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Introduction. Blast (the Berkeley Lazy Abstraction Software verification
Tool) is a verification system for checking safety properties of C programs us-
ing automatic property-driven construction and model checking of software ab-
stractions. Blast implements an abstract-model check-refine loop to check for
reachability of a specified label in the program. The abstract model is built on
the fly using predicate abstraction. This model is then checked for reachability.
If there is no (abstract) path to the specified error label, Blast reports that the
system is safe and produces a succinct proof. Otherwise, it checks if the path is
feasible using symbolic execution of the program. If the path is feasible, Blast

outputs the path as an error trace, otherwise, it uses the infeasibility of the path
to refine the abstract model. Blast short-circuits the loop from abstraction to
verification to refinement, integrating the three steps tightly through “lazy ab-
straction” [5]. This integration can offer significant advantages in performance
by avoiding the repetition of work from one iteration of the loop to the next.

We now describe the algorithm in more detail. Internally, C programs are
represented as control flow automata (CFA), which are control flow graphs with
operators on edges. The lazy abstraction algorithm is composed of two phases.
In the forward-search phase, we build a reachability tree, which represents a
portion of the reachable, abstract state space of the program. Each node of the
tree is labeled by a vertex of the CFA and a formula, called the reachable region,
constructed as a boolean combination of a finite set of abstraction predicates.
Initially the set of abstraction predicates is empty. The edges of the tree corre-
spond to edges of the CFA and are labeled by basic program blocks or assume
predicates. The reachable region of a node describes the reachable states of the
program in terms of the abstraction predicates, assuming execution follows the
sequence of instructions labeling the edges from the root of the tree to the node.
If we find that an error node is reachable in the tree, then we go to the second
phase, which checks if the error is real or results from our abstraction being too
coarse (i.e., if we lost too much information by restricting ourselves to a partic-
ular set of abstraction predicates). In the latter case, we ask a theorem prover
to suggest new abstraction predicates which rule out that particular spurious
counterexample. The program is then refined locally by adding the new abstrac-
tion predicates only in the smallest subtree containing the spurious error; the
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search continues from the point that is refined, without touching the part of the
reachability tree outside that subtree.

Thus the benefits are three-fold. First, we only abstract the reachable part
of the state space, which is typically much smaller than the entire abstract
state space. Second, we are able to have different precisions at different parts of
the state space, which effectively means having to process fewer predicates at
every point. Third, we avoid redoing the model checking over parts of the state
space that we know are free of error from some coarser abstraction. Moreover,
from the reachable set constructed by Blast, invariants that are sufficient to
prove the safety property can be mined, and a short, formal, easily checkable
proof of correctness can be constructed [4]. Blast has successfully verified and
found violations of safety properties of large device driver programs up to 60,000
lines of code. A beta version of Blast has been released and is available from
http://www.eecs.berkeley.edu/∼tah/blast.

Implementation. The input to Blast is a C program and a safety monitor
written in C. The program and the monitor are compiled into a single program
with a special error location that is reachable iff the program does not satisfy
the safety property. The lazy-abstraction algorithm runs on this program and
returns either a genuine error trace or a proof of correctness (or fails to termi-
nate). The proof is encoded in binary ELF format as in proof-carrying code [6].
Our tool is written in Objective Caml, and uses the CIL compiler infrastructure
[7] as a front end to parse C programs. Our handling of C features follows that
of [1]. We handle all syntactic constructs of C, including pointers, structures,
and procedures (leaving the constructs not in the predicate language uninter-
preted). However, we model integer arithmetic as infinite-precision arithmetic
(no wrap-around), and we assume a logical model of the memory. In particular,
we disallow casting that changes the “layout pattern” of the memory, disallow
partially overlapped objects, and assume that pointer arithmetic in arrays re-
spects the array bound. Currently we handle procedure calls using an explicit
stack and do not handle recursive functions.

Our implementation works on a generic symbolic abstraction structure which
is an internal representation that provides a symbolic interface suitable for model
checking, namely a representation of sets of states (“regions”), and functions to
compute the concrete and abstract predecessor and successor regions, analyze
counterexamples, and refine abstractions.

A C program is represented internally as a CFA. A region is a tuple of
CFA state (location), data state, and stack state. We represent the CFA state
explicitly, but represent the data state symbolically as boolean formulas over the
abstraction predicates. The stack state is a sequence of CFA states. The boolean
formulas are stored in canonical form as BDDs.

Given a region and an edge of the CFA, the concrete successor and pre-
decessor operators are implemented using syntactic strongest postcondition and
weakest precondition operators, respectively. Given a region, a set of abstraction
predicates, and an edge of the CFA (an operation in the program), the symbolic
abstract predecessor and successor operators compute an overapproximation of



the concrete predecessor and successor sets representable using the abstraction
predicates, by making queries to the decision procedures Simplify [3] or CVC
[8].

Counterexample analysis is implemented by iterating the concrete predeces-
sor or successor operators and checking for unsatisfiability. Finally, the refine-
ment operator takes an infeasible counterexample trace (whose weakest precon-
dition w.r.t. true is, by definition, unsatisfiable), and generates new abstraction
predicates by querying a proof generating theorem prover (like Vampyre or CVC
in proof generation mode) for a proof of unsatisfiability, and taking the atomic
formulas appearing in the proof.

The lazy abstraction algorithm is implemented on top of the interface pro-
vided by the symbolic abstraction structure. It does not depend on internal data
structures of the symbolic abstraction structure. The advantage of separating
the model checking algorithms from the particular internal representation of
the system is that we can reuse much of the code to build a model checker for
different front ends (for example, for Java programs), or for different region rep-
resentations. A clean symbolic abstraction structure interface also allows us to
experiment with different model checking algorithms and heuristics.

Optimizations. In order to be practical, the tool uses several optimizations.
The cost is dominated by the cost of theorem proving, so we extensively optimize
calls to the theorem prover. First, we compute a fast (linear in the number of
predicates) abstract successor operation which is less precise than [2] but usu-
ally strong enough to prove the desired properties [5]. Moreover, when computing
the abstract successor operator w.r.t. a statement s, we check if the predicate
p is affected by the statement s (by checking if p 6= wp(p, s), where wp is the
weakest precondition operator), and invoke theorem prover calls only on the
subset of predicates which are affected. Second, while constructing the weakest
precondition, we only keep satisfiable disjuncts (disjuncts appear in the weakest
precondition because of aliasing). Third, we remove predicates that relate vari-
ables not in the current program scope. To do this without losing information,
we use the theorem prover data structures to add additional useful predicates.
Apart from reducing the theorem proving burden, this optimization enables us
to reach the fixpoint quicker. Fourth, the check for region inclusion is performed
(without sacrificing precision) entirely at the boolean level by keeping the pred-
icates uninterpreted.

We apply a set of program analysis optimizations up front: these include
interprocedural conditional constant propagation, dead code elimination, and
redundant variable elimination. We have also implemented simple program slic-
ing based on the cone of influence on variables appearing in conditionals.

All the heuristics can be independently turned on or off through command
line options; this allows us to experiment with several combinations. With these
optimizations, Blast routinely runs on several thousand lines of C code in a
few minutes.

Experiences. Frequently, reachability analysis requires only models of certain
functions, and not their actual implementation. For example, in checking for lock-



ing behavior in the Linux kernel, one simply requires a model of the spin unlock
and spin lock functions that sets a particular state variable of the specification,
and not the actual assembly code that implements locking in the kernel. We
model such kernel calls manually using stub functions that implement the re-
quired behavior. We found nondeterministic choice to be a useful modeling tool
(for example, to model that a function can return either 0 or 1 nondetermin-
istically), so we added explicit support for nondeterministic choice. By default,
if the body of a called function whose return value is dropped is not available,
Blast makes the optimistic assumption that the function is of no relevance to
the particular property being checked, and so no predicate values are updated
(but a warning message is printed).

Sometimes the predicate discovery is not strong enough to find all predicates
of interest and we take (as optional input) a file with programmer specified
predicates; the syntax of predicates follows the C syntax for expressions. We find
in our experiments that efficient discovery of good predicates is still an important
issue. We have implemented various heuristics to find more predicates, including
a scan of a counterexample trace to find multiple causes of unsatisfiability.

Blast has been used to verify several large C programs [4]. Most of these
programs are device driver examples from the Microsoft Windows DDK or from
the Linux distribution. The properties we checked ranged from simple locking
mechanisms to checking that a driver conforms to Windows NT rules for handling
I/O requests. We have found bugs in several drivers, we have proved that other
drivers correctly implement the specification.
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