E. L. Seidel, R. Jhala, and W. Weimer. Dynamic

witnesses for static type errors (or, ill-typed programs usually go wrong). In submission to J.

Funct. Programming, 2017. The dissertation author was the primary investigator and author of

these papers.

Chapter 4

Learning To Blame

In the previous chapter we presented a technique designed to help explain type errors,

by searching for a witness to the error. We found that, in addition to explaining the error, the

witnesses can be used to localize the error, though they are not quite as e�ective as the state of

the art in type error localization.

In this chapter we tackle the problem of error localization, building on top of recent

work that ranks potentially erroneous terms by the likelihood that they are the source of the

error. At a high-level, these techniques analyze the set of typing constraints to �nd the minimum

(weighted) subset that, if removed, would make the constraints satis�able and hence, assertion-

safe [47] or well-typed [17, 65, 79, 118]. The �nger of blame is then pointed at the sub-terms that

yielded those constraints. This minimum-weight approach su�ers from two drawbacks. First,

they are not extensible: the constraint languages and algorithms for computing the minimum

weighted subset must be designed afresh for di�erent kinds of type systems and constraints

[65]. Second, and perhaps most importantly, they are not adaptable: the weights are �xed in an

ad-hoc fashion, based on the analysis designer’s notion of what kinds of errors are more likely,

rather than adapting to the kinds of mistakes programmers actually make in practice.

We introduce Nate1, a data-driven approach to error localization based on supervised

learning (see [52] for a survey). Nate analyzes a large corpus of training data — pairs of ill-typed

programs and their subsequent �xes — to automatically learn a model of where errors are most

likely to be found. Given a new ill-typed program, Nate simply executes the model to generate
1“Numeric Analysis of Type Errors”; any resemblance to persons living or dead is purely coincidental.

67

68

a list of potential blame assignments ranked by likelihood. We evaluate Nate by comparing its

precision against the state-of-the-art on a set of over 5,000 ill-typed OCaml programs drawn

from the dataset we collected in Chapter 2. We show that, when restricted to a single prediction,

Nate’s data-driven model is able to correctly predict the exact sub-expression that should be

changed 72% of the time, 28 points higher than OCaml and 16 points higher than the state-of-

the-art SHErrLoc tool. Furthermore, Nate’s accuracy surpasses 85% when we consider the

top two locations and reaches 91% if we consider the top three. We achieve these advances by

identifying and then solving three key challenges.

Challenge 1: Acquiring Labeled Programs

The �rst challenge for supervised learning is to acquire a corpus of training data, in our

setting a set of ill-typed programs labeled with the exact sub-terms that are the actual cause of

the type error. Prior work has often enlisted expert users to manually judge ill-typed programs

and determine the “correct” �x [e.g. 60, 65], but this approach does not scale well to a dataset

large enough to support machine learning. Worse, while expert users have intimate knowledge

of the type system, they may have a blind spot with regards to the kinds of mistakes novices

make, and cannot know in general what novice users intended.

Our �rst contribution (§ 4.1) is a set of more than 5,000 labeled programs [97], giving us

an accurate ground truth of the kinds of errors and the (locations of the) �xes that novices make

in practice. We obtain this set by observing that software development is an iterative process;

programmers eventually �x their own ill-typed programs, perhaps after multiple incorrect

exploratory attempts. To exploit this observation we instrumented the OCaml compiler to

collect �ne-grained traces of student interactions over two instances of an undergraduate

Programming Languages course at UC San Diego (IRB #140608), as described in Chapter 2. We

then post-process the resulting time-series of programs submitted to the OCaml compiler into

a set of pairs of ill-typed programs and their subsequent �xes, the �rst (type-) correct program

in the trace su�x. Finally, we compute the blame labels using a tree-di� between the two terms

to �nd the exact sub-terms that changed in the �x.

69

Challenge 2: Modeling Programs as Vectors

Modern supervised learning algorithms work on feature vectors: real-valued points in

an n-dimensional space. While there are standard techniques for computing such vectors for

documents, images, and sound (respectively word-counts, pixel-values, and frequencies), there

are no similarly standard representations for programs.

Our second contribution (§ 4.2) solves this problem with a simple, yet expressive, repre-

sentation called a Bag-of-Abstracted-Terms (BOAT) wherein each program is represented by the

bag or multiset of (sub-) terms that appears inside it; and further, each (sub-) term is abstracted

as a feature vector comprising the numeric values returned by feature abstraction functions

applied to the term. We can even recover contextual information from the parent and child

terms by concatenating the feature vectors of each term with those of its parent and children

(within a �xed window). We have found this representation to be particularly convenient as it

gives us �exibility in modeling the syntactic and semantic structure of programs while retaining

compatibility with o�-the-shelf classi�ers, in contrast to, e.g., Raychev et al. [88], who had to

develop their own variants of classi�ers to obtain their results.

Challenge 3: Training Precise Classi�ers

Finally, the last and most important challenge is to use our BOAT representation to

train classi�ers that are capable of precisely pinpointing the errors in real programs. The key

here is to �nd the right set of feature abstractions to model type errors, and classi�cation

algorithms that lead to precise blame assignments. Fortunately, our BOAT model allows us a

great deal of latitude in our choice of features. We can use abstraction functions to capture

di�erent aspects of a term ranging from syntactic features (e.g. is-a-data-constructor, is-a-literal,

is-an-arithmetic-operation, is-a-function-application, etc.), to semantic features captured by the

type system (e.g. is-a-list, is-an-integer, is-a-function, etc.). We can similarly model the blame

labels with a simple feature abstraction (e.g. is-changed-in-�x).

Our third contribution (§ 4.3) is a systematic evaluation of our data-driven approach

using di�erent classes of features like the above, and with four di�erent classi�cation algorithms:

70

logistic regression, decision trees, random forests, and neural networks. We �nd that Nate’s

models generalize well between instances of the same undergraduate course, outperforming

the state of the art by at least 16 percentage points at predicting the source of a type error. We

also investigate which features and classi�ers are most e�ective at localizing type errors, and

empirically characterize the importance of di�erent feature sets. In particular, we �nd that

while machine learning over syntactic features of each term in isolation performs worse than

existing purely constraint-based approaches (e.g. OCaml, SHErrLoc), augmenting the data

with a single feature corresponding to the type error slice [107] brings our classi�ers up to par

with the state-of-the-art, and further augmenting the data with contextual features allows our

classi�ers to outperform the state-of-the-art by 16 percentage points.

Thus, by combining modern statistical methods with domain-speci�c feature engineer-

ing, Nate opens the door to a new data-driven path to precise error localization. In the future, we

could extend Nate to new languages or forms of correctness checks by swapping in a di�erent

set of feature abstraction functions. Furthermore, our data-driven approach allows Nate to

adapt to the kinds of errors that programmers (in particular novices, who are in greatest need of

precise feedback) actually make rather than hardwiring the biases of compiler authors who, by

dint of their training and experience, may su�er from blind spots with regards to such problems.

In contrast, our results show that Nate’s data-driven diagnosis can be an e�ective technique

for localizing errors by collectively learning from past mistakes.

4.1 Overview

Let us start with an overview of Nate’s approach to localizing type errors by collectively

learning from the mistakes programmers actually make.

The Problem

Consider our familiar sumList program, reproduced in Figure 4.1. The program is

meant to add up the integers in a list, but the student has accidentally given the empty list as

the base case, rather than 0. The OCaml compiler collects typing constraints as it traverses the

71

1 let rec sumList xs =
2 match xs with

3 | [] -> []

4 | h::t -> h + sumList t

This expression has type 'a list
but an expression was expected of type int

Figure 4.1. (left) An ill-typed OCaml program that should sum the elements of a list, with
highlights indicating three possible blame assignments based on: (1) the OCaml compiler; (2)
the �x made by the programmer; and (3) minimizing the number of edits required. (right)
The error reported by OCaml.

program, and reports an error the moment it �nds an inconsistent constraint. In this case it

blames the recursive call to sumList, complaining that sumList returns a list while an int

was expected by the + operator. This blame assignment is inconsistent with the programmer’s

intention and may not help the novice understand the error.

It may appear obvious to the reader that [] is the correct expression to blame, but how

is a type checker to know that? Indeed, recent techniques like SHErrLoc and Mycroft [65,

79, 118] fail to distinguish between the [] and + expressions in Figure 4.1; it would be equally

valid to blame either of them alone. The [] on line 3 could be changed to 0, or the + on line 4

could be changed to either @ (list append) or ::, all of which would give type-correct programs.

Thus, these state-of-the-art techniques are forced to either blame both locations, or choose one

arbitrarily.

Solution: Localization via Supervised Classi�cation

Our approach is to view error localization as a supervised classi�cation problem [52]. A

classi�cation problem entails learning a function that maps inputs to a discrete set of output

labels (in contrast to regression, where the output is typically a real number). A supervised

learning problem is one where we are given a training set where the inputs and labels are

known, and the task is to learn a function that accurately maps the inputs to output labels and

generalizes to new, yet-unseen inputs. To realize the above approach for error localization as a

practical tool, we have to solve four sub-problems.

1. How can we acquire a training set of blame-labeled ill-typed programs?

72

2. How can we represent blame-labeled programs in a format amenable to machine learning?

3. How can we �nd features that yield predictive models?

4. How can we use the models to give localized feedback to the programmer?

4.1.1 Step 1: Acquiring a Blame-Labeled Training Set

The �rst step is to gather a training set of ill-typed programs, where each erroneous sub-

term is explicitly labeled. Prior work has often enlisted expert users to curate a set of ill-typed

programs and then manually determine the correct �x [e.g. 60, 65]. This method is suitable for

evaluating the quality of a localization (or repair) algorithm on a small number (e.g. 10s–100s)

of programs. However, in general it requires a great deal of e�ort for the expert to divine the

original programmer’s intentions. Consequently, is di�cult to scale the expert-labeling to yield

a dataset large enough (e.g. 1000s of programs) to facilitate machine learning. More importantly,

this approach fails to capture the frequency with which errors occur in practice.

Solution: Interaction Traces

We solve both the scale and frequency problems by instead extracting blame-labeled

data sets from interaction traces. Software development is an iterative process. Programmers,

perhaps after a lengthy (and sometimes frustrating) back-and-forth with the type checker,

eventually end up �xing their own programs. Thus, we can use the interaction traces described

in Chapter 2 to extract a training set of ill-typed programs and �xes. For each ill-typed program

in a particular programmer’s trace, we �nd the �rst subsequent program in the trace that type

checks and declare it to be the �xed version. From this pair of an ill-typed program and its �x,

we can extract a di� of the abstract syntax trees, and then assign the blame labels to the smallest

sub-tree in the di�.

Example

Suppose our student �xed the sumList program in Figure 4.1 by replacing [] with 0,

the di� would include only the [] expression. Thus we would determine that the [] expression

73

(and not the + or the recursive call sumList t) is to blame.

4.1.2 Step 2: Representing Programs as Vectors

Next, we must �nd a way to translate highly structured and variable sized programs into

�xed size n-dimensional numeric vectors that are needed for supervised classi�cation. While

the Programming Languages literature is full of di�erent program representations, from raw

token streams to richly-structured abstract syntax trees (AST) or control-�ow graphs, it is

unclear how to embed the above into a vector space. Furthermore, it is unclear whether recent

program representations that are amenable to one learning task, e.g. code completion [43, 89]

or decompilation [10, 88] are suitable for our problem of assigning blame for type errors.

Solution: Bags-of-Abstracted-Terms

We present a new representation of programs that draws inspiration from the theory of

abstract interpretation [23]. Our representation is parameterized by a set of feature abstraction

functions, (abbreviated to feature abstractions) f1, . . . , fn , that map terms to a numeric value (or

just {0, 1} to encode a boolean property). Given a set of feature abstractions, we can represent a

single program’s AST as a bag-of-abstracted-terms (BOAT) by: (1) decomposing the AST (term)

t into a bag of its constituent sub-trees (terms) {t1, . . . , tm}; and then (2) representing each

sub-term ti with the n-dimensional vector [f1(ti), . . . , fn(ti)]. Working with ASTs is a natural

choice as type-checkers operate on the same representation.

Modeling Contexts

Each expression occurs in some surrounding context, and we would like the classi�er

to be able make decisions based on the context as well. The context is particularly important

for our task as each expression imposes typing constraints on its neighbors. For example, a

+ operator tells the type checker that both children must have type int and that the parent

must accept an int. Similarly, if the student wrote h sumList t i.e. forgot the +, we might

wish to blame the application rather than h because h does not have a function type. The BOAT

representation makes it easy to incorporate contexts: we simply concatenate each term’s feature

74

vector with the contextual features of its parent and children.

4.1.3 Step 3: Feature Discovery

Next, we must �nd a good set of features, that is, a set of features that yields predictive

models. Our BOAT representation enables an iterative solution by starting with a simple set

of features, and then repeatedly adding more and more to capture important aspects needed

to improve precision. Our set of feature abstractions captures the syntax, types, and context of

each expression.

Syntax and Type Features

We start by observing that at the very least, the classi�er should be able to distinguish

between the [] and + expressions in Figure 4.1 because they represent di�erent syntactic

expression forms. We model this by introducing feature abstractions of the form is-[], is-+, etc.,

for each of a �xed number of expression forms. Modeling the syntactic class of an expression

gives the classi�er a basic notion of the relative frequency of blame assignment for the various

program elements, i.e. perhaps [] is empirically more likely to be blamed than +. Similarly, we

can model the type of each sub-expression with features of the form is-int, is-bool, etc.. We

will discuss handling arbitrary, user-de�ned types in § 4.4.

Contextual Features: Error Slices

Our contextual features include the syntactic class of the neighboring expressions

and their inferred types (when available). However, we have found that the most important

contextual signal is whether or not the expression occurs in a minimal type error slice [37, 107]

which includes a minimal subset of all expressions that are necessary for the error to manifest.

(That is, replacing any subterm with undefined or assert false would yield a well-typed

program.) We propose to use type error slices to communicate to the classi�er which expressions

could potentially be blamed — a change to an expression outside of the minimal slice cannot

possibly �x the type error. We empirically demonstrate that the type error slice is so important

(§ 4.3.3) that it is actually bene�cial to automatically discard expressions that are not part of

75

the slice, rather than letting the classi�er learn to do so. Indeed, this domain-speci�c insight is

crucial for learning classi�ers that signi�cantly outperform the state-of-the-art.

Example

When Nate is tasked with localizing the error in the example program of Figure 4.1,

the [] and + sub-terms will each be given their own feature vector, and we will ask the classi�er

to predict for each independently whether it should be blamed. Table 4.1 lists some of the

sub-expressions of the example from Figure 4.1, and their corresponding feature vectors.

Table 4.1. Example Feature Vectors

Expression Is-[] Match-[]-P Size Type-Int-C1 Type-[] In-Slice

[] 1 1 1 0 1 1
hd + sumList tl 0 1 5 1 0 1
sumList tl 0 0 3 0 1 1
tl 0 0 1 0 1 0

A selection of the features we would extract from the sumList program in Figure 4.1. A feature
is considered enabled if it has a non-zero value, and disabled otherwise. A “-P” su�x indicates
that the feature describes the parent of the current expression, a “-Cn” su�x indicates that the
feature describes the n-th (left-to-right) child of the current expression. Note that, since we rely
on a partial typing derivation, we are subject to the well-known traversal bias and label the
expression sumList tl as having type [·]. The model will have to learn to correct for this bias.

4.1.4 Step 4: Generating Feedback

Finally, having trained a classi�er using the labeled data set, we need to use it to help

users localize type errors in their programs. The classi�er tells us whether or not a sub-term

should be blamed (i.e. has the blame label) but this is not yet particularly suitable as user feedback.

A recent survey of developers by Kochhar et al. [51] found that developers are unlikely to

examine more than around �ve potentially erroneous locations before falling back to manual

debugging. Thus, we should limit our predictions to a select few to be presented to the user.

76

Solution: Rank Locations by Con�dence

Fortunately, many machine learning classi�ers produce not only a predicted label, but

also a metric that can be interpreted as the classi�er’s con�dence in its prediction. Thus, we

rank each expression by the classi�er’s con�dence that it should be blamed, and present only

the top-k predictions to the user (in practice k = 3). The use of ranking to report the results of

an analysis is popular in other problem domains [see, e.g. 53]; we focus explicitly on the use

of data-driven machine learning con�dence as a ranking source. In § 4.3 we show that Nate’s

ranking approach yields a high-precision localizer: when the top three locations are considered,

at least one matches an actual student �x 91% of the time.

4.2 Learning to Blame

In this section, we describe our approach to localizing type errors, in the context of

λML(Figure 4.2), a simple lambda calculus with integers, booleans, pairs, and lists. Our goal is to

instantiate the blame function of Figure 4.3, which takes as input a Model of type errors and

an ill-typed program e , and returns an ordered list of subexpressions from e paired with the

con�dence score C that they should be blamed.

A Model is produced by train, which performs supervised learning on a training set

of feature vectorsV and (boolean) labels B. Once trained, we can evaluate a Model on a new

input, producing the con�dence C that the blame label should be applied. We describe multiple

Models and their instantiations of train and eval (§ 4.2.3).

Of course, the Model expects feature vectorsV and blame labels B, but we are given

program pairs. So our �rst step must be to de�ne a suitable translation from program pairs

to feature vectors and labels, i.e. we must de�ne the extract function in Figure 4.3. We model

features as real-valued functions of terms, and extract a feature vector for each subterm of

the ill-typed program (§ 4.2.1). Then we de�ne the blame labels for the training set to be the

subexpressions that changed between the ill-typed program and its subsequent �x, and model

blame as a function from a program pair to the set of expressions that changed (§ 4.2.2). The

extract function, then, extracts features from each subexpression and computes the blamed

77

e ::= x | λx .e | e e | let x = e in e
| n | e + e
| b | if e then e else e

| 〈e, e〉 | match e
{
〈x ,x〉 → e

| [] | e :: e | match e
{
[] → e

x :: x → e

n ::= 0, 1,−1, . . .
b ::= true | false

t ::= α | bool | int | t → t | t × t | [t]

Figure 4.2. Syntax of λML

V � [R]

C � {r ∈ R | 0 ≤ r ≤ 1}
features : [e → R]
label : e × e → [e]
extract : [e → R] → e × e → [V × B]
train : [V × B] → Model
eval : Model→V → C

blame : Model→ e → [e × C]

Figure 4.3. A high-level API for converting program pairs to feature vectors and labels.

expressions according to label.

4.2.1 Features

The �rst issue we must tackle is formulating our learning task in machine learning

terms. We are given programs over λML , but learning algorithms expect to work with feature

vectors V — vectors of real numbers, where each column describes a particular aspect of the

input. Thus, our �rst task is to convert programs to feature vectors.

We choose to model a program as a set of feature vectors, where each element corre-

sponds an expression in the program. Thus, given the sumList program in Figure 4.1 we would

�rst split it into its constituent sub-expressions and then transform each sub-expression into a

single feature vector. We group the features into �ve categories, using Table 4.1 as a running

78

example of the feature extraction process.

Local syntactic features

These features describe the syntactic category of each expression e . In other words,

for each production of e in Figure 4.2 we introduce a feature that is enabled (set to 1) if the

expression was built with that production, and disabled (set to 0) otherwise. For example, the

Is-[] feature in Table 4.1 describes whether an expression is the empty list [].

We distinguish between matching on a list vs. on a pair, as this a�ects the typing

derivation. We also assume that all pattern matches are well-formed — i.e. all patterns must

match on the same type. Ill-formed match expressions would lead to a type error; however,

they are already e�ectively localized to the match expression itself. We note that this is not a

fundamental limitation, and one could easily add features that specify whether a match contains

a particular pattern, and thus have a match expression that enables multiple features.

Contextual syntactic features

These are similar to local syntactic features, but lifted to describe the parent and

children of an expression. For example, the Match-[]-P feature in Table 4.1 describes whether

an expression’s parent matches on a list. If a particular e does not have children (e.g. a variable

x) or a parent (i.e. the root expression), we leave the corresponding features disabled. This

gives us a notion of the context in which an expression occurs, similar to the n-grams used in

linguistic models [33, 43].

Expression size

We also propose a feature representing the size of each expression, i.e. how many

sub-expressions does it contain? For example, the Size feature in Table 4.1 is set to three for the

expression sumList tl as it contains three expressions: the two variables and the application

itself. This allows the model to learn that, e.g., expressions closer to the leaves are more likely

to be blamed than expressions closer to the root.

79

Typing features

A natural way of summarizing the context in which an expression occurs is with types.

Of course, the programs we are given are untypeable, but we can still extract a partial typing

derivation from the type checker and use it to provide more information to the model.

A di�culty that arises here is that, due to the parametric type constructors · → ·, · × ·,

and [·], there is an in�nite set of possible types — but we must have a �nite set of features. Thus,

we abstract the type of an expression to the set of type constructors it mentions, and add features

for each type constructor that describe whether a given type mentions the type constructor. For

example, the type int would only enable the int feature, while the type int→ bool would

enable the · → ·, int, and bool features.

We add these features for parent and child expressions to summarize the context, but

also for the current expression, as the type of an expression is not always clear syntactically.

For example, the expressions tl and sumList tl in Table 4.1 both enable Type-[], as they are

both inferred to have a type that mentions [·].

Note that our use of typing features in an ill-typed program subjects us to traversal bias

[69]. For example, the sumList tl expression might alternatively be assigned the type int.

Our models will have to learn good localizations in spite of this bias (see § 4.3).

Type error slice

Finally, we wish to distinguish between changes that could �x the error, and changes

that cannot possibly �x the error. Thus, we compute a minimal type error slice for the program

(i.e. the set of expressions that contribute to the error), and add a feature that is enabled for

expressions that are part of the slice. The In-Slice feature in Table 4.1 indicates whether an

expression is part of such a minimal slice, and is enabled for all of the sampled expressions

except for tl, which does not a�ect the type error. If the program contains multiple type errors,

we compute a minimal slice for each error.

In practice, we have found that In-Slice is a particularly important feature, and thus

include a post-processing step that discards all expressions where it is disabled. As a result,

80

the tl expression would never actually be shown to the classi�er. We will demonstrate the

importance of In-Slice empirically in § 4.3.3.

4.2.2 Labels

Recall that we make predictions in two stages. First, we use eval to predict for each

subexpression whether it should be blamed, and extract a con�dence score C from the Model.

Thus, we de�ne the output of the Model to be a boolean label, where “false” means the expression

should not change and “true” means the expression should change. This allows us to predict

whether any individual expression should change, but we would actually like to predict the

most likely expressions to change. Second, we rank each subexpression by the con�dence C

that it should be blamed, and return to the user the top k most likely blame assignments (in

practice k = 3).

We identify the �xes for each ill-typed program with an expression-level di� [59]. We

consider two sources of changes. First, if an expression has been removed wholesale, e.g. if

f x is rewritten to д x , we will mark the expression f as changed, as it has been replaced by

д. Second, if a new expression has been inserted around an existing expression, e.g. if f x is

rewritten to f x + 1, we will mark the application expression f x (but not f or x) as changed,

as the + operator now occupies the original location of the application.

4.2.3 Learning Algorithms

Recall that we formulate type error detection at a single expression as a supervised

classi�cation problem. This means that we are given a training data set S : [V × B] of labeled

examples, and our goal is to use it to build a classi�er, i.e. a rule that can predict a label b for an

input v . Since we apply the classi�er on each expression in the program to determine those that

are the most likely to be type errors, we also require the classi�er to output a con�dence score

that measures how sure the classi�er is about its prediction.

There are many learning algorithms to choose from, existing on a spectrum that balances

expressiveness with ease of training (and of interpreting the learned model). In this section we

consider four standard learning algorithms: (1) logistic regression, (2) decision trees, (3) random

81

forests, and (4) neural networks. A thorough introduction to these techniques can be found in

introductory machine learning textbooks [e.g. 40].

Below we brie�y introduce each technique by describing the rules it learns, and sum-

marize its advantages and disadvantages. For our application, we are particularly interested in

three properties – expressiveness, interpretability and ease of generalization. Expressiveness

measures how complex prediction rules are allowed to be, and interpretability measures how

easy it is to explain the cause of prediction to a human. Finally ease of generalization measures

how easily the rule generalizes to examples that are not in the training set; a rule that is not easily

generalizable might perform poorly on an unseen test set even when its training performance is

high.

Logistic Regression

The simplest classi�er we investigate is logistic regression: a linear model where the

goal is to learn a set of weightsW that describe the following model for predicting a label b

from a feature vector v :

Pr(b = 1|v) = 1
1 + e−W >v

The weights W are learnt from training data, and the value of Pr(b |v) naturally leads to a

con�dence score C. Logistic regression is a widely used classi�cation algorithm, preferred for its

simplicity, ease of generalization, and interpretability. Its main limitation is that the prediction

rule is constrained to be a linear combination of the features, and hence relatively simple. While

this can be somewhat mitigated by adding higher order (quadratic or cubic) features, this often

requires substantial domain knowledge.

Decision Trees

Decision tree algorithms learn a tree of binary predicates over the features, recursively

partitioning the input space until a �nal classi�cation can be made. Each node in the tree

contains a single predicate of the form vj ≤ t for some feature vj and threshold t , which

determines whether a given input should proceed down the left or right subtree. Each leaf is

82

labeled with a prediction and the fraction of correctly-labeled training samples that would reach

it; the latter quantity can be interpreted as the decision tree’s con�dence in its prediction. This

leads to a prediction rule that can be quite expressive depending on the data used to build it.

Training a decision tree entails �nding both a set of good partitioning predicates and

a good ordering of the predicates based on data. This is usually done in a top-down greedy

manner, and there are several standard training algorithms such as C4.5 [84] and CART [13].

Another advantage of decision trees is their ease of interpretation — the decision rule is

a white-box model that can be readily described to a human, especially when the tree is small.

However, the main limitation is that these trees often do not generalize well, though this can be

somewhat mitigated by pruning the tree.

Random Forests

Random forests improve generalization by training an ensemble of distinct decision

trees and using a majority vote to make a prediction. The agreement among the trees forms a

natural con�dence score. Since each classi�er in the ensemble is a decision tree, this still allows

for complex and expressive classi�ers.

The training process involves taking N random subsets of the training data and training

a separate decision tree on each subset — the training process for the decision trees is often

modi�ed slightly to reduce correlation between trees, by forcing each tree to pick features from

a random subset of all features at each node.

The diversity of the underlying models tends to make random forests less susceptible

to the over�tting, but it also makes the learned model more di�cult to interpret.

Neural Networks

The last (and most complex) model we use is a type of neural network called amulti-layer

perceptron (see Nielsen [76] for an introduction to neural networks). A multi-layer perceptron

can be represented as a directed acyclic graph whose nodes are arranged in layers that are fully

connected by weighted edges. The �rst layer corresponds to the input features, and the �nal to

83

the output. The output of an internal node v is

hv = д(
∑

j ∈N (v)

Wjvhj)

where N (v) is the set of nodes in the previous layer that are adjacent to v ,Wjv is the weight

of the (j,v) edge and hj is the output of node j in the previous layer. Finally д is a non-linear

function, called the activation function, which in recent work is commonly chosen to be the

recti�ed linear unit (ReLU), de�ned as д(x) = max(0,x) [72]. The number of layers, the number

of neurons per layer, and the connections between layers constitute the architecture of a neural

network. In this work, we use relatively simple neural networks which have an input layer, a

single hidden layer and an output layer.

A major advantage of neural networks is their ability to discover interesting combi-

nations of features through non-linearity, which signi�cantly reduces the need for manual

feature engineering, and allows high expressivity. On the other hand, this makes the networks

particularly di�cult to interpret and also di�cult to generalize unless vast amounts of training

data are available.

4.3 Evaluation

We have implemented our technique for localizing type errors for a purely functional

subset of OCaml with polymorphic types and functions. We seek to answer four questions in

our evaluation:

• Blame Accuracy How often does Nate blame a correct location for the error? (§ 4.3.2)

• Feature Utility Which program features are required to localize errors? (§ 4.3.3)

• Interpretability Do the models match our intuition about type errors? (§ 4.3.5)

• Blame Utility Do Nate’s blame assignments help users diagnose type errors? (§ 4.3.6)

In the sequel we present our experimental methodology § 4.3.1 and then drill into how we

evaluated each of the questions above. However, for the impatient reader, we begin with a quick

84

summary of our main results:

1. Data Beats Algorithms

Our main result is that for type error localization, data is indeed unreasonably e�ective

[39]. When trained on student errors from one instance of an undergraduate course and tested

on another instance, Nate’s most sophisticated neural network-based classi�er’s top-ranked

prediction blames the correct sub-term 72% of the time — a good 16 points higher than the state-

of-the-art SHErrLoc’s 56%. However, even Nate’s simple logistic regression-based classi�er is

correct 61% of the time, i.e. 5 points better than SHErrLoc. When the top three predictions are

considered, Nate is correct 91% of the time.

2. Slicing Is Critical

However, data is e�ective only when irrelevant sub-terms have been sliced out of

consideration. In fact, perhaps our most surprising result is that type error slicing and local

syntax alone yields a classi�er that is 10 points better than OCaml and on par with SHErrLoc.

That is, once we focus our classi�ers on slices, purely local syntactic features perform as well as

the state-of-the-art.

3. Size Doesn’t Matter, Types Do

We �nd that (after slices) typing features provide the biggest improvement in accuracy.

Furthermore, we �nd contextual syntactic features to be mostly (but not entirely) redundant with

typing features, which supports the hypothesis that the context’s type nicely summarizes the

properties of the surrounding expressions. Finally, we found that the size of the sub-expression

was not very useful. This was unexpected, as we thought smaller expressions would be simpler,

and hence, more likely causes.

4. Models Learn Typing Rules

Finally, by investigating a few of the predictions made by the decision tree-based models,

we found that the models appear to capture some simple and intuitive rules for predicting

85

well-typedness. For example, if the left child of an application is a function, then the application

is likely correct.

4.3.1 Methodology

We answer our questions on the two datasets gathered in Chapter 2, which we will

brie�y describe again. We recorded each interaction with the OCaml top-level system while

students in our undergraduate Programming Languages course worked on 23 programs from the

�rst three homework assignments, capturing ill-typed programs and, crucially, their subsequent

�xes. The �rst dataset comes from the Spring 2014 class (SP14), with a cohort of 46 students.

The second comes from the Fall 2015 class (FA15), with a cohort of 56 students. The extracted

programs are relatively small, but they demonstrate a range of functional programming idioms,

e.g. higher-order functions and (polymorphic) algebraic data types.

Feature Selection

We extract 282 features from each sub-expression in a program, including:

1. 45 local syntactic features. In addition to the syntax of λML , we support the full range

of arithmetic operators (integer and �oating point), equality and comparison operators,

character and string literals, and a user-de�ned arithmetic expressions. We discuss the

challenge of supporting other types in § 4.4.

2. 180 contextual syntactic features. For each sub-expression we additionally extract the

local syntactic features of its parent and �rst, second, and third (left-to-right) children. If

an expression does not have a parent or children, these features will simply be disabled.

If an expression has more than three children, the classi�ers will receive no information

about the additional children.

3. 55 typing features. In addition to the types of λML , we support ints, floats, chars,

strings, and the user-de�ned expr mentioned above. These features are extracted for

each sub-expression and its context.

86

4. One feature denoting the size of each sub-expression.

5. One feature denoting whether each sub-expression is part of the minimal type error slice.

We use this feature as a “hard” constraint, sub-expressions that are not part of the minimal

slice will be preemptively discarded. We justify this decision in § 4.3.3.

Blame Oracle

Recall from § 4.2.2 that we automatically extract a blame oracle for each ill-typed

program from the (AST) di� between it and the student’s eventual �x. A disadvantage of

using di�s in this manner is that students may have made many, potentially unrelated, changes

between compilations; at some point the “�x” becomes a “rewrite”. We do not wish to consider

the “rewrites” in our evaluation, so we discard outliers where the fraction of expressions that

have changed is more than one standard deviation above the mean, establishing a di� threshold

of 40%. This accounts for roughly 14% of each dataset, leaving us with 2,712 program pairs for

SP14 and 2,365 pairs for FA15.

Accuracy Metric

All of the tools we compare (with the exception of the standard OCaml compiler) can

produce a list of potential error locations. However, in a study of fault localization techniques,

Kochhar et al. [51] show that most developers will not consider more than around �ve potential

error locations before falling back to manual debugging. Type errors are relatively simple in

comparison to general fault localization, thus we limit our evaluation to the top three predictions

of each tool. We evaluate each tool on whether a changed expression occurred in its top one,

top two, or top three predictions.

Blame Utility

Finally, to test the explanatory power of our blame assigments, we ran a user study at

the University of Virginia (UVA IRB #2014009900). We included three problems in an exam in

the Spring 2017 session of UVA’s undergraduate Programming Languages course (CS 4501). We

87

presented the 31 students in the course with ill-typed OCaml programs and asked them to (1)

explain the type error, and (2) �x the type error. For each problem the student was given the

ill-typed program and either SHErrLoc or Nate’s blame assignment, with no error message.

4.3.2 Blame Accuracy

First, we compare the accuracy of our predictions to the state of the art in type error

localization.

Baseline

We provide two baselines for the comparison: a random choice of location from the

minimized type error slice, and the standard OCaml compiler.

State of the Art

Mycroft [65] localizes type errors by searching for a minimal subset of typing con-

straints that can be removed, such that the resulting system is satis�able. When multiple such

subsets exist it can enumerate them, though it has no notion of which subsets are more likely

to be correct, and thus the order is arbitrary. SHErrLoc [118] localizes errors by searching

the typing constraint graph for constraints that participate in many unsatis�able paths and

comparatively few satis�able paths. It can also enumerate multiple predictions, in descending

order of likelihood.

Comparing source locations from multiple tools with their own parsers is not trivial.

Our experimental design gives the state of the art tools the “bene�t of the doubt” in two ways.

First, when evaluating Mycroft and SHErrLoc, we did not consider programs where they

predicted locations that our oracle could not match with a program expression: around 6% of

programs for Mycroft and 4% for SHErrLoc. Second, we similarly ignored programs where

Mycroft or SHErrLoc timed out (after one minute) or where they encountered an unsupported

language feature: another 5% for Mycroft and 12% for SHErrLoc.

88

Our Classi�ers

We evaluate �ve classi�ers, each trained on the full feature set. These include:

Logistic A logistic regression trained with a learning rate η = 0.001, an L2 regularization

rate λ = 0.001, and a mini-batch size of 200.

Tree A decision tree trained with the CART algorithm [13] and an impurity threshold of 10−7

(used to avoid over�tting via early stopping).

Forest A random forest [12] of 30 estimators, with an impurity threshold of 10−7.

MLP-10 and MLP-500 Two multi-layer perceptron neural networks, both trained with η =

0.001, λ = 0.001, and a mini-batch size of 200. The �rst MLP contains a single hidden layer

of 10 neurons, and the second contains a hidden layer of 500 neurons. This gives us a

measure of the complexity of the MLP’s model, i.e. if the model requires many compound

features, one would expect MLP-500 to outperform MLP-10. The neurons use recti�ed

linear units (ReLU) as their activation function, a common practice in modern neural

networks.

All classi�ers were trained for 20 epochs on one dataset — i.e. they were shown each program

20 times — before being evaluated on the other. The logistic regression and MLPs were trained

with the Adam optimizer [50], a variant of stochastic gradient descent that has been found to

converge faster.

Results

Figure 4.4 shows the results of our experiment. Localizing the type errors in our

benchmarks amounted, on average, to selecting one of 3 correct locations out of a slice of 10.

Our classi�ers consistently outperform the competition, ranging from 61% Top-1 accuracy (86%

Top-3) for the Logistic classi�er to 72% Top-1 accuracy (91% Top-3) for the MLP-500. Our

baseline of selecting at random achieves 30% Top-1 accuracy (58% Top-3), while OCaml achieves

a Top-1 accuracy of 44%. Interestingly, one only needs two random guesses to outperform

89

Random OCaml MycroftSHErrLocLogistic Tree Forest MLP-10 MLP-500
0 %

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

Accuracy of Type Error Localization Techniques

SP14 FA15
Top-3 Top-3
Top-2 Top-2
Top-1 Top-1

Figure 4.4. Results of our comparison of type error localization techniques. We evaluate all
techniques separately on two cohorts of students from di�erent instances of an undergraduate
Programming Languages course. Our classi�ers were trained on one cohort and evaluated
on the other. All of our classi�ers outperform the state-of-the-art techniques Mycroft and
SHErrLoc.

OCaml, with 47% accuracy. SHErrLoc outperforms both baselines, and comes close to our

Logistic classi�er, with 56% Top-1 accuracy (84% Top 3), while Mycroft underperforms OCaml

at 40% Top-1 accuracy.

Surprisingly, there is little variation in accuracy between our classi�ers. With the

exception of the Logistic model, they all achieve around 70% Top-1 accuracy and around 90%

Top-3 accuracy. This suggests that the model they learn is relatively simple. In particular, notice

that although the MLP-10 has 50× fewer hidden neurons than the MLP-500, it only loses around

4% accuracy. We also note that our classi�ers consistently perform better when trained on the

FA15 programs and tested on the SP14 programs than vice versa.

4.3.3 Feature Utility

We have shown that we can train a classi�er to e�ectively localize type errors, but

which of the feature classes from § 4.2.1 are contributing the most to our accuracy? We focus

speci�cally on feature classes rather than individual features as our 282 features are conceptually

90

grouped into a much smaller number of categorical features. For example, the syntactic class of

an expression is conceptually a feature but there are 45 possible values it could take; to encode

this feature for learning we split it into 45 distinct binary features. Analyses that focus on

individual features, e.g. ANOVA, are di�cult to interpret in our setting, as they will tell us the

importance of the binary features but not the higher-level categorical features. Thus, to answer

our question we investigate the performance of classi�ers trained on various subsets of the

feature classes.

Type Error Slice

First we must justify our decision to automatically exclude expressions outside the

minimal type error slice from consideration. Thus, we compare our classi�ers on three sets of

features:

1. A baseline with only local syntactic features and no preemptive �ltering by In-Slice.

2. The features of (1) extended with In-Slice.

3. The same features as (1), but we preemptively discard samples where In-Slice is disabled.

The key di�erence between (2) and (3) is that a classi�er for (2) must learn that In-Slice is a

strong predictor. In contrast, a classi�er for (3) must only learn about the syntactic features, the

decision to discard samples where In-Slice is disabled has already been made by a human. This

has a few additional advantages: it reduces the set of candidate locations by a factor of 7 on

average, and it guarantees that any prediction made by the classi�er can �x the type error. We

expect that (2) will perform better than (1) as it contains more information, and that (3) will

perform better than (2) as the classi�er does not have to learn the importance of In-Slice.

We tested our hypothesis with the Logistic and MLP-5002 classi�ers, cross-validated

(k = 10) over the combined SP14/FA15 dataset. We trained for a single epoch on feature sets (1)

and (2), and for 8 epochs on (3), so that the total number of training samples would be roughly
2A layer of 500 neurons is excessive when we have so few input features — we use MLP-500 for continuity with

the surrounding sections.

91

Syntax +In-Slice Filter
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Ac
cu

ra
cy

Logistic MLP-500
Top-3 Top-3
Top-2 Top-2
Top-1 Top-1
Recall Recall

0 %
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Re
ca

ll

(a) Impact of type error slice on blame accuracy.

Syntax
(45)

+Size
(46)

+Ctxt
(225)

+Type
(100)

+C+S
(226)

+T+S
(101)

+C+T
(281)

+C+T+S
(282)

50 %

60%

70%

80%

90%

100%

Ac
cu

ra
cy

50 %

60 %

70%

80%

90%

100%

Re
ca

ll

(b) Impact of additional features on blame accuracy. Starting from a baseline of local syntactic features,
we add each combination of expression size, contextual syntactic, and typing features. The total number
of features is given in parentheses.

Figure 4.5. Results of our experiments on feature utility.

equal for each feature set. In addition to accuracy, we report each classi�er’s recall — i.e. “How

many true changes can we remember?” — de�ned as

|predicted ∩ oracle|
|oracle|

where predicted is limited to the top 3 predictions, and oracle is the student’s �x, limited to

changes that are in the type error slice. We make the latter distinction as: (1) changes that are

not part of the type error slice are noise in the data set; and (2) it makes the comparison easier

to interpret since oracle never changes.

92

Results

Figure 4.5a shows the results of our experiment. As expected, the baseline performs

the worst, with a mere 25% Logistic Top-1 accuracy. Adding In-Slice improves the results

substantially with a 45% Logistic Top-1 accuracy, demonstrating the importance of a minimal

error slice. However, �ltering out expressions that are not part of the slice further improves the

results to 54% Logistic Top-1 accuracy. Interestingly, while the MLP-500 performs similarly

poor with no error slice features, it recovers nearly all of its accuracy after being given the error

slice features. Top-1 accuracy jumps from 29% to 53% when we add In-Slice, and only improves

by 1% when we �lter out expressions that are not part of the error slice. Still, the accuracy gain

comes at zero cost, and given the other bene�ts of �ltering by In-Slice— shrinking the search

space and guaranteeing our predictions are actionable — we choose to �lter all programs by

In-Slice.

Contextual Features

We investigate the relative impact of the other three classes of features discussed in

§ 4.2.1, assuming we have discarded expressions not in the type error slice. For this experiment

we consider again a baseline of only local syntactic features, extended by each combination

of (1) expression size; (2) contextual syntactic features; and (3) typing features. As before, we

perform a 10-fold cross-validation, but we train for a full 20 epochs to make the di�erences

more apparent.

Results

Figure 4.5b summarizes the results of this experiment. The Logistic classi�er and the

MLP-500 start o� competitive when given only local syntactic features, but the MLP-500 quickly

outperforms as we add features.

Size is the weakest feature, improving Logistic Top-1 accuracy by less than 1% and

MLP-500 by only 4%. In contrast, the contextual syntactic features improve Logistic Top-1

accuracy by 5% (resp. 16%), and the typing features improve Top-1 accuracy by 6% (resp. 18%).

93

Furthermore, while Size does provide some bene�t when it is the only additional feature, it does

not appear to provide any real increase in accuracy when added alongside the contextual or

typing features. This is likely explained by feature overlap, i.e. the contextual features of “child”

expressions additionally provide some information about the size of the subtree.

As one might expect, the typing features are more bene�cial than the contextual syn-

tactic features. They improve Top-1 accuracy by an additional 1% (resp. 3%), and are much more

compact — requiring only 55 typing features compared to 180 contextual syntactic features. This

aligns with our intuition that types should be a good summary of the context of an expression.

However, typing features do not appear to subsume contextual syntactic features, the MLP-500

gains an additional 4% Top-1 accuracy when both are added.

4.3.4 Threats to Validity

Although our experiments demonstrate that our technique can pinpoint type errors

more accurately than the state of the art and that our features are relevant to blame assignment,

our results may not generalize to other problem domains or program sets.

One threat to validity associated with supervised machine learning is over�tting (i.e.

learning a model that is too complex with respect to the data). A similar issue that arises in

machine learning is model stability (i.e. can small changes to the training set produce large

changes in the model?). We mitigate these threats by: (1) using separate training and testing

datasets drawn from distinct student populations (§ 4.3.2), demonstrating the generality of

our models; and (2) via cross-validation on the joint dataset (§ 4.3.3), which demonstrates the

stability of our models by averaging the accuracy of 10 models trained on distinct subsets of the

data.

Our benchmarks were drawn from students in an undergraduate course and may not

be representative of other student populations. We mitigate this threat by including the largest

empirical evaluation of type error localization that we are aware of: over 5,000 pairs of ill-typed

programs and �xes from two instances of the course, with programs from 102 di�erent students.

We acknowledge, of course, that students are not industrial programmers and our results may

94

not translate to large-scale software development; however, we are particularly interested in

aiding novice programmers as they learn to work inside the type system.

A related threat to construct validity is our de�nition of the immedate next well-typed

program as the intended ground truth answer (see § 4.1, Challenge 2). Students may, in theory,

submit intermediate well-typed program “rewrites” between the original ill-typed program and

the �nal intended answer. Our approach to discarding outliers (see § 4.3) is designed to mitigate

this threat.

Our removal of program pairs that changed too much, where our oracle could not iden-

tify the blame of the other tools, or where the other tools timed out or encountered unsupported

language features is another threat to validity. It is possible that including the programs that

changed excessively would hurt our models, or that the other tools would perform better on the

programs with unsupported language features. We note however that (1) outlier removal is a

standard technique in machine learning; and (2) our Top-1 accuracy margin is large enough

that even if we assumed that SHErrLoc were perfect on all excluded programs, we would still

lead by 9 points.

Examining programs written in OCaml as opposed to Haskell or any other typed

functional language poses yet another threat, common type errors may di�er in di�erent

languages. OCaml is, however, a standard target for research in type error localization and thus

our choice admits a direct comparison with prior work. Furthermore, the functional core of

OCaml that we support does not di�er signi�cantly from the functional core of Haskell or

SML, all of which are e�ectively lambda calculi with a Hindley-Milner-style type system.

Finally, our use of student �xes as oracles assumes that students are able to correctly

identify the source of an error. As the students are in the process of learning the language and

type system, this assumption may be faulty. It may be that expert users would disagree with

many of the student �xes, and that it is harder to learn a model of expert �xes, or that the state

of the art would be better at predicting expert �xes. As we have noted before, we believe it

is reasonable to use student �xes as oracles because the student is the best judge of what she

intended.

95

4.3.5 Interpreting Speci�c Predictions

Next, we present a qualitative evaluation that compares the predictions made by our

classi�ers with those of SHErrLoc. In particular, we demonstrate, with a series of example

programs from our student dataset, how our classi�ers are able to use past student mistakes

to make more accurate predictions of future �xes. We also take this opportunity to examine

some of the speci�c features our classi�ers use to assign blame. For each example, we provide

(1) the code; (2) SHErrLoc’s prediction; (3) our Tree’s prediction; and (4) an explanation of

why our classi�er made its prediction, in terms of the features used and their values. We choose

the Tree classi�er for this section as its model is more easily interpreted than the MLP. We

also exclude the Size feature from the model used in this section, as it makes the predictions

harder to motivate, and as we saw in § 4.3.3 it does not appear to contribute signi�cantly to the

model’s accuracy.

We explain the predictions by analyzing the paths induced in the decision tree by the

features of the input expressions. Recall that each node in a decision tree contains a simple

predicate of the features, e.g. “is feature vj enabled?”, which determines whether a sample will

continue down the left or right subtree. Thus, we can examine the predicates used and the

values of the corresponding features to explain why our Tree made its prediction. We will

focus particularly on the enabled features, as they generally provide more information than

the disabled features. Furthermore, each node is additionally labeled with the ratio of “blamed”

vs “not-blamed” training expressions that passed through it. We can use this information to

identify particularly important decisions, i.e. we consider a decision that changes the ratio to be

more interesting than a decision that does not.

Failed Predictions

We begin with a few programs where our classi�er fails to make the correct prediction.

For these programs we will additionally highlight the correct blame location.

96

Constructing a List of Duplicates. Our �rst program is a simple recursive function

clone that takes an item x and a count n, and produces a list containing n copies of x.

1 let rec clone x n =

2 let loop acc n =

3 if n <= 0 then

4 acc

5 else

6 clone ([x] @ acc) (n - 1) in

7 loop [] n

The student has de�ned a helper function loop with an accumulator acc, likely meant to call

itself tail-recursively. Unfortunately, she has called clone rather than loop in the else branch,

this induces a cyclic constraint 'a = 'a list for the x argument to clone.

Our top prediction coincides with SHErrLoc (and OCaml), blaming the the �rst ar-

gument to clone rather than the occurrence of clone itself. We confess that this prediction

is di�cult to explain by examining the induced paths. In particular, it only references the

expression’s context, which is surprising. Much clearer is why we fail to blame the occurrence

of clone, the two enabled features on the path are: (1) the parent is an application; and (2)

clone has a function type. The model seems to have learned that programmers typically call

the correct function.

Currying Considered Harmful? Next, another ill-fated attempt at clone.

1 let rec clone x n =

2 let rec loop x n acc =

3 if n < 0 then

4 acc

5 else

6 loop (x, (n - 1), (x :: acc)) in

7 loop (x, n, [])

97

The issue here is that OCaml functions are curried by default — i.e. they take their arguments

one at a time — but our student has called the inner loop with all three arguments in a tuple.

Many experienced functional programmers would choose to keep loop curried and rewrite the

calls, however our student decides instead to uncurry loop, making it take a tuple of arguments.

SHErrLoc blames the recursive call to loop while our classi�er blames the tuple of arguments

— a reasonable suggestion, but not the answer the student expected.

We fail to blame the de�nition of loop because it is de�ning a function. First, note

that we represent let f x y = e as let f = fun x -> fun y -> e, thus a change to the

pattern x would be treated as a change to the outer fun expression. With this in mind, we can

explain our failure to blame the de�nition of loop (the outer fun) as follows: (1) it has a function

type; (2) its child is a fun; and (3) its parent is a let. Thus it appears to the model that the outer

fun is simply part of a function de�nition, a common and innocuous phenomenon.

Correct Predictions

Next, we present a few indicative programs where our �rst prediction is correct, and all

of the other tools’ top three predictions are incorrect.

Extracting the Digits of an Integer. Consider �rst a simple recursive function

digitsOfInt that extracts the digits of an int.

1 let rec digitsOfInt n =

2 if n <= 0 then

3 []

4 else

5 [n mod 10] @ [digitsOfInt (n / 10)]

Unfortunately, the student has decided to wrap the recursive call to digitsOfInt with a list

literal, even though digitsOfInt already returns an int list. Thus, the list literal is inferred

to have type int list list, which is incompatible with the int list on the left of the @

(list append) operator. Both SHErrLoc and the OCaml compiler blame the recursive call for

98

returning a int list rather than int, but the recursive call is correct!

As our Tree correctly points out (with high con�dence), the fault lies with the list literal

surrounding the recursive call, remove it and the type error disappears. An examination of the

path induced by the list literal reveals that our Tree is basing its decision on the fact that (1) the

expression is a list literal; (2) the child expression is an application, whose return type mentions

int; and (3) the parent expression’s type mentions list. Interestingly, Tree incorrectly predicts

that the child application should change as well, but it is less con�dent of this prediction and

ranks it below the correct blame assignment.

Padding a list. Our next program, padZero, is given two int lists as input, and

must left-pad the shorter one with enough zeros that the two output lists have equal length.

The student �rst de�nes a helper clone.

1 let rec clone x n =

2 if n <= 0 then

3 []

4 else

5 x :: clone x (n - 1)

Then she de�nes padZero with a branch to determine which list is shorter, followed by a clone

to zero-pad it.

1 let padZero l1 l2 =

2 let n = List.length l1 - List.length l2 in

3 if n < 0 then

4 (clone 0 ((-1) * n) @ l2, l2)

5 else

6 (l1, clone 0 n :: l2)

Alas, our student has accidentally used the :: operator rather than the @ operator in the else

branch. SHErrLoc and OCaml correctly determine that she cannot cons the int list returned

99

by clone onto l2, which is another int list, but they decide to blame the call to clone, while

our Tree correctly blames the :: constructor.

Examining the path induced by the ::, we can see that our Tree is in�uenced by the fact

that: (1) :: is a constructor; (2) the parent is a tuple; and (3) the leftmost child is an application.

We note that �rst fact appears to be particularly signi�cant; an examination of the training

samples that reach that decision reveals that, before observing the Is-Constructor feature

the classi�er is slightly in favor of predicting “blame”, but afterwards it is heavily in favor

of predicting “blame”. Many of the following decisions change the balance back towards “no

blame” if the “true” path is taken, but the :: constructor always takes the “false” path. It would

appear that our Tree has learned that constructors are particularly suspicious, and is looking

for exceptions to this general rule.

Our Tree correctly predicts that the recursive call blamed by SHErrLoc should not be

blamed; a similar examination suggests that the crucial observation is that the recursive call’s

parent is a data constructor application.

4.3.6 Blame Utility

We have demonstrated in the preceding sections that we can produce more accurate

blame assignments by learning from the collective mistakes of prior students; however, users

are the �nal judge of the utility of an error message. Thus, in this �nal experiment we ask

whether Nate’s correct blame assignments aid users in understanding type errors more than

incorrect assignments.

We assigned three problems to the students in our user study: the padZero and

mulByDigit programs from § 4.3.5, as well as the following sepConcat program

1 let rec sepConcat sep sl =

2 match sl with

3 | [] -> ""

4 | h::t ->

5 let f a x = a ^ (sep ^ x) in

100

6 let base = [] in

7 List.fold_left f base sl

where the student has erroneously returned the empty list, rather than the empty string, in

the base case of the fold. For each problem the students were additionally given either Nate’s

correct blame assignment or SHErrLoc’s incorrect blame assignment, with no error message.

The full user study is available in Appendix C. Due to the nature of an in-class exam, not every

student answered every question, but we always received at least 12 (out of a possible 15 or

16) responses for each problem-tool pair. This session of the course was taught in Reason,3 a

dialect of OCaml with a more C-like syntax, and thus for the study we transcribed the programs

to Reason syntax.

We then instructed three annotators (one of whom is an author, the others are graduate

students at UCSD) to classify the answers as correct or incorrect. We performed an inter-rater

reliability (IRR) analysis to determine the degree to which the annotators consistently graded

the exams. As we had more than two annotators assigning nominal (“correct” or “incorrect”)

ratings we used Fleiss’ kappa [32] to measure IRR. Fleiss’ kappa is measured on a scale from

1, indicating total agreement, to −1, indicating total disagreement, with 0 indicating random

agreement.

Finally, we used a one-sided Mann-WhitneyU test [66] to determine the signi�cance of

our results. The null hypothesis was that the responses from students given Nate’s blame were

drawn from the same distribution as those given SHErrLoc’s, i.e. Nate had no e�ect. Since we

used a one-sided test, the alternative to the null hypothesis is that Nate had a positive e�ect on

the responses. We reject the null hypothesis in favor of the alternative if the test produces a

signi�cance level p < 0.05, a standard threshold for determining statistical signi�cance.

Results

The measured kappa values wereκ = 0.68 for the explanations andκ = 0.77 for the �xes;

while there is no formal notion for what consititutes strong agreement [54], kappa values above
3https://reasonml.github.io

https://reasonml.github.io

101

sepConcat
(p = 0.48)

padZero
(p = 0.097)

mulByDigit
(p = 0.083)

0 %

20%

40%

60%

80%

100%

%
Co

rr
ec

t

Explanation

SHErrLoc Nate

sepConcat
(p = 0.57)

padZero
(p = 0.33)

mulByDigit
(p = 0.31)

0 %

20%

40%

60%

80%

100%

%
Co

rr
ec

t

Fix

SHErrLoc Nate

Figure 4.6. A classi�cation of students’ explanations and �xes for type errors, given either
SHErrLoc or Nate’s blame assignment. The students given Nate’s location generally scored
better than those given SHErrLoc’s. We report the result of a one-sided Mann-Whitney U test
for statistical signi�cance in parentheses.

0.60 are often called “substantial” agreement [55]. Figure ?? summarizes a single annotator’s

results, which show that students given Nate’s blame assignment were generally more likely to

correctly explain and �x the type error than those given SHErrLoc’s. There was no discernible

di�erence between Nate and SHErrLoc for sepConcat; however, Nate responses for padZero

and mulByDigit were marked correct 5–25% more often than the SHErrLoc responses. While

the results appear to show a trend in favor of Nate, they do not rise to the level of statistical

signi�cance in this experiment; further investigation is merited.

Threats to Validity

Measuring understanding is di�cult, and comes with its own set of threats.

Construct. We used the correctness of the student’s explanation of, and �x for, the

type error as a proxy for her understanding, but it is possible that other metrics would produce

di�erent results. A further threat arises from our decision to use Reason syntax rather than

OCaml. Reason and OCaml di�er only in syntax, the type system is the same; however, the

di�erence in syntax may a�ect students’ understanding of the programs. For example, Reason

102

uses the notation [h, ...t] for the list “cons” constructor, in contrast to OCaml’s h::t. It is

quite possible that Reason’s syntax could help students remember that h is a single element

while t is a list.

Internal. We assigned students randomly to two groups. The �rst was given SHEr-

rLoc’s blame assignment for sepConcat and mulByDigit, and Nate’s blame for padZero; the

second was given the opposite assignment. This ensured that each student was given SHErrLoc

and Nate problems. Students without su�cient knowledge of Reason could a�ect the results,

as could the time-constrained nature of an exam. Thus, we excluded any answers left blank

from our analysis.

External. Our experiment used students in the process of learning Reason, and thus

may not generalize to all developers. The three programs were chosen manually, via a random

selection and �ltering of the programs from the SP14 dataset, where Nate’s top prediction was

correct but SHErrLoc’s was incorrect. A di�erent selection of programs may lead to di�erent

results.

Subjects. We collected exams from 31 students, though due to the nature of the study

not every student completed every problem. The number of complete submissions was always

at least 12 out of a maximum of 15 or 16 per program-tool pair.

4.4 Limitations

We have shown that we can outperform the state of the art in type error localization

by learning a model of the errors that programmers make, using a set of features that closely

resemble the information the type checker sees. In this section we highlight some limitations of

our approach and potential avenues for future work.

103

User-De�ned Types

Probably the single biggest limitation of our technique is that we have (a �nite set

of) features for speci�c data and type constructors. Anything our models learn about errors

made with the :: constructor or the list type cannot easily be translated to new, user-de�ned

datatypes the model has never encountered. We can mitigate this, to some extent, by adding

generic syntactic features for data constructors and match expressions, but it remains to be seen

how much these help. Furthermore, there is no obvious analog for transferring knowledge to

new type constructors, which we have seen are both more compact and helpful.

As an alternative to encoding information about speci�c constructors, we might use a

more abstract representation. For example, instead of modeling x :: 2 as a :: constructor with

a right child of type int, we might model it as some (unknown) constructor whose right child

has an incompatible type. We might symmetrically model the 2 as an integer literal whose type is

incompatible with its parent. Anything we learn about :: and 2 can now be transferred directly

to yet unseen types, but we run the risk generalizing too much — i.e. perhaps programmers

make di�erent mistakes with lists than they do with other types, and are thus likely to choose

di�erent �xes. Balancing the trade-o� between speci�city and generalizability appears to be a

challenging task.

Additional Features

There are a number of other features that could improve the model’s ability to localize

errors, that would be easier to add than user-de�ned types. For example, each occurrence of

a variable knows only its type and its immediate neighbors, but it may be helpful to know

about other occurrences of the same variable. If a variable is generally used as a float but

has a single use as an int, it seems likely that the latter occurrence (or context) is to blame.

Similarly, arguments to a function application are not aware of the constraints imposed on

them by the function (and vice versa), they only know that they are occurring in the context

of an application. Finally, n-grams on the token stream have proven e�ective for probabilistic

modeling of programming languages [33, 43], we may �nd that they aid in our task as well. For

104

example, if the observed tokens in an expression diverge from the n-gram model’s predictions,

that indicates that there is something unusual about the program at that point, and it may signal

an error.

Independent vs Joint Predictions

We treat each sub-expression as if it exists in a vacuum, but in reality the program has

a rich graphical structure, particularly if one adds edges connecting di�erent occurrences of

the same variable. Raychev et al. [88] have used these richer models to great e�ect to make

interdependent predictions about programs, e.g. de-obfuscating variable names or even inferring

types. One could even view our task of locating the source of an error as simply another property

to be predicted over a graphical model of the program. One of the key advantages of a graphical

model is that the predictions made for one node can in�uence the predictions made for another

node, this is known as structured learning. For example, if, given the expression 1 + true,

we predict true to be erroneous, we may be much less likely to predict + as erroneous. We

compensate somewhat for our lack of structure by adding contextual features and by ranking

our predictions by “con�dence”, but it would be interesting to see how structured learning over

graphical models would perform.

4.5 Related Work

In this section we connect our work to related e�orts in fault localization.

Fault Localization

Given a defect, fault localization is the task of identifying “suspicious” program elements

(e.g. lines, statements) that are likely implicated in the defect (i.e. that should be changed to �x

the defect) — thus, type error localization can be viewed as an instance of fault localization. The

best-known fault localization technique is likely Tarantula, which uses a simple mathematical

formula based on measured information from dynamic normal and buggy runs [45]. Other

similar approaches, including those of Chen et al. [16] and Abreu et al. [1, 2] consider alternate

features of information or re�ned formulae and generally obtain more precise results; see Wong

105

et al. [113] for a survey. While some researchers have approached such fault localization with

an eye toward optimality (e.g. Yoo et al. [117] determine optimal coe�cients), in general such

fault localization approaches are limited by their reliance on either running tests or including

relevant features. For example, Tarantula-based techniques require a normal and a buggy run of

the program. By contrast, we consider incomplete programs with type errors that may not be

executed in any standard sense. Similarly, the features available in�uence the classes of defects

that can be localized. For example, a fault localization scheme based purely on control �ow

features will have di�culty with cross-site scripting or SQL code injection attacks, which follow

the same control �ow path on normal and buggy runs (di�ering only in the user-supplied data).

Our feature set is comprised entirely of syntactic and typing features, a natural choice for type

errors, but it would likely not generalize to other defects.

Endnotes

Acknowledgments

This chapter, in part, has been submitted for publication of the material as it may

appear in: E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala. Learning to blame:

localizing novice type errors with data-driven diagnosis. In submission to OOPSLA ’17, 2017.

The dissertation author was the primary investigator and author of this paper.

Chapter 5

Conclusion

The goal of this work has been to improve the diagnostic feedback that compilers

provide when a program with no type annotations fails to type-check. To that end, we have

made three key contributions that advance the state of the art in type error diagnosis.

Contribution 1: A Dataset of Novice Type Errors

Our �rst contribution was a new dataset of novice interactions with the OCaml top-level

interpreter (in particular, type errors they encountered and their �xes). The dataset contains

thousands of ill-typed programs written by over one hundred undergraduate students at UC

San Diego, as well as the subsequent �xes. This is the largest set of novice type errors that we

are aware of, has formed the backbone of our evaluation, and will hopefully be similarly useful

to other researchers in the future.

Contribution 2: Dynamic Witnesses for Static Type Errors

Second, we presented a novel technique for explaining type errors in terms of the

underlying runtime error the type system prevented. We interleave type inference and execution

to search for a witness to the type error, a set of inputs that would cause the program to crash

at runtime. We borrow the notion of “holes” from the automatic testing literature to avoid

spurious witnesses by delaying the selection of a concrete input until execution has reached a

point where we can be sure of its type. Once our search procedure �nds a witness, we compute

a full execution trace that demonstrates how the program would evolve and eventually crash.

106

107

We present this trace to the user in an interactive debugger that allows the user to explore the

erroneous computation in a familiar setting.

We proved that our search procedure produces general witnesses, i.e. if we can �nd a

witness the program must be untypeable. We showed empirically that most novice type errors,

around 85%, admit witnesses, and that the vast majority can be found in under one second by

our search procedure. We also found that students who were given our witnesses were more

likely to correctly explain and �x a type error than students who were just given OCaml’s error

message. Finally, we found that our witnesses can also serve as a localization method for type

errors by treating the stuck term as a sink for typing constraints and the values contained within

it as sources. Our witness-based localizations are substantially more accurate than OCaml’s

errors and competitive with the state of the art.

Contribution 3: Data-Driven Diagnosis of Type Errors

Finally, we presented a novel technique for localizing type errors based on observations

of past errors and their �xes. We use machine learning to train a classi�er that predicts, given a

term from an ill-typed program, whether the term is likely to be changed in the eventual �x (i.e.

is that term to blame for the error). Given a new ill-typed program, we run the classi�er for all

program terms and use its con�dence score to rank the terms by the likelihood that they should

be blamed, selecting only the top three to present to the user. The classi�er makes predictions

based solely on the syntax and types of the term and its immediate parent and children, and,

crucially, whether the term is part of a minimal type error slice.

Our classi�er’s top-ranked prediction is at least 16 percentage points more accurate

than the state of the art in type error localization, and given three predictions it exceeds 90%

accuracy. Furthermore, the classi�er can be trained on a modest amount of data; we obtained

our results by training on programs from a single instance of our undergraduate programming

languages course at UC San Diego. This makes us con�dent that even if our model does not

generalize to programs from other courses (or more broadly, to arbitrary OCaml programs),

it is quite reasonable for instructors to train models of the speci�c errors made by students in

108

their courses.

5.1 Future Work

We will conclude this dissertation with a brief discussion of some exciting future

directions for this line of work.

Other Type Systems and Analyses

This dissertation has focused on improving type errors for typed functional languages

based on the Hindley-Milner type system, but there are a great many other type systems in

use. Thus, one promising direction for future work would be adapting our techniques to other

systems.

Both NanoMaLy and Nate have been designed to be parametric in the type system, so

in principle it should be straightforward to adapt them to other languages and type systems.

NanoMaLy’s use of the type system is mostly con�ned to the narrow procedure that performs

type-checking, thus one would need to adapt narrow to the target type system. If the dynamic

semantics of the target language di�er signi�cantly from OCaml’s, one would also need to

replace the evaluation rules, but this is not a signi�cant burden either. NanoMaLy’s evaluation

rules are just those of OCaml, with a call to narrow inserted before every primitive reduction.

In contrast, Nate only uses the type system as a source of features, so one would only need to

extract alternative features from the target type system.

We will next brie�y outline a few classes of type systems and how supporting them

might di�er from OCaml.

Dependent Types Dependent types [9, 11, 77] and their close cousins, re�nement

types [28, 91, 105, 114], allow the programmer to specify complex invariants on their programs

and data, and can statically prevent many runtime errors that OCaml cannot. These systems

have been used to prove the absence out-of-bounds accesses [91, 108, 114], complex data-

structure invariants (e.g. red-black tree balancing) [48, 108], security policies [7, 105], and even

compiler correctness [62].

109

As one might expect, it is much harder to prove such properties about your programs

than traditional type-safety, and thus programmers using such systems may spend much more

time investigating type errors. Another consequence of the increased expressiveness is that

these systems generally do not support global type inference as it becomes undecidable. Thus,

the debugging type errors in these systems is more about understanding the error than localizing

it. A crucial question the programmer must answer is whether the error is a legitimate bug

in her program, or if the type checker simply lacks enough information to prove the program

correct.

NanoMaLy’s approach to searching for witnesses to type errors could thus be quite

helpful in these systems. The presence of a witness proves that there is an actual bug, while the

absence may suggest that the programmer needs to supply some additional lemmas to convince

the type checker. We have done some preliminary work in this area, showing that dependent and

re�nement type signatures can be thought of as generators and oracles for comprehensive test

suites [101]. However, that work only checked that a function satis�es its top-level signature, we

did not search for witnesses to the misuse of other functions internally. Petiot et al. [82] present

a technique for determining if a proof failure is due to a legitimate bug or a lack of available

information, but they only evaluate it in the context of �rst-order, imperative C programs. It

would be very interesting to apply these techniques to dependent and re�nement type systems

for functional languages.

Objects Objects are a common feature in popular languages like C++, Java, and C#,

o�ering code reuse via inheritance and behavioral abstraction via interfaces. A core feature of

type systems that support objects is subtyping, allowing values of the sub-type to be seamlessly

used anywhere values of the super-type are expected. While these languages are gradually

adopting type inference for local variables, they generally require type annotations for functions1

as the addition of subtyping would force the compiler to guess the programmer’s intent for

the input types. For instance, did she want the function to accept objects of a speci�c type, or

objects of any type that implement a particular interface?
1OCaml’s own object system is a notable exception here.

110

Since the type checker is (generally) not responsible for guessing the programmer’s

intent in these systems, we suspect that type error localization is unlikely to be as serious

problem as it is in OCaml; however, these languages may still bene�t from NanoMaLy’s

approach to explaining type errors in terms of runtime errors. Novice users, in particular, may

�nd it easier to understand the error when presented as a concrete runtime trace. Bayne et al.

[5] demonstrate a tool similar to NanoMaLy that allows programmers to execute ill-typed Java

programs, though their aim is user-driven testing of a program in spite of potentially irrelevant

type errors, while ours is automated explanations of type errors. Furthermore, subtyping adds a

similar question of whether the type error is legitimate or if a function was simply being too

conservative in its input and output types, thus testing may help guide the programmer to a

solution as suggested above.

Information FlowControl Several authors have proposed type systems for tracking

who may access or modify certain pieces of data, e.g. medical records or paper reviews, in order

to ensure con�dentiality [26, 42, 71, 83, 104]. These systems typically associate a security label —

ranging from simple “high” or “low” security label, to a set of privileged actors — in addition to

a type with each object in the system, and ensure that only actors with su�cient privileges can

access restricted objects. A major complication from traditional type-checking is that implicit

information �ows must be tracked in addition to explicit �ows. While an explicit information

�ow could be returning a row from a database table, an implicit �ow occurs when the program

makes an observable decision based on a piece of information, e.g. by branching on the value of

an object. Implicit �ows must be restricted so that malicious users cannot infer privileged data

by carefully constructed inputs to a system; a common tactic is to conservatively propagate

security labels via implicit �ows.

As with objects, these type systems do not perform global inference for the security

labels, thus the type checker is not trying to infer the programmer’s intent; however, the

implicit �ows can create a similar issue of errors being reported far from their source. Thus, we

suspect that these systems could bene�t from both approaches presented in this dissertation:

111

Nate’s data-driven localizations could improve the accuracy of error reports, and NanoMaLy’s

witnesses could help explain the errors in terms of the undesirable leaking of privileged data.

Fixing Type Errors

Throughout this entire dissertation we have focused on localizing and explaining type

errors, but it would be nice to have a tool that could simply �x the error without any user

intervention.

In addition to the techniques we mentioned in § 1.3.3 there is a wealth of existing work

in the broader �eld of automatic program repair [see 56, § 4, for a survey] that we could draw

from. A core challenge in program repair is fault localization, i.e. determining where the repair

should take place. Thus, Nate’s ability to accurately locate the source of type errors could

provide a strong foundation on top of which to build repair systems.

Another exciting opportunity for future work would be using machine learning to

predict �xes in addition to blame labels. In fact, this could be a very natural extension of our

work on Nate, we can frame it as a classi�cation problem as follows. Given a term from an

ill-typed program, that we have identi�ed as a candidate for blame, we want to predict which

local syntactic feature should be enabled for the corresponding term in the program’s �x. For

example, in our sumList example, we would like the classi�er to predict that the Is-Int feature

should be enabled, instead of the Is-[] feature, in the �x. The problem then becomes a multi-label

classi�cation problem, as there are many possible syntactic features to choose from, but these

problems are also well studied in the machine learning literature.

This approach could work nicely for relatively simple �xes like for sumList, or a use of

the integer + rather than the �oating-point +., etc., but many �xes will require multiple edits

to the program. For example, even adding an extra argument to a function call would be a

multi-edit �x in OCaml: �rst we would need to insert a new application node with the old node

as its left child, then we would need to synthesize a new term for the right child. Clearly, such a

�x cannot be generated by Nate as is, since there are an in�nite number of possible terms but a

�nite number of labels that we can predict. However, there has been much work in the machine

112

learning community on models that can generate structured data, most notably images [36] and

text [4], but also program terms [87, 89]. A sizable challenge to adopting these techniques is that

they tend to require vast amounts of data to learn a precise model, and we have a comparatively

small amount of type-error data. However, all is not lost. The type-error data allowed us to

predict an accurate location for the �x, but the �x itself should be a type-correct program, and

there are an abundance of type-correct programs publicly available in software repositories like

GitHub. So it may be possible to train a precise model of type-correct programs using publicly

available data, and then use that model to generate structured �xes to ill-typed programs.

Appendix A

Proofs for Section 3.2

Proof of Lemma 3. By induction on τ . In the base case τ = 〈f να ,∅,∅〉 and α is trivially a

re�nement of να . In the inductive case, consider the single-step extension of τ , τ ′ = τ , 〈e ′,σ ′,θ ′〉.

We show by case analysis on the evaluation rules that if θ (α) � σ (ν), then θ ′(α) � σ ′(ν).

We can immediately discharge all of the *-B rules as the calls to narrow return stuck.

An examination of narrow shows that if narrow returns stuck then σ and θ are unchanged.

Case Plus-G: We narrow v1 and v2 to int, so we must consider the narrow(να , t ,σ ,θ) and

narrow(n, int,σ ,θ) cases. The narrow(n, int,σ ,θ) case is trivial as it does not change σ

or θ . In the narrow(να , t ,σ ,θ) case we will either �nd that ν ∈ σ or we will generate a

fresh int and extend σ . Note that when we extend σ we also extend θ due to the call

toU, thus in the να ∈ σ sub-cases we cannot actually re�ne either ν or α and thus the

re�nement is preserved. When we extend σ with a binding for ν , the call toU ensures

that we add a compatible binding for α if one was not already in θ , thus the re�nement

relation must continue to hold.

Case If-G{1,2}: Similar to Plus-G.

Case App-G: Similar to Plus-G.

Case Nil-G: This step cannot change σ or θ thus the re�nement continues to hold trivially.

Case Cons-G: We narrow v2 to [t], so we must consider three cases of narrow.

narrow(να , t ,σ ,θ): Similar to Plus-G.

113

114

narrow([]t1 , [t2],σ ,θ): This case may extend θ but not σ , so the re�nement continues to

hold trivially.

narrow(v1 ::t1 v2, [t2],σ ,θ): Same as []t1 .

Case Match-List-G{1,2}: Similar to Plus-G.

Case Match-Pair-G: Similar to Plus-G.

�

Proof of Lemma 4. We can construct v from τ as follows. Let

τi = 〈f ν
α ,∅,∅〉, . . . , 〈ei−1,σi−1,θi−1〉, 〈ei ,σi ,θi 〉

be the shortest pre�x of τ such that ρτi (f) � t . We will show that ρτi−1(f) must contain some

other hole α ′ that is instantiated at step i . Furthermore, α ′ is instantiated in such a way that

ρτi (f) � t . Finally, we will show that if we had instantiated α ′ such that ρτi (f) ∼ t , the current

step would have gotten stuck.

Since θi−1 and θi di�er only in α ′ but the resolved types di�er, we have α ′ ∈ ρτi−1(f)

and ρτi (f) = ρτi−1(f) [t ′/α ′]. Let s be a concrete type such that ρτi−1(f) [s/α ′] = t . We show by

case analysis on the evaluation rules that

〈ei−1,σi−1,θi−1 + {α
′ 7→ s}〉 ↪→ 〈stuck,σ ,θ〉

Case Plus-G: Here we narrow v1 and v2 to int, so the �rst case of narrow must apply

(narrow(n, int,σ ,θ) cannot apply as it does not change θ). In particular, since we ex-

tended θi−1 with α ′ 7→ t ′ we know that α ′ = α and t ′ = int. Let s be any concrete

type that is incompatible with int and θs = θi−1 + {α 7→ s}, narrow(να , int,σi−1,θs]) =

〈stuck,σi−1,θs 〉.

Case Plus-B{1,2}: These cases cannot apply as narrow does not update θ when it returns

stuck.

115

Case If-G{1,2}: Similar to Plus-G.

Case If-B: This case cannot apply as narrow does not update θ when it returns stuck.

Case App-G: Similar to Plus-G.

Case App-B: This case cannot apply as narrow does not update θ when it returns stuck.

Case Nil-G: This case cannot apply as it does not update θ .

Case Cons-G: Here we narrow v2 to [t], so we must consider three cases of narrow.

narrow(να , t ,σ ,θ): Similar to Plus-G.

narrow([]t1 , [t2],σ ,θ): For this case to extend θ with α ′ 7→ t ′, either t1 or t2 must contain

α ′. Let s be any concrete type that is incompatible with t ′ and θs = θi−1 + {α 7→ s},

narrow(να , int,σi−1,θs]) = 〈stuck,σi−1,θs 〉.

narrow(v1 ::t1 v2, [t2],σ ,θ): Same as []t1 .

Case Cons-B: This case cannot apply as narrow does not update θ whe it returns stuck.

Case Match-List-G{1,2}: Here we narrowv to [α], so we must consider three cases of narrow.

narrow(να , t ,σ ,θ): Similar to Plus-G.

narrow([]t1 , [t2],σ ,θ): This case cannot extend θ with α ′ 7→ t ′ as we use a fresh α , which

cannot be referenced by ρτi−1(f), in the call to narrow, and thus it cannot apply.

narrow(v1 ::t1 v2, [t2],σ ,θ): Same as []t1 .

Case Match-List-B: This case cannot apply as narrow does not update θ whe it returns

stuck.

Case Match-Pair-G Here we narrow v to α1 ×α2, so we must consider two cases of narrow.

narrow(να , t ,σ ,θ): Similar to Plus-G.

116

narrow(〈v1,v2〉, t1 × t2,σ ,θ): This case cannot extend θ with α ′ 7→ t ′ as we use a fresh

α1 and α2, which cannot be referenced by ρτi−1(f), in the call to narrow, and thus it

cannot apply.

Case Match-Pair-B: This case cannot apply as narrow does not update θ whe it returns

stuck.

Finally, by Lemma 3 we know that ρτi−1(f) � σi−1(ν) and thus α ′ ∈ σi−1(να). Let u = gen(s,θ)

and v = σi−1(ν)
[
u/ν ′α

′]
[s/α ′], 〈f v,∅,∅〉 ↪→∗ 〈stuck,σ ,θ〉 in i steps.

�

Appendix B

NanoMaLy User Study

117

118

B.1 Version A

9 Debugging and Functional Programming (16 points)
Consider these OCaml programs that do not type-check and their corresponding error messages
(including the implicated code, shown underlined). Each has comments detailing what the program
should do as well as sample invocations that should type-check.

(* "append xs ys" returns a list containing the
elements of "xs" followed by the elements of "ys" *)

let rec append xs ys =
match xs with
| [] -> ys
| h::t -> h :: t :: ys

assert(append [1] [2] = [1;2]) ;;

This expression has type
’a list

but an expression was expected of type
’a

The type variable ’a occurs inside ’a list

(* "digitsOfInt n" returns "[]" if "n" is
not positive, and otherwise returns the
list of digits of "n" in the order in
which they appear in "n". *)

let rec append x ys =
match xs with
| [] -> [x]
| -> x :: xs

let rec digitsOfInt n =
if n <= 0 then

[]
else

append (digitsOfInt (n/10))
[n mod 10]

assert(digitsOfInt 99 = [9;9]) ;;

This expression has type
int

but an expression was expected of type
’a list

(a) [2 pts] Why is the append program not well-typed?

(b) [2 pts] Fix the append program.

(c) [2 pts] Why is the digitsOfInt program not well-typed?

(d) [2 pts] Fix the digitsOfInt program.

15

xs

119

Consider an execution trace that shows a high-level overview of a
program execution focusing on function calls. For example, the trace
on the right tells us that:

i. We start o� with fac 1.

ii. After performing some computation, we have the expression 1
* fac 0. The 1 * is grayed out, indicating that fac 0 is the
next expression to be evaluated.

iii. When we return from fac 0, we are left with 1 * true, in-
dicating a program error: we cannot multiply an int with a
bool.

let rec fac n =
if n <= 0 then

true
else

n * fac (n - 1)

assert(fac 1 = 1) ;;

(* "sumlist xs" returns the sum of the
integer elements of "xs" *)

let rec sumList xs = match xs with
| [] -> []
| y :: ys -> y + sumList ys

assert(sumList [1;2] = 3);;

Error encountered because
’a list

is incompatible with
int

(e) [2 pts] Why is the sumList program not well-typed?

(f) [2 pts] Fix the sumList program.

16

120

(* "wwhile (f, x)" returns x’ where there exist
values v0, ..., vn such that:

- x is equal to v0
- x’ is equal to vn
- for each i between 0 and n-2, we have

(f vi) equals (vi+1, true)
- (f vn≠1) equals (vn, false) *)

let f x =
let xx = x * x in
(xx, (xx < 100))

let rec wwhile (f,b) =
match f with
| (z, false) -> z
| (z, true) -> wwhile (f, z)

assert(wwhile (f, 2) = 256) ;;

Error encountered because
’a -> ’b

is incompatible with
’c * ’d

(g) [2 pts] Why is the wwhile program not well-typed?

(h) [2 pts] Fix the wwhile program.

17

121

B.2 Version B

8 Debugging and Functional Programming (16 points)
Consider these OCaml programs that do not type-check and their corresponding error messages
(including the implicated code, shown underlined). Each has comments detailing what the program
should do as well as sample invocations that should type-check.

(* "sumlist xs" returns the sum of the
integer elements of "xs" *)

let rec sumList xs = match xs with
| [] -> []
| y :: ys -> y + sumList ys

assert(sumList [1;2] = 3);;

This expression has type
’a list

but an expression was expected of type
int

(* "wwhile (f, x)" returns x’ where there exist
values v0, ..., vn such that:

- x is equal to v0
- x’ is equal to vn
- for each i between 0 and n-2, we have

(f vi) equals (vi+1, true)
- (f vn≠1) equals (vn, false) *)

let f x =
let xx = x * x in
(xx, (xx < 100))

let rec wwhile (f,b) =
match f with
| (z, false) -> z
| (z, true) -> wwhile (f, z)

assert(wwhile (f, 2) = 256) ;;

This expression has type
int -> int * bool

but an expression was expected of type
’a * bool

(a) [2 pts] Why is the sumList program not well-typed?

(b) [2 pts] Fix the sumList program.

(c) [2 pts] Why is the wwhile program not well-typed?

(d) [2 pts] Fix the wwhile program.

12

122

Consider an execution trace that shows a high-level overview of a
program execution focusing on function calls. For example, the trace
on the right tells us that:

i. We start o� with fac 1.

ii. After performing some computation, we have the expression 1
* fac 0. The 1 * is grayed out, indicating that fac 0 is the
next expression to be evaluated.

iii. When we return from fac 0, we are left with 1 * true, in-
dicating a program error: we cannot multiply an int with a
bool.

let rec fac n =
if n <= 0 then

true
else

n * fac (n - 1)

assert(fac 1 = 1) ;;

(* "append xs ys" returns a list containing the
elements of "xs" followed by the elements of "ys" *)

let rec append xs ys =
match xs with
| [] -> ys
| h::t -> h :: t :: ys

assert(append [1] [2] = [1;2]) ;;

Error encountered because
int

is incompatible with
int list

(e) [2 pts] Why is the append program not well-typed?

(f) [2 pts] Fix the append program.

13

123

(* "digitsOfInt n" returns "[]" if "n" is
not positive, and otherwise returns the
list of digits of "n" in the order in
which they appear in "n". *)

let rec append x ys =
match xs with
| [] -> [x]
| -> x :: xs

let rec digitsOfInt n =
if n <= 0 then

[]
else

append (digitsOfInt (n/10))
[n mod 10]

assert(digitsOfInt 99 = [9;9]) ;;

Error encountered because
’a list

is incompatible with
int

(g) [2 pts] Why is the digitsOfInt program not well-typed?

(h) [2 pts] Fix the digitsOfInt program.

14

xs

Appendix C

Nate User Study

124

125

C.1 Version A

CS4610 Exam 3 UVa ID:

6. Debugging, Opsems, Types (18 points)

Consider these shown Reason programs that do not type-check ; the code implicated by the type checker will
be highlighted and underlined . Each has English comments explaining what the program should do, as well as

assertions that should type check and succeed.

(a) /* "sepConcat sep [s1;s2;s3]" should insert "sep" between "s1", "s2", and "s3", and

concatentate the result. */

/* Recall that List.fold_left takes a function , an accumulator , and a list as input */

let rec sepConcat = fun sep sl =>

switch sl {

| [] => ""

| [h, ...t] =>

let f = fun a x => a ^ (sep ^ x);

let base = [];

List.fold left f base sl

};

assert (sepConcat "," ["foo", "bar", "baz"] == "foo ,bar ,baz");

i. (3 points) Why is sepConcat not well-typed?

ii. (3 points) Describe how you would fix the code so that sepConcat works correctly.

(b) /* "padZero xs ys" returns a pair "(xs ’, ys ’)" where the shorter of "xs" and "ys" has

been left -padded by zeros until both lists have equal length. */

let rec clone = fun x n =>

if (n <= 0) {

[]

} else {

[x, ... clone x (n - 1)]

};

let padZero = fun l1 l2 => {

let n = List.length l1 - List.length l2;

if (n < 0) {

(clone 0 ((-1) * n) @ l1 , l2)

} else {

(l1 , [clone 0 n, ...l2])

}

};

assert (padZero [1, 2] [1] == ([1, 2], [0, 1]));

i. (3 points) Why is padZero not well-typed?

ii. (3 points) Describe how you would fix the code so that padZero works correctly.

9

126

CS4610 Exam 3 UVa ID:

(c) /* "mulByDigit d [n1;n2;n3]" should multiply the "big integer" "[n1;n2;n3]"

by the single digit "d". */

let rec mulByDigit = fun d n =>

switch (List.rev n) {

| [] => []

| [h, ...t] => [mulByDigit d t , (h * d) mod 10]

};

assert (mulByDigit 4 [2, 5] == [1, 0, 0]);

i. (3 points) Why is mulByDigit not well-typed?

ii. (3 points) Describe how you would fix the code so that mulByDigit works correctly.

10

127

C.2 Version B

CS4610 Exam 3 UVa ID:

6. Debugging, Opsems, Types (18 points)

Consider these shown Reason programs that do not type-check ; the code implicated by the type checker will
be highlighted and underlined . Each has English comments explaining what the program should do, as well as

assertions that should type check and succeed.

(a) /* "sepConcat sep [s1;s2;s3]" should insert "sep" between "s1", "s2", and "s3", and

concatentate the result. */

/* Recall that List.fold_left takes a function , an accumulator , and a list as input */

let rec sepConcat = fun sep sl =>

switch sl {

| [] => ""

| [h, ...t] =>

let f = fun a x => a ^ (sep ^ x);

let base = [] ;

List.fold_left f base sl

};

assert (sepConcat "," ["foo", "bar", "baz"] == "foo ,bar ,baz");

i. (3 points) Why is sepConcat not well-typed?

ii. (3 points) Describe how you would fix the code so that sepConcat works correctly.

(b) /* "padZero xs ys" returns a pair "(xs ’, ys ’)" where the shorter of "xs" and "ys" has

been left -padded by zeros until both lists have equal length. */

let rec clone = fun x n =>

if (n <= 0) {

[]

} else {

[x, ... clone x (n - 1)]

};

let padZero = fun l1 l2 => {

let n = List.length l1 - List.length l2;

if (n < 0) {

(clone 0 ((-1) * n) @ l1 , l2)

} else {

(l1 , [clone 0 n , ...l2])

}

};

assert (padZero [1, 2] [1] == ([1, 2], [0, 1]));

i. (3 points) Why is padZero not well-typed?

ii. (3 points) Describe how you would fix the code so that padZero works correctly.

9

128

CS4610 Exam 3 UVa ID:

(c) /* "mulByDigit d [n1;n2;n3]" should multiply the "big integer" "[n1;n2;n3]"

by the single digit "d". */

let rec mulByDigit = fun d n =>

switch (List.rev n) {

| [] => []

| [h, ...t] => [mulByDigit d t, (h * d) mod 10]

};

assert (mulByDigit 4 [2, 5] == [1, 0, 0]);

i. (3 points) Why is mulByDigit not well-typed?

ii. (3 points) Describe how you would fix the code so that mulByDigit works correctly.

10

References

[1] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund. An evaluation of similarity coe�cients
for software fault localization. In 2006 12th Paci�c Rim International Symposium on
Dependable Computing, PRDC ’06, 2006. doi: 10.1109/PRDC.2006.18.

[2] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund. On the accuracy of spectrum-based
fault localization. In Testing: Academic and Industrial Conference Practice and Research
Techniques - MUTATION, TAICPART-MUTATION 2007, 2007. doi: 10.1109/TAIC.PART.
2007.13.

[3] G. Allen, F. Lö�er, E. Schnetter, and E. L. Seidel. Component speci�cation in the cactus
framework: the cactus con�guration language. In Proceedings of the 11th IEEE/ACM
International Conference on Grid Computing, GRID ’10. IEEE, 2010. doi: 10.1109/GRID.
2010.5698008.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate, 2014. arXiv: 1409.0473 [cs.CL].

[5] M. Bayne, R. Cook, and M. D. Ernst. Always-available static and dynamic feedback. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11. ACM,
2011. doi: 10.1145/1985793.1985864.

[6] M. Beaven and R. Stansifer. Explaining type errors in polymorphic languages. ACM Lett.
Program. Lang. Syst., 2(1-4), 1993. doi: 10.1145/176454.176460.

[7] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Ma�eis. Re�nement types
for secure implementations. ACM Trans. Program. Lang. Syst., 33(2), 2011. doi: 10.1145/
1890028.1890031.

[8] K. L. Bernstein and E. W. Stark. Debugging Type Errors. Technical report, State University
of New York at Stony Brook, 1995.

[9] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development: Coq’Art:
The Calculus of Inductive Constructions. Springer Science & Business Media, 2013.

[10] P. Bielik, V. Raychev, and M. Vechev. PHOG: probabilistic model for code. In Proceedings
of the 33rd International Conference on Machine Learning, ICML ’16, 2016.

[11] E. Brady. Idris, a general-purpose dependently typed programming language: design and
implementation. J. Funct. Programming, 23(05), 2013. doi: 10.1017/S095679681300018X.

129

https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1109/GRID.2010.5698008
https://doi.org/10.1109/GRID.2010.5698008
http://arxiv.org/abs/1409.0473
https://doi.org/10.1145/1985793.1985864
https://doi.org/10.1145/176454.176460
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1017/S095679681300018X

130

[12] L. Breiman. Random forests. Mach. Learn., 45(1), 2001. doi: 10.1023/A:1010933404324.

[13] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classi�cation and regression trees.
CRC press, 1984.

[14] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, Berkeley, CA,
USA. USENIX Association, 2008.

[15] H. R. Chamarthi, P. C. Dillinger, M. Kaufmann, and P. Manolios. Integrating testing and
interactive theorem proving. Electronic Proceedings in Theoretical Computer Science, 70,
2011. doi: 10.4204/EPTCS.70.1.

[16] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: problem determi-
nation in large, dynamic internet services. In Proceedings International Conference on
Dependable Systems and Networks, 2002. doi: 10.1109/DSN.2002.1029005.

[17] S. Chen and M. Erwig. Counter-factual typing for debugging type errors. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14. ACM, 2014. doi: 10.1145/2535838.2535863.

[18] S. Chen and M. Erwig. Guided type debugging. In M. Codish and E. Sumii, editors, Func-
tional and Logic Programming, Lecture Notes in Computer Science. Springer International
Publishing, 2014. doi: 10.1007/978-3-319-07151-0_3.

[19] O. Chitil. Compositional explanation of types and algorithmic debugging of type er-
rors. In Proceedings of the Sixth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’01. ACM, 2001. doi: 10.1145/507635.507659.

[20] D. R. Christiansen. Re�ect on your mistakes! lightweight domain-speci�c error messages.
In Preproceedings of the 15th Symposium on Trends in Functional Programming, 2014.

[21] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of haskell
programs. In Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’00. ACM, 2000. doi: 10.1145/351240.351266.

[22] W. R. Cook and S. Rai. Safe query objects: statically typed objects as remotely executable
queries. In Proceedings of the 27th International Conference on Software Engineering, ICSE
’05, New York, NY, USA. ACM, 2005. doi: 10.1145/1062455.1062488.

[23] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for static analysis
of programs by construction or approximation of �xpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’77.
ACM, 1977. doi: 10.1145/512950.512973.

[24] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for java. Softw.
Pract. Exp., 34(11), 2004. doi: 10.1002/spe.602.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.4204/EPTCS.70.1
https://doi.org/10.1109/DSN.2002.1029005
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1007/978-3-319-07151-0_3
https://doi.org/10.1145/507635.507659
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1062455.1062488
https://doi.org/10.1145/512950.512973
https://doi.org/10.1002/spe.602

131

[25] L. Damas and R. Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’82. ACM, 1982. doi: 10.1145/582153.582176.

[26] D. E. Denning and P. J. Denning. Certi�cation of programs for secure information �ow.
Commun. ACM, 20(7), 1977. doi: 10.1145/359636.359712.

[27] D. Duggan and F. Bent. Explaining type inference. Science of Computer Programming,
27(1), 1996. doi: 10.1016/0167-6423(95)00007-0.

[28] J. Dun�eld. Re�ned typechecking with stardust. In Proceedings of the 2007 Workshop
on Programming Languages Meets Program Veri�cation, PLPV ’07, New York, NY, USA.
ACM, 2007. doi: 10.1145/1292597.1292602.

[29] T. Elliott, L. Pike, S. Winwood, P. Hickey, J. Bielman, J. Sharp, E. Seidel, and J. Launchbury.
Guilt free ivory. In Proceedings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell
’15. ACM, 2015. doi: 10.1145/2804302.2804318.

[30] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. The MIT
Press, 1st edition, 2009.

[31] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen. Catching bugs in
the web of program invariants. In Proceedings of the ACM SIGPLAN 1996 conference on
Programming language design and implementation, volume 31 of PLDI ’96. ACM, 1996.
doi: 10.1145/249069.231387.

[32] J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychol. Bull., 76(5),
1971. doi: 10.1037/h0031619.

[33] M. Gabel and Z. Su. A study of the uniqueness of source code. In Proceedings of the Eigh-
teenth ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE ’10. ACM, 2010. doi: 10.1145/1882291.1882315.

[34] H. Gast. Explaining ML type errors by data �ows. In Implementation and Application of
Functional Languages, Lecture Notes in Computer Science. Springer, 2004. doi: 10.1007/
11431664_5.

[35] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’05. ACM, 2005. doi: 10.1145/1065010.1065036.

[36] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. DRAW: a recurrent
neural network for image generation, 2015. arXiv: 1502.04623 [cs.CV].

[37] C. Haack and J. B. Wells. Type error slicing in implicitly typed Higher-Order languages.
In Programming Languages and Systems, Lecture Notes in Computer Science. Springer,
2003. doi: 10.1007/3-540-36575-3_20.

https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/359636.359712
https://doi.org/10.1016/0167-6423(95)00007-0
https://doi.org/10.1145/1292597.1292602
https://doi.org/10.1145/2804302.2804318
https://doi.org/10.1145/249069.231387
https://doi.org/10.1037/h0031619
https://doi.org/10.1145/1882291.1882315
https://doi.org/10.1007/11431664_5
https://doi.org/10.1007/11431664_5
https://doi.org/10.1145/1065010.1065036
http://arxiv.org/abs/1502.04623
https://doi.org/10.1007/3-540-36575-3_20

132

[38] J. Hage and B. Heeren. Heuristics for type error discovery and recovery. In Implemen-
tation and Application of Functional Languages, Lecture Notes in Computer Science.
Springer, 2006. doi: 10.1007/978-3-540-74130-5_12.

[39] A. Halevy, P. Norvig, and F. Pereira. The unreasonable e�ectiveness of data. IEEE Intell.
Syst., 24(2), 2009. doi: 10.1109/MIS.2009.36.

[40] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Series in Statistics. Springer New York, 2009. doi:
10.1007/978-0-387-84858-7.

[41] B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference process. In Proceedings
of the Eighth ACM SIGPLAN International Conference on Functional Programming. ACM,
2003. doi: 10.1145/944705.944707.

[42] N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and integrity.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’98, New York, NY, USA. ACM, 1998. doi: 10.1145/268946.268976.

[43] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software.
In Proceedings of the 34th International Conference on Software Engineering, ICSE ’12,
Piscataway, NJ, USA. IEEE Press, 2012.

[44] R. Hindley. The principal Type-Scheme of an object in combinatory logic. Trans. Amer.
Math. Soc., 146, 1969. doi: 10.2307/1995158.

[45] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault
localization. In Proceedings of the 24th International Conference on Software Engineering,
ICSE ’02. ACM, 2002. doi: 10.1145/581339.581397.

[46] S. Joosten, K. Van Den Berg, and G. Van Der Hoeven. Teaching functional programming to
�rst-year students. J. Funct. Programming, 3(01), 1993. doi: 10.1017/S0956796800000599.

[47] M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum satis�a-
bility. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, volume 46. ACM, 2011. doi: 10.1145/1993316.1993550.

[48] M. Kawaguchi, P. Rondon, and R. Jhala. Type-based data structure veri�cation. In Pro-
ceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’09, New York, NY, USA. ACM, 2009. doi: 10.1145/1542476.1542510.

[49] W. L. Khoo, E. L. Seidel, and Z. Zhu. Designing a virtual environment to evaluate
multimodal sensors for assisting the visually impaired. In Computers Helping People with
Special Needs, ICCHP ’12. Springer, 2012. doi: 10.1007/978-3-642-31534-3_84.

[50] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization, 2014. arXiv: 1412.
6980 [cs.LG].

https://doi.org/10.1007/978-3-540-74130-5_12
https://doi.org/10.1109/MIS.2009.36
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1145/944705.944707
https://doi.org/10.1145/268946.268976
https://doi.org/10.2307/1995158
https://doi.org/10.1145/581339.581397
https://doi.org/10.1017/S0956796800000599
https://doi.org/10.1145/1993316.1993550
https://doi.org/10.1145/1542476.1542510
https://doi.org/10.1007/978-3-642-31534-3_84
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

133

[51] P. S. Kochhar, X. Xia, D. Lo, and S. Li. Practitioners’ expectations on automated fault
localization. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, ISSTA 2016. ACM, 2016. doi: 10.1145/2931037.2931051.

[52] S. B. Kotsiantis. Supervised machine learning: a review of classi�cation techniques.
Informatica, 31(3), 2007.

[53] T. Kremenek and D. Engler. Z-Ranking: using statistical analysis to counter the impact
of static analysis approximations. In R. Cousot, editor, Static Analysis. Volume 2694,
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2003. doi: 10.1007/3-
540-44898-5_16.

[54] K. Krippendor�. Content Analysis: An Introduction to Its Methodology. SAGE Publications,
2012.

[55] J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical
data. Biometrics, 33(1), 1977.

[56] C. Le Goues, S. Forrest, and W. Weimer. Current challenges in automatic software repair.
Software Qual J, 21(3), 2013. doi: 10.1007/s11219-013-9208-0.

[57] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type inference algorithm. ACM
Trans. Program. Lang. Syst., 20(4), 1998. doi: 10.1145/291891.291892.

[58] D. Leijen and E. Meijer. Domain speci�c embedded compilers. In Proceedings of the 2nd
conference on Domain-speci�c languages, volume 35. ACM, 1999. doi: 10.1145/331960.
331977.

[59] E. Lempsink. Generic type-safe di� and patch for families of datatypes. Master’s thesis,
Universiteit Utrecht, 2009.

[60] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching for type-error mes-
sages. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’07. ACM, 2007. doi: 10.1145/1250734.1250783.

[61] B. Lerner, D. Grossman, and C. Chambers. Seminal: searching for ML type-error messages.
In Proceedings of the 2006 Workshop on ML, ML ’06. ACM, 2006. doi: 10.1145/1159876.
1159887.

[62] X. Leroy. Formal veri�cation of a realistic compiler. Commun. ACM, 52(7), 2009. doi:
10.1145/1538788.1538814.

[63] T. Lindahl and K. Sagonas. Practical type inference based on success typings. In Pro-
ceedings of the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, PPDP ’06. ACM, 2006. doi: 10.1145/1140335.1140356.

[64] F. Lindblad. Property directed generation of First-Order test data. In M. T. Morazán, editor,
Proceedings of the Eighth Symposium on Trends in Functional Programming, volume 8 of
TFP ’07, 2007.

https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1007/3-540-44898-5_16
https://doi.org/10.1007/3-540-44898-5_16
https://doi.org/10.1007/s11219-013-9208-0
https://doi.org/10.1145/291891.291892
https://doi.org/10.1145/331960.331977
https://doi.org/10.1145/331960.331977
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1159876.1159887
https://doi.org/10.1145/1159876.1159887
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1140335.1140356

134

[65] C. Loncaric, S. Chandra, C. Schlesinger, and M. Sridharan. A practical framework for
type inference error explanation. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM,
2016. doi: 10.1145/2983990.2983994.

[66] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat., 18(1), 1947. doi: 10.1214/aoms/
1177730491.

[67] G. Marceau, K. Fisler, and S. Krishnamurthi. Measuring the e�ectiveness of error mes-
sages designed for novice programmers. In Proceedings of the 42Nd ACM Technical
Symposium on Computer Science Education, SIGCSE ’11. ACM, 2011. doi: 10 . 1145 /
1953163.1953308.

[68] G. Marceau, K. Fisler, and S. Krishnamurthi. Mind your language: on novices’ interactions
with error messages. In Proceedings of the 10th SIGPLAN Symposium on New Ideas, New
Paradigms, and Re�ections on Programming and Software, Onward! 2011. ACM, 2011.
doi: 10.1145/2048237.2048241.

[69] B. J. McAdam. On the uni�cation of substitutions in type inference. In K. Hammond,
T. Davie, and C. Clack, editors, Implementation of Functional Languages, Lecture Notes
in Computer Science. Springer, 1998. doi: 10.1007/3-540-48515-5_9.

[70] R. Milner. A theory of type polymorphism in programming. J. Comput. System Sci., 17(3),
1978. doi: 10.1016/0022-0000(78)90014-4.

[71] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM
Trans. Softw. Eng. Methodol., 9(4), 2000. doi: 10.1145/363516.363526.

[72] V. Nair and G. E. Hinton. Recti�ed linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), 2010.

[73] M. Naylor and C. Runciman. Finding inputs that reach a target expression. In Seventh
IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM
’07, 2007. doi: 10.1109/SCAM.2007.30.

[74] G. Nelson and D. C. Oppen. Simpli�cation by cooperating decision procedures. ACM
Trans. Program. Lang. Syst., 1(2), 1979. doi: 10.1145/357073.357079.

[75] M. Neubauer and P. Thiemann. Discriminative sum types locate the source of type
errors. In Proceedings of the Eighth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’03. ACM, 2003. doi: 10.1145/944705.944708.

[76] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[77] U. Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology, 2007.

https://doi.org/10.1145/2983990.2983994
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1007/3-540-48515-5_9
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/363516.363526
https://doi.org/10.1109/SCAM.2007.30
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/944705.944708

135

[78] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-Directed random test gen-
eration. In 29th International Conference on Software Engineering, ICSE ’07, 2007. doi:
10.1109/ICSE.2007.37.

[79] Z. Pavlinovic, T. King, and T. Wies. Finding minimum type error sources. In Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14. ACM, 2014. doi: 10.1145/2660193.2660230.

[80] Z. Pavlinovic, T. King, and T. Wies. Practical SMT-based type error localization. In Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015. ACM, 2015. doi: 10.1145/2784731.2784765.

[81] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional programs that explain their
work. In Proceedings of the 17th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’12. ACM, 2012. doi: 10.1145/2364527.2364579.

[82] G. Petiot, N. Kosmatov, B. Botella, A. Giorgetti, and J. Julliand. Your proof fails? testing
helps to �nd the reason. In B. K. Aichernig and C. A. Furia, editors, Tests and Proofs,
Lecture Notes in Computer Science. Springer International Publishing, 2016. doi: 10.
1007/978-3-319-41135-4_8.

[83] F. Pottier and V. Simonet. Information �ow inference for ML. ACM Trans. Program. Lang.
Syst., 25(1), 2003. doi: 10.1145/596980.596983.

[84] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[85] V. Rahli, J. B. Wells, and F. Kamareddine. A constraint system for a SML type error slicer.
Technical report HW-MACS-TR-0079, Herriot Watt University, 2010.

[86] V. Rahli, J. Wells, J. Pirie, and F. Kamareddine. Skalpel: a type error slicer for standard
ML. Electron. Notes Theor. Comput. Sci., 312, 2015. doi: 10.1016/j.entcs.2015.04.012.

[87] V. Raychev, P. Bielik, and M. Vechev. Probabilistic model for code with decision trees.
In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. ACM, 2016. doi: 10.1145/2983990.
2984041.

[88] V. Raychev, M. Vechev, and A. Krause. Predicting program properties from “big code”.
In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15. ACM, 2015. doi: 10.1145/2676726.2677009.

[89] V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language models.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, volume 49. ACM, 2014. doi: 10.1145/2594291.2594321.

[90] J. A. Robinson. A Machine-Oriented logic based on the resolution principle. J. ACM,
12(1), 1965. doi: 10.1145/321250.321253.

https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1145/2784731.2784765
https://doi.org/10.1145/2364527.2364579
https://doi.org/10.1007/978-3-319-41135-4_8
https://doi.org/10.1007/978-3-319-41135-4_8
https://doi.org/10.1145/596980.596983
https://doi.org/10.1016/j.entcs.2015.04.012
https://doi.org/10.1145/2983990.2984041
https://doi.org/10.1145/2983990.2984041
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/321250.321253

136

[91] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’08,
New York, NY, USA. ACM, 2008. doi: 10.1145/1375581.1375602.

[92] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy smallcheck: automatic
exhaustive testing for small values. In Proceedings of the First ACM SIGPLAN Symposium
on Haskell, Haskell ’08. ACM, 2008. doi: 10.1145/1411286.1411292.

[93] K. Sagonas, J. Silva, and S. Tamarit. Precise explanation of success typing errors. In
Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program
Manipulation, PEPM ’13. ACM, 2013. doi: 10.1145/2426890.2426897.

[94] T. Schilling. Constraint-Free type error slicing. In Trends in Functional Programming,
Lecture Notes in Computer Science. Springer, 2011. doi: 10.1007/978-3-642-32037-8_1.

[95] E. L. Seidel. Metadata management in scienti�c computing. JOCSE, 3(2), 2012.

[96] E. L. Seidel, G. Allen, S. Brandt, F. Lö�er, and E. Schnetter. Simplifying complex software
assembly: the component retrieval language and implementation. In Proceedings of the
2010 TeraGrid Conference, TG ’10. ACM, 2010. doi: 10.1145/1838574.1838592.

[97] E. L. Seidel and R. Jhala. A Collection of Novice Interactions with the OCaml Top-Level
System, 2017. doi: 10.5281/zenodo.806813.

[98] E. L. Seidel, R. Jhala, and W. Weimer. Dynamic witnesses for static type errors (or, ill-
typed programs usually go wrong). In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP ’16. ACM, 2016. doi: 10.1145/2951913.
2951915.

[99] E. L. Seidel, R. Jhala, and W. Weimer. Dynamic witnesses for static type errors (or,
ill-typed programs usually go wrong). In submission to J. Funct. Programming, 2017.

[100] E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala. Learning to blame:
localizing novice type errors with data-driven diagnosis. In submission to OOPSLA ’17,
2017.

[101] E. L. Seidel, N. Vazou, and R. Jhala. Type targeted testing. In Proceedings of the 24th
European Symposium on Programming, ESOP ’15. Springer, 2015. doi: 10.1007/978-3-
662-46669-8_33.

[102] A. Serrano and J. Hage. Type error diagnosis for embedded DSLs by Two-Stage special-
ized type rules. In Programming Languages and Systems, Lecture Notes in Computer
Science. Springer, 2016. doi: 10.1007/978-3-662-49498-1_26.

[103] D. Seven. Knightmare: a DevOps cautionary tale. https://dougseven.com/2014/04/17/
knightmare-a-devops-cautionary-tale/, 2014. Accessed: 2017-4-24.

[104] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Disjunction category labels. In
Information Security Technology for Applications. Springer, Berlin, Heidelberg, 2011. doi:
10.1007/978-3-642-29615-4_16.

https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1411286.1411292
https://doi.org/10.1145/2426890.2426897
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1145/1838574.1838592
https://doi.org/10.5281/zenodo.806813
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1007/978-3-662-46669-8_33
https://doi.org/10.1007/978-3-662-46669-8_33
https://doi.org/10.1007/978-3-662-49498-1_26
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://doi.org/10.1007/978-3-642-29615-4_16

137

[105] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure distributed
programming with value-dependent types. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’11, New York, NY, USA. ACM,
2011. doi: 10.1145/2034773.2034811.

[106] N. Tillmann and J. d. Halleux. Pex–White box test generation for .NET. In B. Beckert
and R. Hähnle, editors, Tests and Proofs, Lecture Notes in Computer Science. Springer,
2008. doi: 10.1007/978-3-540-79124-9_10.

[107] F. Tip and T. B. Dinesh. A slicing-based approach for locating type errors. ACM Trans.
Softw. Eng. Methodol., 10(1), 2001. doi: 10.1145/366378.366379.

[108] N. Vazou, E. L. Seidel, and R. Jhala. LiquidHaskell: experience with re�nement types in
the real world. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell
’14. ACM, 2014. doi: 10.1145/2633357.2633366.

[109] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Re�nement types for
haskell. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’14. ACM, 2014. doi: 10.1145/2628136.2628161.

[110] D. Vytiniotis, S. Peyton Jones, and J. P. Magalhães. Equality proofs and deferred type
errors: a compiler pearl. In Proceedings of the 17th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’12. ACM, 2012. doi: 10.1145/2364527.2364554.

[111] M. Wand. Finding the source of type errors. In Proceedings of the 13th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL ’86. ACM, 1986.
doi: 10.1145/512644.512648.

[112] D. A. Wheeler. The apple goto fail vulnerability: lessons learned. https://www.dwheeler.
com/essays/apple-goto-fail.html, 2014. Accessed: 2017-4-24.

[113] W. E. Wong and V. Debroy. A survey of software fault localization. Technical report
UTDCS-45-09, University of Texas at Dallas, 2009.

[114] H. Xi and F. Pfenning. Eliminating array bound checking through dependent types. In
Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation, PLDI ’98, New York, NY, USA. ACM, 1998. doi: 10.1145/277650.277732.

[115] J. Yang. Explaining type errors by �nding the source of a type con�ict. In Selected Papers
from the 1st Scottish Functional Programming Workshop, SFP ’99, Exeter, UK. Intellect
Books, 1999.

[116] J. Yang and G. Michaelson. A visualisation of polymorphic type checking. J. Funct.
Programming, 10(01), 2000.

[117] S. Yoo, M. Harman, and D. Clark. Fault localization prioritization: comparing information-
theoretic and coverage-based approaches. ACM Trans. Softw. Eng. Methodol., 22(3), 2013.
doi: 10.1145/2491509.2491513.

https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1145/366378.366379
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2364527.2364554
https://doi.org/10.1145/512644.512648
https://www.dwheeler.com/essays/apple-goto-fail.html
https://www.dwheeler.com/essays/apple-goto-fail.html
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/2491509.2491513

138

[118] D. Zhang and A. C. Myers. Toward general diagnosis of static errors. In Proceedings of
the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14. ACM Press, 2014. doi: 10.1145/2535838.2535870.

[119] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones. Diagnosing type errors with
class. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2015. ACM, 2015. doi: 10.1145/2737924.2738009.

https://doi.org/10.1145/2535838.2535870
https://doi.org/10.1145/2737924.2738009

	Signature Page
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	A Running Example
	The Hindley-Milner Type System
	Prior Work on Diagnosing Type Errors
	Localizing Type Errors
	Explaining Type Errors
	Fixing Type Errors

	Our Contributions

	A Dataset of Novice Type Errors
	Dynamic Witnesses for Static Type Errors
	Overview
	Generating Witnesses
	Visualizing Witnesses

	Type-Error Witnesses
	Syntax
	Semantics
	Generality
	Search Algorithm

	Explaining Type Errors With Traces
	Tracing Semantics
	Interactive Debugging

	Evaluation
	Methodology
	Witness Coverage
	How safe are the ``safe'' programs?
	Witness Complexity
	Qualitative Evaluation of Witness Utility
	Quantitative Evaluation of Witness Utility
	Locating Errors with Witnesses
	Discussion

	Related Work

	Learning To Blame
	Overview
	Step 1: Acquiring a Blame-Labeled Training Set
	Step 2: Representing Programs as Vectors
	Step 3: Feature Discovery
	Step 4: Generating Feedback

	Learning to Blame
	Features
	Labels
	Learning Algorithms

	Evaluation
	Methodology
	Blame Accuracy
	Feature Utility
	Threats to Validity
	Interpreting Specific Predictions
	Blame Utility

	Limitations
	Related Work

	Conclusion
	Future Work

	Proofs for Section 3.2
	NanoMaLy User Study
	Version A
	Version B

	Nate User Study
	Version A
	Version B

	References

