TickTock: Verified Isolation in a Production
Embedded OS

Vivien Rindisbacher Evan Johnson
UCSD NYU

Pat Pannuto
UCSD

Stefan Savage
UCSD

Abstract

We present a case study formally verifying process isolation
in the Tock production microcontroller OS kernel. Tock
combines hardware memory protection units and language-
level techniques—by writing the kernel in Rust—to enforce
isolation between user and kernel code. Our effort to verify
Tock’s process abstraction unearthed multiple, subtle bugs
that broke isolation—many allowing malicious applications
to compromise the whole OS. We describe this effort and
TickTock, our fork of the Tock operating system kernel
that eliminates isolation bugs by construction. TickTock
uses FLux, an SMT-based Rust verifier, to formally spec-
ify and verify process isolation for all ARMv7-M platforms
Tock supports and for three RISC-V 32-bit platforms. Our
verification-guided design and implementation led to a new,
granular process abstraction that is simpler than Tock’s, has
formal security guarantees (that are verified in half a minute),
and outperforms Tock on certain critical code paths.

1 Introduction

Tock [37] is a microcontroller OS that is increasingly be-
ing deployed in security-critical systems—from the Google
Security Chip (GSC) [6], the platform powering Google’s
Hardware Security Modules, Microsoft’s Pluton 2 security
processor [60], the system-on-chip providing functions like
the Trusted Platform Module. Like traditional OSes, Tock’s
strong security guarantees are rooted in isolation: Tock sep-
arates user and kernel space and provides a process abstrac-
tion that lets users run multiple untrusted applications in
isolation. If a malicious or compromised process can access
the kernel or another process’s memory, all bets are off:
the process can potentially steal sensitive data (e.g., cryp-
tographic keys handled by platforms like GSC), brick the
embedded system (and the platforms relying on Tock as the
root of trust), or even take control of the OS.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

SOSP °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1870-0/2025/10
https://doi.org/10.1145/3731569.3764856

Nico Lehmann Tyler Potyondy
UCSD UCSD
Deian Stefan Ranjit Jhala
UCSD UCSD

Unlike traditional OSes like Linux or even secure micro-
kernels like seL4 [30], Tock is written in Rust. This means
kernel-space components are isolated from each other at
the language level by Rust’s type- and memory-safety. It
also means the Tock kernel can use Rust’s type system to
distinguish kernel and user-space data and prevent confused
deputy attacks that exploit the kernel into clobbering (or
leaking) arbitrary memory.

Rust’s language-level isolation alone, however, is not suf-
ficient: Tock user applications are written in arbitrary lan-
guages, including memory unsafe languages like C and C++.
And, unlike traditional OSes, Tock cannot rely on virtual
memory and memory management units (MMUs) to isolate
these applications—the OS was designed to run on resource-
constrained devices that lack MMUs. Instead, Tock relies
on memory protection units (MPUs) to ensure that each user
process can only access its own region of memory and is
isolated from other processes and the kernel.

In practice, configuring the MPU is hard. First, the con-
figuration itself is a delicate dance that requires balancing
the size and alignment constraints of the underlying MPU
hardware and the memory requirements of each process
(and the kernel itself). Second, since the MPU can only be
configured to enforce access control policies for one process
at a time, the Tock kernel must manage MPU configuration,
in software, on a per-process basis. Finally, Tock must do this
in the presence of interrupts. Subtle bugs in the MPU con-
figuration, interrupt handling, and context-switching code
have previously (and silently) broken Tock’s isolation guar-
antees [11, 19, 62]. As we describe in this paper, our effort to
formally specify and verify Tock’s process isolation using an
automatic verifier, FLux [35], revealed additional bugs (§ 2.2).
While this is partly because this low-level code is difficult
to get right, we found that Tock’s original design made the
already-challenging implementation harder. Indeed, even
specifying isolation proved to be complicated and required
code changes, as described in section 3.4.

TickTock is our response: a redesigned fork of the Tock
kernel that eliminates isolation bugs by construction. Instead
of relying on developers to always get the tricky bits right,
TickTock uses an automatic verifier, FLux [35], to formally
verify that the kernel provides memory isolation. We develop
TickTock via three concrete contributions.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764856

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

1. Design (§ 3). Our first contribution is a verification-guided
implementation of a new granular abstraction for MPUs that
decouples the kernel’s requirements from the hardware’s
constraints. In verifying the original kernel, we found that
Tock’s abstraction of processes and hardware enforcement
resulted in complex code—and hence security bugs—as well
as a large specification that was slow to check. Fundamen-
tally, this is because the original kernel tries to do too much
in a single monolithic abstraction, entangling the details of
process memory layout and hardware constraints. Worse, we
found the monolithic design creates a disagreement between
the kernel’s view of a process’s layout and the actual layout
enforced by hardware, necessitating various complex and
easy-to-miss checks. Our new granular abstraction cleanly
separates process memory layout and hardware configu-
ration details and ensures that the kernel and underlying
hardware enforcement always agree. The result is a clearer
specification, and a simpler kernel that is (more) “obviously
free of bugs, rather than just free of obvious bugs” [25].

2. Verification (§ 4). Our second contribution is a formal ver-
ification of isolation using the FLUX refinement type-based
verifier for Rust [35]. Formally, we analyze the code that
configures the ARMv7-M and RISC-V MPU, as well as code
that manages the process memory layout to verify that each
process can only access its code (in flash) and its stack, data,
and heap (in RAM)—and nothing else. To verify the assembly
interrupt handlers and context switching code, we develop
explicit operational semantics for ARMv7-M hardware, by
lifting ARM’s Architecture Specification Language (ASL) [47]
to Rust and defining the semantics via FLux specifications.
The verification effort of TickTock was quite modest: about
3.5KLOC of FLux annotations for 22KLOC Rust source. Our
verification effort identified five previously unknown bugs in
Tocx’s MPU-configuring code and two in interrupt handling
code, yielding six bugs that broke isolation [26, 48-52].

3. Evaluation (§ 6). Our third contribution is an evalua-
tion of the performance of our new granular abstraction. We
measure the performance of TickTock on a series of mi-
crobenchmarks and compare the performance to upstream
Tock. We find that TickTock’s performance is comparable
to Tock’s (e.g., context switching is within 0.3% of Tock),
while providing stronger security guarantees. Beyond per-
formance, we find that our granular abstraction simplifies
verification: the original code took over five minutes to verify,
but the newly designed kernel verifies in under one.

2 Overview

We start by explaining how Tock uses MPUs to enforce
isolation (§ 2.1). Next, we describe how verifying the original
Tock kernel unearthed bugs and discuss how these bugs
can break isolation guarantees (§ 2.2). Finally, we give an
overview of how we formally guarantee isolation (§ 2.3).

Rindisbacher et al.

™\ N
gUrant grant Userspace
~ Applications
o z = > | Completely Untrusted
§ 5 || hear heap || 3
8 ; data data % Process
a< stack stack o a%iﬁz?;ble
I

[text |

ﬂ‘ Hardware-enforced isolation

Q

yscall boundary

0 Compiler-enforced isolation

Kernel capsules
Trust liveness

Kernel
(Rust)

s | oo |
Completely Trusted

Figure 1. Tock’s architecture (from Tock [4], with permis-
sion).

2.1 Tock: Isolation via MPUs

Figure 1 gives a high-level overview of the Tock architecture
which is fashioned from three kinds of components that
use a combination of static (language-based) and dynamic
(hardware-based) mechanisms to ensure isolation.

Tock Architecture. First, Processes can be written in arbi-
trary languages and are completely untrusted. These pro-
cesses are isolated from each other and from the kernel using
hardware-based protection mechanisms. Second, Capsules
(drivers) run at the same level as the kernel and are sched-
uled cooperatively. Capsule code is untrusted and must be
written entirely in safe Rust, and hence enjoys the isolation
guarantees provided by the language’s type system. Finally,
we have Core kernel components that can use unsafe Rust
to (1) provide safe APIs that capsules can use (e.g., to access
hardware registers), and (2) to configure and enforce mem-
ory protection. Hence, Tock’s safety (isolation) guarantees
rest wholly upon the correctness of the core kernel: the only
layer in Tock trusted to enforce isolation.

Memory Protection Units (MPUs). Many modern micro-
controllers come equipped with memory protection units
(MPUs)!, i.e., specialized hardware units that interpose on
every memory access to enforce access control. In practice,
an OS kernel can dynamically configure an MPU to only
allow access to certain regions of memory by specifying,
for each region, a start address, size, and permissions (read,
write, execute). Then, by enabling the MPU, the OS can iso-
late untrusted user code and ensure that each process can
only access their own memory and not the memory of other
processes or that of the kernel.

IRISC-V processors implement Physical Memory Protection (PMP); we use
the term MPU for simplicity of exposition.

TickTock : Verified Isolation in a Production Embedded OS

Isolation via MPUs. In Tock, the kernel has unrestricted
access to the whole address space, i.e., the kernel executes
with the MPU disabled. Each user process, however, has an
associated MPU configuration, tracking the memory regions
the process is allowed to access. When the kernel context
switches from kernel space into a user process, the process’s
MPU configuration is first used to configure the MPU to
enforce isolation—restricting read-execute access to the pro-
cess code, and read-write access to the process stack, data,
and heap. Then, the kernel enables the MPU, switches from
kernel to user mode, and transfers control to the process.
Context switching back into the kernel does the reverse.

Challenge: MPU Configuration. Like most OSes, Tock’s
kernel provides services to user-space applications. For exam-
ple, the kernel allocates the memory used by each user-space
process. When memory is allocated, the MPU must be con-
figured to allow access to the process stack, data, and heap,
but not the kernel-owned grant region—a per process region
of memory the kernel uses for process specific tasks. As we
describe in section 3, this is a nontrivial task and a source
of errors. Similarly, Tock provides syscalls that allow appli-
cations to request kernel services, e.g., the brk syscall that
lets a process grow or shrink its heap. These syscalls are
hard to implement securely: they operate on untrusted user
inputs and execute with the ambient privilege of the kernel,
i.e., they can access the whole address space. An exploitable
bug in the brk syscall implementation can thus be used to
confuse the kernel into granting a process access to memory
outside its own address space.

Challenge: Interrupts and Context Switching. The Tock
kernel is a single-threaded, event-driven system, and so in-
terrupts and context switches drive the control flow of the
operating system. To this end, Tock manages timers and in-
terrupts to ensure that user-space processes are periodically
preempted per a configured scheduling policy. Since an in-
terrupt can preempt any part of kernel (or user process) exe-
cution, the (assembly) interrupt handlers that implement the
context switching code—from kernel to process and back—
must ensure that the MPU is appropriately configured and
enabled, and that crucial hardware registers are correctly
saved and restored. Failure to do so can crash or corrupt
kernel execution, and potentially break isolation.

2.2 Bugs Break Isolation

Tocxk’s language and hardware protections go a long way
in ensuring safety, but kernel bugs are not uncommon—and
do break isolation [11, 19, 62]. In verifying the original Tock
kernel, we uncovered several new kernel bugs including
logic errors, missed checks, and integer overflows, which
can break isolation and which cannot be prevented by Rust’s
type system or run-time checks. We describe three of these
bugs next.

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Bug: MPU Configuration Logic. In verifying the ARM
Cortex-M memory allocation code, we discovered that the
original kernel could inadvertently allow a process to access
kernel-owned grant memory [50]. Tock maps each process—
its stack, heap, and data segment—and its associated kernel-
owned grant region to MPU subregions, i.e., subdivisions
of larger MPU regions that can be individually enabled or
disabled to provide fine-grained control over memory acces-
sibility within each region. When scheduling a process, the
kernel enables all but the subregions covering grant memory,
ensuring the process can only access memory it owns and
not memory owned by the kernel. Unfortunately, we found
that it’s possible for the process memory and kernel-owned
grant memory to overlap—allowing a user process to access
kernel memory. Specifically, FLux failed to prove our post-
condition on the memory allocating function that specifies
that the last enabled MPU subregion should never exceed
the start of the grant region. The source of the bug: the MPU
has non-trivial constraints on the size and alignment of sub-
regions (§ 3), which Tock tries to hide from its interface at
the cost of a more complex implementation.

Bug: Interrupt Assembly Missed Mode Switch. MPU con-
figuration complexity is compounded by having to deal with
interrupts and context switching. For example, whenever
the kernel decides to run a process or a process is preempted,
inline assembly is executed to properly context switch. In
addition to yielding execution to either the kernel or pro-
cess correctly, the inline assembly must be sure to switch the
CPU’s execution mode as defined by the hardware. On ARM
devices, this means setting the CPU to unprivileged execution
mode when branching to a process and privileged execution
mode when resuming kernel execution. Accidentally leaving
the CPU in privileged mode when context switching means
that a process can bypass the MPU protections the kernel
carefully set up, breaking isolation. Unfortunately, we found
this critical step was omitted in the inline assembly respon-
sible for context switching, making Tock jump into process
code while still in privileged execution mode [48].

Bug: Integer Overflow. While Rust eliminates many mem-
ory safety bugs by design, handling integer overflows is still
left to the programmer. Unsurprisingly, when we initially
ran FLux against the Tock kernel, FLux reported a series of
possible integer overflows, many of which revealed serious
bugs. Consider the bug in update_app_mem_region. When an
application uses the brk or sbrk syscall to grow or shrink its
memory, the kernel uses a method, update_app_mem_region,
to update the MPU configuration appropriately. When check-
ing this method, FLux flagged an expression related to config-
uring the MPU (num_enabled_subregions@ - 1) as potentially
underflowing to usize: :MAX. To verify that this underflow did
not occur, we added a precondition to the method relating
the sizes of certain internal pointers. Upon doing so, FLux
reported that the calling kernel method failed to uphold the

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

precondition, as it did not correctly validate the sizes re-
quested by the application’s syscall [52]. Indeed, on further
investigation we found that a malicious application could
pass in parameters that bypassed the kernel’s checks and
crash the kernel.

While this bug does not break isolation, such denial of
service bugs in embedded kernels are serious. Moreover, a
similar underflow could just as easily have configured the
MPU in a manner that breaks process isolation. By helping
us formally guarantee the absence of overflows, FLux’s veri-
fication helped us precisely identify the additional validation
needed to protect the kernel.

2.3 Formally Verified Isolation

We developed TickTock, a fork of the Tock kernel that
eliminates isolation bugs by construction. TickTock uses
Frux to formally verify that a process can access its code,
stack, data, and heap but nothing else. We assemble TickTock
from three key pieces.

1: Decoupling MPU and Kernel Logic. Verification of the
Tock kernel made it clear that the complexity and errors in
the MPU-configuring code arise in part because the current
monolithic abstraction used to configure MPUs entangles
MPU constraints with the kernel’s process memory alloca-
tion. Additionally, we found that refactoring the code not
only simplified verification but also made it possible to re-
move some expensive and easy-to-miss checks. TickTock’s
first piece is this verification-guided granular MPU abstrac-
tion that separates the concerns of the kernel and MPU (§ 3).

2: Verifying Kernel, MPU, and Bridge Logic. Next, we
verify that TickTock enforces isolation using FLux (§ 2.4).
Concretely, we use FLUX to define key isolation invariants
over the kernel’s logical view of process memory, invariants
relating this logical layout to that of the MPU configuration,
and finally that the ARMv7-M and RISC-V hardware enforces
the MPU configuration (§ 4).

3: Verifying Interrupts and Context Switching. Finally,
for the ARMv7-M architecture, we verify that process isola-
tion holds in the presence of interrupts and context switching.
Most of the corresponding kernel logic is written in inline
assembly so we develop FLUXARM, a new executable specifi-
cation of the ARMv7-M assembly by lifting ASL to Rust and
formalizing the semantics with FLux contracts. This allows
us to verify isolated interrupt handling programs, the ARM
hardware’s interrupt semantics, and the entire control flow
of an interrupt to ensure that the code preserves the machine
invariants required for isolation (§ 4.5).

2.4 Frux

FrLux is an SMT-backed refinement type checker for Rust
that enables developers to specify correctness properties and
have them verified at compile time [35]. FLux extends Rust’s
type system with logical predicates that allow programmers

Rindisbacher et al.

to write automatically checked properties about a program’s
expected behavior. We use three primary FLux mechanisms
to formally specify and prove process isolation in TickTock.

Invariants let developers write properties that must hold
through the lifetime of a data structure. For example, the code
below uses an invariant on the NonEmptyRange data structure
to statically check that any instance of NonEmptyRange has
an end greater than its start.

pub struct NonEmptyRange
invariant start < end

1
2
3«

4 start: usize,
5 end: usize

6 3

The method below (new) takes a start and end value, checks
that the given end is greater than the given start, and only
then, constructs a valid NonEmptyRange.

1 impl NonEmptyRange {

2 pub fn new(start: usize, end: usize) -> Option<NonEmptyRange> {
3 if start < end {

4 Some(NonEmptyRange { start, end })

5 } else {

6 None

7 }

8

9 3

If we omitted the check in new, or had an incorrect check, e.g.,
start <= end, then FLux would report an error on line 4 as
it would be unable to prove that the constructed structure’s
invariants held at that point.

Pre- and Post-Conditions are used to specify contracts
about legal inputs and outputs of a function. Preconditions
specify requirements that must be satisfied when a function
is called, and postconditions describe guarantees about a
function’s behavior upon completion, enabling callers to
reason about the function’s outputs. For example, the method
update_end updates the end of a NonEmptyRange.

impl NonEmptyRange {
pub fn update_end(&mut self, end: usize{self.start < end})
ensures self: NonEmptyRange[{start: self.start, end}]

self.end = end;

1
2
3
4 {
5
6 }
7

)
The signature for update_end requires a precondition that the
supplied end exceeds self.start, as stipulated by the refine-
ment type usize{self.start < end} for the end parameter.
Similarly, the signature ensures that upon completion, the
end field of self is updated correctly and, of course, that
the invariant continues to hold upon exit. The precondition
tells FLUx to check that all callers pass in values of end which
suffice to maintain the invariant. If we omitted it, FLux would

report an error at the return of update_end as it would be
unable to prove that the invariant held at that point.

3 Redesigning the MPU Abstraction

MPU capabilities, and hence, configurations, vary widely
across different platforms. To support multiple architectures,

TickTock : Verified Isolation in a Production Embedded OS

Process RAM Region 2
 ——
15
Control 4
Grant ﬁ

_enabled_end

2S¢ T
piy

9 [«— kernel_memory_break
8 . .
region_start + app_mem_size
7
Heap
6
5
Data -
3
Stack >
" :
0
———— -
Region 1

Figure 2. Abstract Tock process memory layout and its
mapping to MPU regions.

Tock attempts to separate MPU-specific configuration details
from process memory management. We found that much of
the complexity of the MPU configuration, and the attendant
bugs, had to do with the difficulty of designing an abstraction
that balances the kernel’s requirements with those of the
underlying hardware. First, we describe these requirements
(§ 3.1) and discuss how Tock’s monolithic abstraction results
in complex bug-prone code (§ 3.2). We then show how the
current abstraction also leads to scenarios where the kernel’s
view of a process diverges from the actual hardware-enforced
layout, leading to unintuitive checks that must be present
to enforce isolation. Finally, we present a new granular ab-
straction that keeps the views in tune, resulting in code that
is simpler, easier to verify, and more efficient (§ 3.5).

3.1 Requirements

Kernel Requirements. Figure 2 shows the layout of applica-
tion (process) memory in the Tock OS. The stack, data, heap,
and grant regions are all allocated in RAM. The stack grows
downwards to the start of the process’s allocated memory re-
gion. The process heap and grant regions grow up and down
towards each other. Hence, the kernel’s task is to configure
the MPU to ensure that it allows access to the (white) stack,
data, and heap, but not the (grey) grant region.

Hardware Requirements. 1t is rather tricky to actually en-
force the kernel’s requirements with MPUs, as MPUs have
their own constraints on the structure of regions. For ex-
ample, the ARM Cortex-M MPU has strict region size and
alignment constraints: the sizes must be powers of two, start-
ing from a minimum of 32 bytes, and start addresses must
be aligned to the region size. Further, Cortex-M regions are
divided into eight equal-sized subregions which can be in-
dependently enabled or disabled. This allows finer-grained

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

trait MPU {
type MpuConfig;

trait MPU {
type Region: RegionDescriptor;

fn allocate_app_mem_region(fn new_regions(
&self, max_region_id: usize,
unalloc_start: *const u8, unalloc_start: Ptru8,
unalloc_size: usize, unalloc_size: usize,
total_size: usize,
permissions: Permissions,
-> OptPair<Region, Region>;

min_size: usize,
app_size: usize,
kernel_size: usize,
permissions: Permissions,
config: &mut MpuConfig,
-> Option<(Ptrus8, usize)>;

-

fn update_regions(
max_region_id: usize,
region_start: PtrUs8,

fn update_app_mem_region(available_size: usize,
&self, total_size: usize,
new_app_break: xconst u8, permissions: Permissions
kernel_break: *const u8, -> OptPair<Region, Region>;

~

~

permissions: Permissions,
config: &mut MpuConfig, fn configure_mpu(
-> Result<(), (O>; &self,

regions: &[Region]

~

fn configure_mpu();
&self, }
config: &MpuConfig
)5
} (b) TickTock’s new Granular
MPU abstraction.

(a) Tock’s original Monolithic
MPU abstraction.

Figure 3. Tock and TickTock’s MPU abstractions.

memory access controls beyond what a single region can
provide. The Tock kernel uses this feature to cover the pro-
cess stack, data, heap, and kernel-owned grant region with
two MPU regions. Subregions covering the grant region are
disabled and subregions covering the application’s memory
are enabled.

3.2 A Monolithic Design

Figure 3a summarizes Tock’s existing monolithic design,
which abstracts the MPU within a single high-level inter-
face (Rust trait) which exposes operations that allocate and
update memory regions for a process.

The method allocate_app_mem_region is responsible for ini-
tially allocating the memory of an application. The method
takes as arguments the current available memory (as start-
ing address unalloc_start and unalloc_size), the length of
memory the application requested (app_size), and the mem-
ory needed for the kernel’s grant region (kernel_size). It
then updates the MPU Configuration (config), the struct
abstracting the MPU regions corresponding to the process’s
memory layout. The method also must properly configure
the MPU to deny the application access to kernel-owned
grant region(s).

The method update_app_mem_region changes the MPU con-
figuration when the process requests to grow or shrink its
memory via the brk or sbrk syscall. It takes as arguments
the desired end of the process heap (new_app_break) and the
current start (i.e., lowest address) of the kernel-owned grant

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

fn allocate_app_mem_region(
&self,
unalloc_start: xconst u8,
unalloc_size: usize,
min_size: usize,
app_size: usize,
kernel_size: usize,

-> Option<(xconst u8, usize)> {

~

// Make sure there is enough memory for app memory and kernel memory.
let mem_size = cmp::max(

min_size,

app_size + kernel_size,
)i

let mut mem_size_po2 = math::closest_power_of_two(mem_size as usize);

// The region should start as close as possible to start of unallocated memory.
let mut region_start = unalloc_start as usize;
let mut region_size = mem_size_po2 / 2;

// If the start and length don't align, move region up until it does.
if region_start % region_size != 0 {
region_start += region_size - (region_start % region_size);
}
let mut num_enabled_subregs = app_size * 8 / region_size + 1;
let subreg_size = region_size / 8;
// Calculates the end address of enabled subregs and initial kernel memory break
let subregs_enabled_end = region_start + num_enabled_subregs * subreg_size;
let kernel_mem_break = region_start + mem_size_po2 - kernel_size;

// check if subregs_enabled_end > kernel_mem_break and fix overlap if it does

Some((region_start as *const u8, mem_size_po2))

(a) Tock’s original memory allocation implementation.

Rindisbacher et al.

1 fn allocate_app_mem_region(
2 unalloc_start: Ptrus,

3 unalloc_size: usize,

4 min_size: usize,

5 app_size: usize,

6 kernel_size: usize,

7

8

9

-> Result<Self, AllocateAppMemoryError> {
let mut regions = Self::new_regions();

-

10 L.

11 // ask MPU for <= two regions covering process RAM

12 let ideal_app_mem_size = cmp::max(min_size, app_size);
13 let Pair { fst: ram_region@, snd: ram_regionl } = MPU::new_regions(
14 MAX_RAM_REGION_NUMBER,

15 unalloc_mem_start,

16 unalloc_mem_size,

17 ideal_app_mem_size,

18 mpu: :Permissions: :ReadWriteOnly,

19)

20 .ok_or(AllocateAppMemoryError: :HeapError)?;

21

22 // Compute actual memory start and size using ‘Region’s above
23 let memory_start = ram_region@.start().ok_or(())?;

24 let snd_region_size = ram_regionl.size().unwrap_or(@);
25

26 let app_mem_size = ram_region@.size().ok_or(())? + snd_region_size;
27 // End of process-accessible memory

28 let app_break = memory_start.as_usize() + app_mem_size;
29

30 let breaks = AppBreaks: :new(

31 mem_start,

32 app_break,

33 kernel_size,

34 L.

35)H

36 // Set the RAM regions

37 regions[MAX_RAM_REGION_NUMBER - 1] = ram_region@;

38 regions[MAX_RAM_REGION_NUMBER] = ram_regionl;

39

40 Ok(Self { breaks, regions })

41 3

(b) TickTock’s new memory allocation implementation.

Figure 4. Tock and TickTock ARM Cortex-M memory allocation implementations.

region of memory (kernel_break). It then updates the MPU
configuration (config) to reflect the process’s expanded (or
shrunken) heap and stack. Again, the method must ensure
that the new process-accessible memory does not overlap
the kernel-owned grant memory.

The method configure_mpu takes an MPU configuration and
updates the underlying MPU hardware.

Problem: Entanglement. The monolithic abstraction en-
tangles the details of process memory layout and hardware
constraints, leading to complex code that opens the door to
security bugs. Consider the Cortex-M implementation of the
allocate_app_mem_region trait method shown in Figure 4a.
The method starts by trying to compute a total size that the
process memory can fit in on lines 12-16. Since the ARM
Cortex-M MPU requires that the MPU region sizes be pow-
ers of two, Tock ensures the total process memory block
size is a power of two. Similarly, it takes into account the
alignment requirements when computing the start address
of the process (regions) on lines 23-25. The code handling
these hardware constraints, however, is entangled with code

that ignores them—partly in an attempt to present an overly
permissive interface to applications.

In particular, Tock doesn’t impose any restrictions on the
input arguments like the app_size, when in reality the ap-
plication size must (partly) be dictated by the underlying
hardware—the hardware can enable/disable regions at the
subregion granularity, not arbitrary values. Indeed, things go
wrong when the process-controlled app_size is not a power
of two. The method calculates the number of subregions
to enable (line 26) using app_size and then computes the
end address of the last enabled subregion (line 30). This ad-
dress represents the last memory address the process can
access (according to the MPU) and must not overlap with the
kernel-owned grant region. When app_size is not a power
of two, the MPU allows access to more memory than the
process requested. This creates an exploitable scenario: if
app_size is not a power of two but app_size + kernel_size
is, then mem_size_po2 will be exactly app_size + kernel_size.
Further, subregs_enabled_end will exceed region_start +
app_size, while kernel_memory_break is exactly region_start
+ app_size. This places the kernel-owned grant region within

TickTock : Verified Isolation in a Production Embedded OS

an enabled subregion. The Tock developers did try to safe-
guard against this case, but the check was insufficient, leav-
ing the kernel-owned grant memory exposed to user code.

Problem: Disagreement. The monolithic abstraction creates
a disagreement between what the kernel believes the MPU
configuration is and how the MPU is actually configured.
The allocate_app_mem_region method in Figure 3a computes
the end of both the process heap (subregs_enabled_end) and
the kernel-owned grant region (kernel_mem_break), but then
discards them, returning only the process memory’s start
and size. Clients invoke the method to (1) allocate memory
for the process and (2) update the MPU configuration ac-
cordingly. However, callers only have access to the returned
start and size, so they must redo the work of carving the
remaining pool of RAM into process-accessible memory and
kernel grant memory. This recomputation is not just waste-
ful; for any unaligned memory size requested by a process,
it introduces a disagreement between what was actually con-
figured in the hardware and what the kernel believes the
actual memory layout for the process is.

In summary, Tock’s monolithic abstraction suffers from
two fundamental problems. First, it entangles high-level pro-
cess layout constraints with low-level MPU constraints, which
leads to complex, bug-prone code. Second, it creates disagree-
ment between the kernel’s view of process memory layout
and the actual hardware-enforced configuration, resulting
in wasteful recomputation and (again) potential bugs.

3.3 Verification Roadmap

Having outlined the key problems with the existing abstrac-
tion, we now describe how our verification efforts helped
discover these issues and guided our granular redesign. We
first focused on verifying the existing Tock code. To do so,
we had to make small modifications to the monolithic MPU
interface shown in Figure 3a. We describe these changes in
section 3.4 and explain that once we made these changes,
we caught subtle bugs in the existing implementations of
this interface. Based on this experience finding and fixing
these bugs, we developed a new design of the MPU interface,
which we describe in detail in section 3.5.

3.4 Verification-guided Redesign

Our attempt to verify the Tock kernel surfaced the prob-
lems of entanglement and disagreement, and then guided a
two-step redesign of the kernel-MPU interface that enabled
formally verified isolation.

Step 1: Explication. Recall that allocate_app_mem_region
both allocates the memory for a process and updates the
MPU configuration to reflect this allocation. However, the
method discards the intermediate results delineating the
process- and kernel-accessible memory, returning only the
start and size. In particular, the method does not return the
exact addresses the process is actually allowed to access. This

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

trait RegionDescriptor {
fn start(&self) -> Option<Ptrus>;
fn size(&self) -> Option<usize>;
fn overlaps(&self, start: usize, end: usize) -> bool;

Figure 5. A subset of the RegionDescriptor Abstraction.

makes it impossible to formally specify the correctness of
the MPU configuration, with respect to the kernel’s view of
process memory (Figure 2).

Thus, our first step was to explicitly return these values us-
ing a new struct, AllocatedAppBreaksAndSize, whose fields
contain the exact process memory layout the MPU was con-
figured to enforce. This let us formally specify a postcon-
dition contract for allocate_app_mem_region that says that
the returned struct’s fields satisfy the invariants informally
shown in Figure 2, in particular, that the process-accessible
region does not overlap the kernel-accessible grant region.

Step 2: Abstraction. When we wrote the contract specify-
ing that the process-accessible memory and the grant region
do not overlap, FLux complained that the method failed to
satisfy its postcondition. Upon investigating the issue, we dis-
covered the buggy edge case described in section 3.2. And, as
we mentioned earlier, the allocate_app_mem_region method
did try to account for this scenario but did so incorrectly.
Anecdotally, it took us many hours to figure out exactly
why the code was buggy and why FLux could not verify
the postcondition. Once we understood the issue, we used
FLux to validate the fix, which is to double mem_size_po2 to
ensure that kernel_mem_size is a power of two away from
subregs_enabled_end. Still, we found that the now correct
code was notoriously tricky to reason about and decided
that the low-level details of MPU regions and the high level
details of allocating the process and kernel-owned grant re-
gions should be separated. Concretely, the goal of our new
abstraction was to eliminate both the entanglement and dis-
agreement introduced by the original monolithic abstraction.

3.5 A Granular Redesign

TickTock solves the entanglement and disagreement prob-
lems with a granular abstraction that focuses solely on the de-
tails needed to configure regions on MPU hardware, while en-
suring that the process abstraction tracks precisely what the
hardware enforces. The key insight is that we can abstract the
hardware details under two interfaces: (1) aRegionDescriptor
interface that abstractly characterizes the properties of a sin-
gle MPU-enforced hardware region while hiding the hard-
ware details entirely, and (2) an MPU interface that has meth-
ods to create and modify regions. Next, we describe these
abstractions, and show how they disentangle the kernel’s
requirements from the low-level hardware constraints, en-
abling verified and efficient process isolation.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

The RegionDescriptor Abstraction summarized in Figure 5
characterizes a single contiguous memory region. Intuitively,
each region is simply a range, constituting a start address
and size, which are respectively returned by the start and
size methods. For ARMv7-M implementation, start and
size return the accessible start and size as determined by
subregions. For the RISC-V implementation, the start and size
of the full region are returned, as the RISC-V PMP is far more
flexible in terms of region start addresses and sizes. Thus, the
RegionDescriptor abstracts hardware-specific details about
alignment, subregions, etc.

The MPU Abstraction shown in Figure 3b does the actual
work of configuring the MPU. The methods in this abstrac-
tion are oblivious to application process layout and instead
deal exclusively with configuring hardware or creating re-
gions with the hardware’s restrictions in mind. The inter-
face is parameterized by the associated type Region which
implements the RegionDescriptor interface and whose ex-
act representation depends on the hardware implementing
the interface. The method new_regions takes in the high-
est region ID—TickTock operates on explicitly numbered
regions—reserved for the process RAM, available memory
start and memory size, a requested total size, and the de-
sired access permissions for the new region. The method
returns up to two contiguous Regions if they can be created
within the current block of available memory, spanning at
least the requested total size, while satisfying the underlying
hardware constraints.? Similarly, the update_regions method
takes in the highest region ID reserved for the process RAM,
the desired start address, available size, and desired new total
size and permissions, and again, returns the updated Regions
if possible. Finally, the configure_mpu method configures the
MPU hardware to only allow access to the provided list of
Regions. The new granular abstraction decouples the kernel’s
requirements from the hardware constraints.

Hardware-agnostic Process Allocation. TickTock refac-
tors the kernel process allocator to be generic over the MPU and
RegionDescriptor abstraction, which lets it reuse the same
code across all architectures that implement those traits.
Figure 4b shows the refactored process allocator. At a high
level, the code invokes new_regions to obtain—if feasible un-
der the hardware constraints—up to two contiguous Regions
in the current RAM pool of the given size. If the MPU ab-
straction succeeds in creating these regions (ram_regione,
ram_region1), the allocator then uses the RegionDescriptor
interface to compute the actual start and size of the process
memory block, and then creates and stores these in a data

2Returning two regions is an implementation limitation of current Rust and
FLux tooling. This can be lifted in the future with const generic expressions,
which would allow us to associate the number of regions returned with the
MPU trait—and thus each implementation could choose a number that best
fits the hardware constraints. Const generic expressions are actively being
developed by the Rust Compiler team.

Rindisbacher et al.

structure called AppBreaks that saves the pointers describ-
ing the actual MPU hardware-enforced layout alongside the
MPU configuration.

Solution: No Entanglement. TickTock uses the granular
abstraction to implement the process allocator independently
of the underlying hardware constraints, which are handled
within the new_regions invocation. That is, the allocation
code does not have to reason about subregions and power-
of-two constraints. Instead, the kernel requests at most two
regions from the MPU, spanning at least app_size. Then, us-
ing these regions, the kernel can place the grant region of
memory after the end of the process-accessible heap.

Solution: No Disagreement. Similarly, since the region
start and size can be obtained from the RegionDescriptor
trait, the kernel is not required to recompute values related
to process memory. The kernel tracked end of process’s mem-
ory is computed exactly from the hardware-enforced layout.
That is, the granular abstraction helps make the code simpler
with respect to enforcing process isolation and enables reuse
of the same allocation code across architectures.

4 Verification

TickTock’s granular redesign of the MPU interface (§ 3.5)
simplifies isolation by decoupling the kernel’s requirements
from the hardware constraints. However, even with this sim-
pler interface, getting process isolation right is still tricky.
The high level software description of regions—stored by
the kernel—must be correctly translated into individual bits
written to hardware registers to configure the MPU. To ad-
dress this problem, TickTock formally verifies isolation: no
userspace process can interfere with the memory of the ker-
nel or other processes.

We structure the proof into four parts. First, we refine the
methods of the granular interface (Figure 3) with contracts
that describe how the MPU drivers create and update re-
gions (§ 4.1). Second, we use FLUX to verify that the kernel’s
logical view of memory matches Tock’s memory model spec-
ification (§ 4.2). Third, we connect the refined methods of
the granular interface to the kernel’s logical view, enabling
FLux to verify that this logical view matches the physical
memory layout actually enforced by the MPU. Finally, we
use FLux to verify that each (architecture-specific) MPU dri-
ver correctly implements the refined contract, i.e., that each
driver creates and updates regions by configuring the hard-
ware bits in a way that matches the region start, size, and
permissions, as required by the kernel to enforce isolation
(§ 4.4). The granular redesign ensures that only the last part
is architecture-dependent: the rest of the proof generalizes
across architectures. We conclude this section by explaining
how we use FLUX to reason about interrupts (§ 4.5).

TickTock : Verified Isolation in a Production Embedded OS

trait RegionDescriptor {
#[assoc] fn start(r: Self) -> int;
#[assoc] fn size(r: Self) -> int;
#[assoc] fn is_set(r: Self) -> bool;
#[assoc] fn matches(r: Self, p: Permissions) -> bool;
#[assoc] fn overlaps(rl: Self, lo: int, hi: int) -> bool;

#[assoc] #[final]
fn can_access(r: Self, start: int, end: int, perms: Permissions) -> bool {
<Self>::is_set(r) &&
start == <Self>::start(r) &&
end == <Self>::start(r) + <Self>::size(r) &&
<Self>::matches(r, perms)
}

fn start(&self) -> Option<PtrU8{ptr: ptr == <Self>::start(self)}>;

Figure 6. Associated Refinements for the RegionDescriptor
Trait.

4.1 A Refined MPU Interface

Recall that Figure 3a summarizes the key methods of our
granular MPU interface, which abstracts away details of spe-
cific MPU implementations from the kernel code, allowing us
to reuse the same kernel code across different architectures.
However, to verify the kernel code in a modular, architecture-
agnostic way, we need a way to refine the methods of the
MPU interface with contracts that are precise enough to de-
scribe how the hardware was configured but abstract enough
to be independent of any particular architecture.

Associated Refinements. With FLux, we can do so by tying
associated refinements with the RegionDescriptor trait (Fig-
ure 5). Each associated refinement (1) can be used to specify
contracts about abstract regions in the kernel, and (2) must
be defined as concrete refinements in each individual MPU
driver implementation. Figure 6 shows the associated refine-
ments for the RegionDescriptor trait and how they can be
used. For example, the method start, originally shown in
Figure 5, now has a contract that states that if successful,
the Ptru8 returned must match the value specified by the
associated refinement start. Any RegionDescriptor imple-
mentation must also furnish FLux with definitions of each
associated refinement (start, size, etc.). The actual imple-
mentation of trait methods and associated refinements is ar-
chitecture dependent. The associated refinement can_access
is final, meaning that it is defined directly using the other
associated refinements and not re-defined by individual hard-
ware drivers.

Refined Method Contracts. We use the associated refine-
ments to refine the methods of Figure 3b with pre- and post-
conditions that characterize the properties of the created and
updated regions. For example, Figure 7 shows the contract
used for the method update_regions. The contract specifies
that the region(s) returned by the method are configured to
be accessible with the permissions specified by the kernel.
The contract for the second region is conditional on whether

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

fn update_regions(
reg_id: usize,
reg_start: PtrUs8,
available_size: usize,
total_size: usize,
permissions: Permissions
-> OptPair<
{r1: Region |
let end = reg_start + Region::size(rl);
Region::can_access(r1, reg_start, end, permissions)},
{r2: Region |
let start = Region::start(r2);
let end = start + Region::size(r2);
Region::is_set(r2) => {
Region::can_access(r2, start, end, permissions) &&

~

3}
>{...}

Figure 7. Refined update_regions using the Associated Re-
finements from Figure 6.

the region is set (is_set), since this region may be unused de-
pending on the underlying architecture and the total_size
requested by the kernel (as mentioned in section 3.5). Note
that the actual implementation of size and hence can_access
will depend on the underlying architecture.

4.2 Verifying the Kernel’s Logical View of Memory

TickTock uses FLUX to verify that the logical process mem-
ory layout (as stored in the kernel) matches Tock’s applica-
tion memory layout policy, as shown in Figure 2.

Process Memory Layout Invariants. The process memory
layout is stored in a per-process data structure AppBreaks,
abbreviated in Figure 8, which stores pointers that describe
each process’s memory layout. To ensure none of the point-
ers in AppBreaks violate the intended process memory layout,
we specify a series of invariants that express these pointers’
expected relationships in memory (Figure 2).

e kernel_break <= memory_start + memory_size checks
that the beginning of the grant region of memory (i.e.,
lowest address) is within the process memory block,

e memory_start <= app_break ensures that the end of
the process RAM is greater than or equal to the start
of the process memory block, and

e app_break < kernel_break ensures that the end of the
process RAM and the beginning of grant memory
never overlap (i.e., the bug described in section 3.4).

Frux statically verifies that these invariants hold anywhere
in the code that an AppBreaks is created or an existing in-
stance is updated, e.g., through a mutable reference. Cru-
cially, these invariants will catch any buggy code causing
the app_break to overlap kernel memory in, for example, the
brk syscall (responsible for updating the size of the process
accessible memory). The challenge, then, is proving that this
logical representation actually holds throughout the kernel,

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

pub struct AppBreaks
invariant
kernel_break <= memory_start + memory_size 8&&
memory_start <= app_break &&
app_break < kernel_break

pub memory_start: Ptrus,
pub memory_size: usize,
pub app_break: Ptrus,

pub kernel_break: Ptrus,

Figure 8. The kernel’s logical view of process memory.

and that this logical representation matches the hardware
implementation.

4.3 Verifying Logical-MPU View Correspondence

Next, we use the (abstract) region’s associated refinements
to specify that the kernel’s view of memory (as stored in
AppBreaks) precisely matches what the MPU enforces.

Specifying Logical-MPU View Correspondence. In the ker-
nel, AppMemoryAllocator stores both the AppBreaks described
above, and an array of MPU regions to be written to hard-
ware. Here, we specify that the array of regions—RArray<R>,
where R implements the RegionDescriptor trait—should al-
low access to the application code (in flash), and applica-
tion stack, data, and heap (in RAM), but should disallow
access to any other memory. We can specify this property
as an invariant of the AppMemoryAllocator struct as shown
in Figure 9. We use the associated refinements from the
RegionDescriptor trait (Figure 6) to define can_access_flash,
can_access_ram, and cant_access_other, which respectively
specify that the process is allowed read-execute access to the
flash region, read-write access to the RAM region, and disal-
lowed access to any other memory (in particular, the kernel-
accessible grant region). For example, can_access_flash is
shown in Figure 9. The specification states that the flash re-
gion at index FLASH_REGION_NUMBER in the regions array must
allow access to flash memory (specified by flash_start and
the flash_size stored in AppBreaks) and must not overlap
any other memory addresses.

Verifying Logical-MPU View Correspondence. FLUX veri-
fies that the above invariant holds whenever a value of type
AppMemoryAllocator is created or updated. For example, in
the function allocate_app_mem_region from Figure 4b, the
invariants are established by calling functions that set up dif-
ferent parts of process memory. create_regions creates (up
to two) MPU regions for RAM. while create_exact_region
creates an MPU region for Flash. Each function’s postcon-
dition establishes part of the overall invariant. For instance,
when allocate_app_mem_region calls create_exact_region,
the latter’s postcondition establishes flash_can_access.

10

Rindisbacher et al.

struct AppMemoryAllocator<R: RegionDescriptor>
invariant
can_access_flash(breaks, regions) &&
can_access_ram(breaks, regions) &&
cannot_access_other(breaks, regions)

pub breaks: AppBreaks,
pub regions: RArray<rR>,
3

fn can_access_flash<R>(breaks: AppBreaks, regions: RArray<R>) -> bool {
let r = regions[FLASH_REGION_NUMBER];
let rx_perms = Permissions::ReadExecute;
let start = breaks.flash_start;
let end = breaks.flash_start + breaks.flash_size;
<R as RegionDescriptor>::can_access(r, start, end, rx_perms) &&
I<R as RegionDescriptor>::overlaps(r, 0, start - 1) &&
I<R as RegionDescriptor>::overlaps(r, end + 1, u32::MAX)

}

Figure 9. Invariants (and definitions) specified for the
AppMemoryAllocator.

4.4 Verifying TickTock’s MPU drivers

Finally, FLux must check that the architecture-specific MPU
drivers uphold their part of the bargain by verifying that their
RegionDescriptor, and hence, MPU implementations, satisfy
the refined contracts from section 4.1. To do so, we must
write contracts that specify how the code interacts with the
MPU hardware to correctly create regions that (1) are well
formed according to the logical constraints expressed in the
kernel and (2) satisfy hardware requirements and properly
encode logical values as bits used to configure the hardware.

Representing Hardware Regions. The pillar of this part of
the proof is a refined representation of the struct that repre-
sents the configuration of a single MPU region. For example,
Figure 10 shows (a simplified version of) the implementation
of regions in the ARMv7-M Cortex-M MPU driver which
comprises a pair of two 32-bit registers: an rbar, base-address
register, and a rasr, region attributes register, whose values
represent the contents of the hardware.

Hardware Semantics as Logical Refinements. Next, using
the ARMv7-M ISA, we write specifications for the associated
refinements needed to implement the RegionDescriptor trait.
These refinements serve as our model of the MPU’s seman-
tics. For example, the refinement start (shown in Figure 10)
models how the hardware determines a region’s starting
address from the raw register bits. FLux uses these speci-
fications to verify that the actual implementations of the
MPU methods (e.g., allocate_regions and update_regions
from Figure 3b) for the Cortex-M driver indeed satisfy their
refined contracts. In other words, FLux verifies that the bits
of the rbar (base address) and rasr registers are flipped to
precisely match the logical values that the kernel tracks, e.g.,
in AppBreaks (§ 4.2), and AppMemoryAllocator (§ 4.3), thereby
formally verifying that the MPU is configured in a way that
allows the kernel to enforce isolation.

TickTock : Verified Isolation in a Production Embedded OS

struct CortexMRegion {
rbar: FieldValueU32<RegionBaseAddress::Register>,
rasr: FieldValueU32<RegionAttributes::Register>,
)

impl RegionDescriptor for CortexMRegion {
#[assoc] fn start(r: CortexMRegion) -> int {
r.rbar & @xFFFF_FFEQ
¥

#[assoc] fn size(r: CortexMRegion) -> int {
let reg = r.rasr;
let size_base2 = (reg & 0x0000003e) >> 1;
exp2(size_base2 + 1)

3

#[assoc] fn is_set(r: CortexMRegion) -> bool {
r.rasr & ox1 != 0

3

#[assoc] fn matches(r: CortexMRegion, perms:Permissions) -> bool {
// defined using r.rasr ...

}

#[assoc] fn overlaps(r: CortexMRegion, lo: int, hi: int) -> bool {
// defined using start(r), size(r) ...

3

Figure 10. Simplified representation of Cortex-M Regions
and their implementation of the RegionDescriptor trait.

4.5 Reasoning About Interrupts

Like many OSes, Tock pervasively uses interrupts to han-
dle hardware events or context switches between kernel
and user processes. Interrupts are handled via a top-bottom
half strategy, similar to many other OSes. All Tock top-half
handlers are written in inline assembly and are responsible
for properly switching to and from the kernel. While the
handlers are short in size, missed details in the low-level
assembly can have severe consequences. For example, as
shown in section 2.2, failing to appropriately configure the
CPU for process or kernel execution can nullify the efforts
made to correctly configure the MPU.

TickTock verifies isolation in the presence of interrupts
for ARMv7-M architectures using FLuUxARM—a new Rust-
executable formal semantics of the ARMv7-M ISA—to model
Tock’s interrupt handlers and context switching code. We
then use FLux to verify that crucial hardware state is pre-
served between interrupts firing and subsequent kernel exe-
cution, and that upon returning to the kernel, the hardware’s
configuration matches what the kernel requires for isolation.

Modeling Assembly via FLuxARM. We defined FLUXARM,
an executable formal semantics of (the Tock-relevant sub-
set of) the ARMv7-M ISA, by writing an emulator in Rust
and writing FLUX contracts that specify what each instruc-
tion does to the hardware state. The left side in Figure 11
shows the CPU state we model in FLUXARM, and the right
side shows the semantics of the msr instruction that is both

11

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

pub struct Arm7 { //
// General Registers ro-ri1 // given special reg. Manual pp A7-301 & B5-677
pub regs: GeneralRegs, fn msr(
// Stack Pointer self: &strg Arm7[@old],
pub sp: SP, reg: SpecialRegister,
// Control register val: GPR
pub control: Control,) requires
// Program Counter lis_ipsr(reg) &&

‘msr moves the value in general register to

pub pc: BV32, (is_sp(reg) || is_psp(reg)) =>

// Link register is_valid_ram_addr(get_gpr(val, old))

pub 1r: BV32, ensures

// program status register self: Arm7[set_spr(reg,old,get_gpr(val,old))]
pub psr: BV32, {

// Memory self.update_special_reg_with_b32(

pub mem: Memory,
// current CPU mode
pub mode: CPUMode,)

register,
self.get_value_from_general_reg(&val)

Figure 11. FLuxArmM: (L) CPU State, (R) msr instruction.

fn sys_tick_isr(
self: &strg Arm7[@old]
-> BV32[@xFFFF_FFFI9]
requires
mode_is_handler (old_cpu.mode)
ensures mode_is_thread_privileged(
self: Arm7[cpu_post_sys_tick_isr(old)] old.mode,
{ old.control)
let 1r = SpecialRegister::1r(); ensures self: Arm7[#new],
self.movw_imm(GPR::RQ, 0); cpu_state_correct(new,old)
self.msr({
SpecialRegister::Control,
GPR::R0);

fn control_flow_kernel_to_kernel(
self: &mut Arm7[@old],
exception_num: u8
requires

15 <= exception_num &&

-
~

// context switch asm
self.switch_to_user_part1();
self.isb(Some(IsbOpt::Sys)); // run a process
self.pseudo_ldr_special(self.process();
1r, // preempt process w/ exception
OXFFFF_FFF9); self.preempt(exception_num);
self.get_value_from_special_reg(lr) // run rest of the context switch
3 self.switch_to_user_part2();

Figure 12. FLUXARM: (L) System Timer Handler, (R) Modeled
Context Switch.

executable Rust, and has a formal semantics specified as a
FLUX contract.

Modeling Handlers. The left in Figure 12 shows the FLUXARM
model of Tock’s timer interrupt handler: an example of how

we model assembly used by the kernel with FLuxArm. It

starts by setting the CPU’s execution mode to unprivileged

by setting the control register to @. It then loads the special

value @xFFFF_FFF9 into the link register to return execution to

kernel. The postcondition cpu_post_sys_tick_isr precisely
reasons about the state of the CPU after this assembly exe-
cutes. In particular, it checks that the CPU is in privileged

execution mode and that the link register contains the value

OxFFFF_FFF9 needed to resume kernel execution.

Modeling Switching. The right side shows the FLUXARM
model of context switching and interrupts from kernel to pro-
cess, and back to kernel. First, switch_to_user_part1 models
how Tock switches to a process, via code that ensures the
hardware is properly configured to run a process (e.g., the

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Component Source Fns(Trusted) Specs(Trusted)

Kernel 12,434 1400 (14) 562 (5)
ARM MPU 2,486 777 (19) 506 (38)
Risc-V MPU 2,575 170 (22) 408 (51)
FLUX-STD 1,231 116 (65) 227 (47)
FLUXARM 3,405 118 (5) 1,900 (45)
Total 22,131 2,581 (125) 3,603 (186)

Figure 13. Proof Effort: Source is the Rust LOC; Fns is the
number of Rust functions in the source code, with Trusted
being the subset of trusted functions for which FLux does not
verify the source against the contract; Specs is the number
of LOC of FLux specifications with Trusted being the subset
LOC that are specifications for trusted functions.

CPU is in unprivileged mode). Second, process models an ar-
bitrary process execution via a postcondition that formalizes
the assumptions we can make about the process’s effect on
memory, i.e., that erases all the information currently known
about the state of the hardware registers and the process
region of memory. Next, we model the triggering of an arbi-
trary interrupt using the method preempt which formalizes
how ARMv7-M behaves when exceptions occur by saving
the caller-saved registers on the stack, using the exception
number to decide which isr (interrupt handler) to call (e.g.,
the sys_tick_isr), and then once the handler finishes, restor-
ing the caller-saved registers off the stack before yielding
control back to the specified target (which we verify to be
the kernel). We verify that the sequence above doesn’t break
isolation with the postcondition cpu_state_correct, which
checks that all the callee-saved registers and the kernel’s
stack pointer are equivalent upon entry and exit (old and
new) and that the CPU is in privileged execution mode.

5 Implementation

We implement TickTock using a mix of Rust and Frux. Fig-
ure 13 breaks down our implementation effort and trusted
computing base (TCB). Overall, TickTock’s proof consists
of 3,603 lines of checked annotation across 2,581 functions.

Trusted Functions. Of the 2,581 functions, 125 are marked
#[trusted], meaning FLUX does not verify their source against
their contract. Of these functions, 14 are trusted due to SMT
solver limitations (but, as described below, are facts we prove
in Lean), 14 are trusted due to outstanding FLux issues, 17
are proof-specific code (e.g., functions used to track certain
values in ghost state), and 6 are functions we consider out of
scope (e.g., formatting functions called when the kernel hard
faults). Additionally, 69 functions in FLux-STD are used to de-
fine refined APIs (e.g., that wrap Rust pointers xconst u8 into
a Ptru8 that tracks the address of the pointer), and enable
verification of (e.g., non-overflowing) pointer arithmetic. In

12

Rindisbacher et al.

FLuxARrM, 5 functions are marked trusted to define a refined
API over hashmaps.

Beyond the functions explicitly marked trusted, the TCB
also includes 67 functions from FLuxARM that correspond
to our lifting ARM semantics into Rust. Additionally, our
hardware specifications for both the ARM and RISC-V MPUs
are trusted since they are lifted from the ARM and RISC-V
architecture manuals. These constitute an additional 60 lines
of spec for ARM and 78 lines of spec for RISC-V. Note that
FLux does check this spec against source code, but the spec
itself is unchecked. Finally, we trust the Rust standard library,
FLux, and the Rust Compiler which FLux depends on.

Verifying Trusted Lemmas in Lean. TickTock verification
requires reasoning about hardware alignment constraints,
which involves facts about bit operations and modular arith-
metic. For example, we determine if an integer is a power-
of-two using a classic bithack, shown below:

fn is_pow2(n: int) -> bool {

let v = int2bv(n); (v > @) && (v & v - 1 == @)

}
In the kernel, some specifications require the fact that (suf-
ficiently large) powers of two are aligned to 8 bytes, but
modern SMT solvers—both z3 and cvc5 —hang when trying
to prove this fact about alignment! We circumvent this limi-
tation by encoding these facts as trusted lemmas: methods
that establish the desired fact as a postcondition:

fn lemma_pow2_octet(r: u32) requires is_pow2(r) && 8 <= r ensures r % 8 == @

We then “call” lemma_pow2_octet in the TickTock code to
establish the desired fact. Instead of blindly assuming these
as axioms, we prove these lemmas interactively in Lean [41].
For example, the theorem below is the encoding of the func-
tion lemma_pow2_octet shown above. The proof is done by
induction over the binary structure of natural numbers:

def is_pow2(n: Fin 2%32) = (n > @) A (n && n - 1 == 0)
theorem lemma_pow2_octet (r : Fin 2%32) : is_pow2 r ->8<=r ->r %8 =0

6 Evaluation
We evaluate TickTock along three dimensions:

1. Does TickTock run on real hardware? (§ 6.1)

2. Does TickTock perform as well as Tock? (§ 6.2)

3. Does TickTock wverify efficiently? (§ 6.3)
Differential testing on 21 Tock applications shows TickTock
runs correctly on real hardware. We find that TickTock’s
performance is on par with Tock’s (e.g., context switching
overhead is within 0.3%) and even outperforms Tock (by 50%)
in some cases. Finally, we find that verifying most TickTock
code with FLux takes under a second, while verifying the
whole kernel (including the lifted assembly) takes under
three minutes—well within continuous integration bounds.

6.1 Running TickTock

As we aim to retrofit verification into an existing production
08, it is crucial to demonstrate that TickTock runs properly

TickTock : Verified Isolation in a Production Embedded OS

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Method TickTock Tock Pct. Diff Component Fns. Total Max Mean StdDev.
allocate_grant 641.00 129032 -50.32% TickTock (Monolithic) 660 5m19s 4m57s 0.48s 11.36s
brk 844.51 1078.66 -21.71% TickTock (Granular) 791 36s 8s 0.05s 0.39s
build_readonly_buffer 115.71 144.64 -20.00% Interrupts 95 2m34s 2m3s 1.63s 12.82s
build_readwrite_buffer 78.00 118.22 -34.02%

create 638,544.67 634,137.40 +0.70% . . .

setup_mpu 97.86 90.55 +8.08% Figure 15. Time taken by FLux to verify TickTock. Fns.

Figure 14. Average CPU cycles for process tasks.

on real hardware. To this end, we perform differential testing
comparing the outputs of TickTock and Tock on the suite of
release tests from the Tock repository [53]. Due to difficulty
obtaining RISC-V hardware supported by the Tock kernel,
we ran a subset of Tock’s upstream applications on QEMU to
ensure that Tock and TickTock were both able to run each
app to completion. For ARM architectures, we run a subset of
Tock’s upstream tests on a Nordic NRF5284@dk chip. Overall,
we ran 21 test applications on both Tock and TickTock, 5
of which had different outputs. The differing outputs were
expected as the tests were either testing memory layout or
reading and printing data from sensors.

6.2 Benchmarking TickTock

Next, we evaluate the performance impact of TickTock’s
memory allocation and MPU-configuring code changes, rel-
ative to Tock. We only compare performance on ARM; we
don’t benchmark our RISC-V implementation because QEMU
does not reflect the performance characteristics of the tar-
get hardware. For ARM architectures, we instrumented key
methods implemented by the TickTock and Tock process
abstractions to count the number of CPU cycles spent in
each. Additionally, we instrument the new and old memory
allocating code to show the difference in memory usage and
waste. We then ran the instrumented kernels on the 21 tests
from section 6.1, and on new benchmarks designed to stress
the memory allocating code.

CPU Cycles. Figure 14 summarizes the results of our perfor-
mance benchmarks, taken as the average of three runs of the
21 tests above. In most cases, TickTock performs as well as
or better than Tock. There is one performance regression in
setup_mpu, costing on average 7 extra cycles. On other code
paths, TickTock performs significantly better. For example,
allocate_grant in TickTock takes 641 cycles on average and
is significantly faster than the Tock implementation because
it avoids recomputing MPU regions (§ section 3.2).

Context Switching. We measured the context switching
performance of both Tock and TickTock at the application
level using one of Tock’s upstream tests, involving two ap-
plications implementing a ROT13 cipher. To get a sense for
TickTock’s effect on application performance, we count the
number of CPU cycles for each process to context switch to
the kernel and back. We found that upstream Tock’s context

13

is the number of functions, Total is the total time taken to
verify the code, Max is the maximum time taken to verify
a single function, Mean is the mean time taken to verify
a function, and StdDev. is the standard deviation of the
verification time across the functions.

switch took 32,640 cycles, while TickTock took 32,740 cycles
on average—a 0.3% overhead.

Memory Usage. Comparing the performance of our new
memory allocating abstraction is difficult since it differs
from Tock’s in a few nuanced ways. But, at a high level,
we expect our allocator to perform similarly to Tock’s: both
TickTock and Tock use two RAM regions for Cortex-M
and one RAM region for RISC-V. To microbenchmark the
memory footprint of both allocators, we wrote an applica-
tion which incrementally grows its memory by one byte
until failure. TickTocxk allocated 7,780 bytes of total mem-
ory, with 6,144 bytes of stack, data, and heap memory, 1,200
bytes of kernel grant memory, and 436 bytes of unused mem-
ory (5.60% of total memory unused). Tock allocated 8,192
bytes of total memory, with 6,656 bytes of stack, data, and
heap memory, 1,284 bytes of kernel grant memory, and 252
bytes of unused memory (3.08% of total memory unused).
This difference between Tock and TickTock mostly stems
from the fact that the grant region in both cases is nearly
equal (1,200 bytes vs 1,284 bytes), but the total size allocated
for the process is different. This is because Tock initially
sets up more room between the process and kernel-owned
grant regions of memory. Therefore, Tock can allocate a few
extra bytes when the grant memory is the same between the
two. Note that when we configure TickTock to add padding
(e.g., a total process size of 8,192 bytes, matching Tock’s
allocation), the unused memory becomes 336 bytes—within
84 bytes of Tock’s 252 bytes.

6.3 Verifying TickTock

Figure 15 summarizes our measurements of how long it takes
FrLux to verify TickTock’s kernel and interrupt handling
code. FLux is a modular verifier that checks each function
in isolation, using the specified contracts (refinement types)
for the other functions. This allows for incremental and
interactive verification during code development. Hence, we
report the total time for the kernel and interrupts to verify,
as well as the average time to check methods in each case.

Interrupt Verification. The interrupt code takes signifi-
cantly longer to verify, despite being smaller (both in LoC

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

and functions) than the rest of the kernel. This is because this
code is in essence verifying precise functional correctness
of assembly instructions, hardware semantics, and interrupt
handlers, which requires heavyweight SMT reasoning about
specifications over bit-vectors and finite-maps.

Kernel Verification. In the kernel, a function takes, on av-
erage, 0.05s to check, with a worst case of about 8s, meaning
that it is possible to verify with FLux continuously during
kernel development. Our granular redesign helps consider-
ably in this regard, as it reduces the total verification time
down from over five minutes to about half a minute. Over
90% of the time verifying the original Tock code was spent
checking allocate_app_mem_region—a fact that motivated us
to redesign the MPU abstraction. Overall, it takes around
three minutes to verify the entire project, making verification
feasible as part of a CI pipeline.

7 Related Work

To the best of our knowledge, TickTock is the first system
to formally specify and verify process isolation in an em-
bedded OS written in Rust. Hence, TickTock is related but
complementary to the existing literature on building verified
Operating Systems, isolation mechanisms, and Rust-based
systems verification.

Interactive OS Verification. Building formally verified oper-
ating systems has long been a goal of the systems community,
dating back to the verification of (a model of) PSOS [17] in
the late seventies. Operating systems like CertiKOS [20-22],
seL4 [30, 55], and pC/OS-1I [32, 61], provide formal, end-
to-end verification of functional correctness for microker-
nels using interactive theorem provers like Isabelle [45] and
Rocq [8], which impose a substantial proof-to-development
overhead, where the sizes of the proofs are often 10—100x the
size of the kernel itself. In contrast, our work demonstrates
that with careful design, the verification of key security prop-
erties is feasible with modest effort.

Automated OS Verification. Systems like HyperKernel [42,
43] aim to reduce this overhead by restricting kernel code
(e.g., to be loop- and recursion- free), and then using SMT
solvers to automate proof construction. Closer to our work,
ExpressOS [39] develops a new kernel in C# and uses the
Dafny verifier [36] to verify key security invariants like iso-
lation. Recent work has proposed using Rust’s (non-)aliasing
guarantees to simplify SMT-based verification of newly de-
signed kernels [10, 12]. In contrast, TickTock aims to retrofit
verification into an existing production kernel.

Verified Isolation Mechanisms. Several groups have for-
mally verified other kinds of isolation mechanisms such as
hypervisors and enclaves. An early example is the work by
Alkassar et al. [1] which uses VCC [15] to verify the func-
tional correctness of an idealized version of the Hyper-V hy-
pervisor. Uberspark [59] abstracts hypervisors in low-level
assembly code into higher-level structured objects about

14

Rindisbacher et al.

which functional correctness and isolation properties are
proved using Frama-C [7]. More recently, SeKVM [38, 58]
uses layered refinement proofs in Rocq (similar to CertiKOS),
to build a formally-verified Linux KVM hypervisor that pro-
vides memory isolation of userspace VMs using traditional
page-table based memory protections. Komodo [18] imple-
ments trusted enclaves via a combination of hardware sup-
port and a formally verified reference monitor written in
assembly using Vale [9], a Dafny-based DSL for verifying
assembly code, that is similar to how we lift ARM assembly
semantics into FLUX.

Rust Systems Verification. The VeriSMo system uses Rust
to build a security modules for confidential VMs on AMD
SEV-SNP [65], and uses Verus a Floyd-Hoare style Rust veri-
fier [33], to verify correctness, confidentiality, and integrity.
WaVe [27] implements a WebAssembly sandboxing runtime
in Rust, and uses Prusti, another Floyd-Hoare style Rust
verifier [3], to verify that the runtime is memory-safe and
correctly mediates access to the host OS’ storage and net-
work resources. Finally, SquirrelFS [34] implements a file
system in Rust, and uses the type system’s support for the
typestate pattern [57] to provide crash-safety guarantees by
construction. TickTock, like all the above, relies heavily
on Rust’s non-aliasing guarantees to simplify verification,
but unlike the above, retrofits verification into a substantial
codebase in production.

Isolation in embedded systems There has been exten-
sive work on isolation in embedded systems using hardware
like MMUs [2, 23, 24, 44] and MPUs [16, 31, 64]. Addition-
ally, some work has paired MPUs and verification to provide
strong intra-kernel isolation guarantees [28]. Others have
explored providing isolation via sandboxing [46, 63], auto-
matically separating system code (e.g., via compilation) and
enforcing isolation via hardware [13, 14, 29], or a combina-
tion of hardware and software mechanisms [5, 54, 56] includ-
ing those used by Tock [40]. Unlike the above, TickTock
provides machine-checked process isolation guarantees.

Acknowledgements

We thank the SOSP reviewers and especially our shepherd
Malte Schwarzkopf for thoughtful comments and insightful
feedback on both the system and our presentation. We thank
Samir Rashid, Leon Schuermann, and the Tock team for their
help throughout the project. This work was supported by
the National Science Foundation under grant numbers CNS-
2327336, CNS-2155235, CNS-2120642, CNS-2120696, CNS-
2154964, CNS-2048262, CNS-2303639, by the Irwin Mark
and Joan Klein Jacobs Chair in Information and Computer
Science, and the UCSD Center for Networked Systems.

TickTock : Verified Isolation in a Production Embedded OS

References
[1] Eyad Alkassar, Mark A Hillebrand, Wolfgang Paul, and Elena Petrova.

[10

[11

[12

[13

(14

(15

[16

(17

—

—

—

—

—

—

[l

—

—

—

2010. Automated verification of a small hypervisor. In Interna-
tional Conference on Verified Software: Theories, Tools, and Experiments.
Springer.

Eric Armbrust, Jiguo Song, Gedare Bloom, and Gabriel Parmer. 2014.
On spatial isolation for mixed criticality, embedded systems. In Proc.
2nd Workshop on Mixed Criticality Systems (WMC), RTSS.

Vytautas Astrauskas, Aurel Bily, Jonas Fiala, Zachary Grannan,
Christoph Matheja, Peter Miiller, Federico Poli, and Alexander J. Sum-
mers. 2022. The Prusti Project: Formal Verification for Rust. In NASA
Formal Methods. Springer.

Hudson Ayers, Prabal Dutta, Philip Levis, Amit Levy, Pat Pannuto,
Johnathan Van Why, and Jean-Luc Watson. 2022. Tiered trust for
useful embedded systems security. In Proceedings of the 15th European
Workshop on Systems Security (EuroSec °22). ACM.

Hudson Ayers, Prabal Dutta, Philip Levis, Amit Levy, Pat Pannuto,
Johnathan Van Why, and Jean-Luc Watson. 2022. Tiered trust for
useful embedded systems security. In Proceedings of the 15th European
Workshop on Systems Security.

Hudson Ayers, Evan Laufer, Paul Mure, Jachyeon Park, Eduardo
Rodelo, Thea Rossman, Andrey Pronin, Philip Levis, and Johnathan
Van Why. 2022. Tighten Rust’s belt: shrinking embedded Rust bina-
ries. In Proceedings of the 23rd ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems.
Patrick Baudin, Franc¢ois Bobot, David Biihler, Loic Correnson, Florent
Kirchner, Nikolai Kosmatov, André Maroneze, Valentin Perrelle, Vir-
gile Prevosto, Julien Signoles, and Nicky Williams. 2021. The dogged
pursuit of bug-free C programs: the Frama-C software analysis plat-
form. Commun. ACM 64, 8 (2021).

Yves Bertot and Pierre Castran. 2010. Interactive Theorem Proving and
Program Development: Coq’Art The Calculus of Inductive Constructions
(1st ed.).

Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure
Thompson. 2017. Vale: verifying high-performance cryptographic
assembly code. In Proceedings of the 26th USENIX Conference on Security
Symposium (SEC’17). USENIX.

Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd Zell-
weger, and Andrea Lattuada. 2023. Beyond isolation: OS verification
as a foundation for correct applications. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems (HOTOS °23). ACM.
Brad Campbell. 2020. riscv: pmp: disallow access above app brk. https:
//github.com/tock/tock/pull/2173 GitHub pull request.

Xiangdong Chen, Zhaofeng Li, Lukas Mesicek, Vikram Narayanan,
and Anton Burtsev. 2023. Atmosphere: Towards Practical Verified
Kernels in Rust. In Proceedings of the 1st Workshop on Kernel Isolation,
Safety and Verification (KISV °23). ACM.

Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and
Mathias Payer. 2018. ACES: Automatic compartments for embedded
systems. In 27th USENIX Security Symposium (USENIX Security 18).
Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast
Srivastava, Jinkyu Koo, Saurabh Bagchi, and Mathias Payer. 2017. Pro-
tecting bare-metal embedded systems with privilege overlays. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE.

Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies,
and Wolfram Schulte. 2009. VCC: Contract-based modular verification
of concurrent C. In 2009 31st International Conference on Software
Engineering - Companion Volume.

Nicolas Dejon, Chrystel Gaber, and Gilles Grimaud. 2021. Nested
compartmentalisation for constrained devices. In 2021 8th International
Conference on Future Internet of Things and Cloud (FiCloud).
Richard] Feiertag and Peter G Neumann. 1979. The foundations
of a provably secure operating system (PSOS). In 1979 International

15

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Workshop on Managing Requirements Knowledge (MARK). IEEE.
Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. 2017. Komodo: Using verification to disentangle secure-enclave
hardware from software. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17). ACM.

Alistair Francis. 2022. arch/rv32i: pmp/ePMP: Fixup PMP comparision.
https://github.com/tock/tock/pull/2947 GitHub pull request.

Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David
Costanzo. 2011. CertiKOS: A certified kernel for secure cloud comput-
ing. In Proceedings of the Second Asia-Pacific Workshop on Systems.
Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig,
Xiongnan Wu, Vilhelm Sjéberg, and David Costanzo. 2019. Building
certified concurrent OS kernels. Commun. ACM 62, 10 (2019).
Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu, Jieung
Kim, Vilhelm Sjéberg, and David Costanzo. 2016. CertiKOS: An exten-
sible architecture for building certified concurrent OS kernels. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16).

Roberto Guanciale, Hamed Nemati, Mads Dam, and Christoph Bau-
mann. 2016. Provably secure memory isolation for Linux on ARM.
Journal of Computer Security 24, 6 (2016).

Gernot Heiser. 2008. The role of virtualization in embedded systems. In
Proceedings of the 1st Workshop on Isolation and Integration in Embedded
Systems.

Tony Hoare. 1980. Turing Award Lecture.

Evan Johnson. 2024. Defensive programming in MPU driver APIL.
https://github.com/tock/tock/issues/4104 GitHub issue.

Evan Johnson, Evan Laufer, Zijie Zhao, Dan Gohman, Shravan
Narayan, Stefan Savage, Deian Stefan, and Fraser Brown. 2023. WaVe:
a verifiably secure WebAssembly sandboxing runtime. In IEEE Sympo-
sium on Security and Privacy (S&P). IEEE.

Arslan Khan, Dongyan Xu, and Dave Jing Tian. 2023. EC: Embedded
Systems Compartmentalization via Intra-Kernel Isolation. In 2023 IEEE
Symposium on Security and Privacy (SP).

Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, By-
oungyoung Lee, X. Zhang, and Dongyan Xu. 2018. Securing Real-Time
Microcontroller Systems through Customized Memory View Switch-
ing. In Network and Distributed System Security Symposium.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of
an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating systems principles.

Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varad-
harajan. 2014. TrustLite: a security architecture for tiny embedded
devices. In Proceedings of the Ninth European Conference on Computer
Systems (EuroSys '14). ACM.

Jean Labrosse. 2002. MicroC/OS-II: The Real Time Kernel. CRC Press.
Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha
Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel.
2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc.
ACM Program. Lang. 7, OOPSLA (2023).

Hayley LeBlanc, Nathan Taylor, James Bornholt, and Vijay Chi-
dambaram. 2024. SquirrelFS: using the Rust compiler to check file-
system crash consistency. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24). USENIX.

Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. 2023.
Flux: Liquid Types for Rust. Proc. ACM Program. Lang. 7, PLDI, Article
169 (June 2023).

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for
Functional Correctness. In Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR).

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming a

https://github.com/tock/tock/pull/2173
https://github.com/tock/tock/pull/2173
https://github.com/tock/tock/pull/2947
https://github.com/tock/tock/issues/4104

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

(38

(39

[40

[41

[42

[43

[44

(45

(46

(47

(48

[49

(50

[51

(52

(53

[54

(55

]

—

[t

—

—

]

]

—

—

—

—

[t

—

—

= =

]

=

64kb computer safely and efficiently. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang
Hui. 2021. Formally verified memory protection for a commodity mul-
tiprocessor hypervisor. In 30th USENIX Security Symposium (USENLX
Security 21).

Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and
Parthasarathy Madhusudan. 2013. Verifying security invariants in
ExpressOS. In Proceedings of the eighteenth international conference
on Architectural support for programming languages and operating
systems.

Alejandro Mera, Yi Hui Chen, Ruimin Sun, Engin Kirda, and Long
Lu. 2022. D-box: DMA-enabled compartmentalization for embedded
applications. arXiv preprint arXiv:2201.05199 (2022).

Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 the-
orem prover and programming language. In Automated Deduction—
CADE 28: 28th International Conference on Automated Deduction, Vir-
tual Event, 2021, Proceedings 28.

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. 2019. Scaling symbolic evaluation for automated
verification of systems code with Serval. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP ’19). ACM.
Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel:
Push-button verification of an OS kernel. In Proceedings of the 26th
Symposium on Operating Systems Principles.

Hamed Nemati, Roberto Guanciale, and Mads Dam. 2015. Trustworthy
virtualization of the ARMv7 memory subsystem. In 41st International
Conference on Current Trends in Theory and Practice of Computer Science.
Springer.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic.

Gregor Peach, Runyu Pan, Zhuoyi Wu, Gabriel Parmer, Christopher
Haster, and Ludmila Cherkasova. 2020. eWASM: Practical software
fault isolation for reliable embedded devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39, 11 (2020).
Alastair Reid. 2016. Trustworthy specifications of ARM v8-A and v8-M
system level architecture. In 2016 Formal Methods in Computer-Aided
Design (FMCAD). IEEE.

Vivien Rindisbacher. 2024. Thread mode not set to privileged execution
in certain ISRs. https://github.com/tock/tock/issues/4246 GitHub
issue.

Vivien Rindisbacher. 2025. App crashing allows potential sharing of
kernel memory. https://github.com/tock/tock/issues/4371 GitHub
issue.

Vivien Rindisbacher. 2025. Cortex-M MPU: allo-
cate_app_memory_region allows access to kernel grant memory.
https://github.com/tock/tock/issues/4366 GitHub issue.

Vivien Rindisbacher. 2025. Register clobbering in Generic ISR causes
exception exit to return to process rather than Kernel. https://github.
com/tock/tock/issues/4245 GitHub issue.

Vivien Rindisbacher. 2025. Underflow in update_app_memory_regions.
Private communication with Tock developers.

Leon Schuermann. 2024. Call for Tock 2.2 Release Testing. https://
github.com/tock/tock/issues/4272#issuecomment-2552364086 GitHub
issue.

Leon Schuermann, Arun Thomas, and Amit Levy. 2023. Encapsulated
Functions: Fortifying Rust’s FFI in Embedded Systems. In Proceedings
of the 1st Workshop on Kernel Isolation, Safety and Verification.
Thomas Arthur Leck Sewell, Magnus O Myreen, and Gerwin Klein.
2013. Translation validation for a verified OS kernel. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation.

16

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Rindisbacher et al.

Raoul Strackx, Frank Piessens, and Bart Preneel. 2010. Efficient isola-
tion of trusted subsystems in embedded systems. In International Con-
ference on Security and Privacy in Communication Systems. Springer.
Robert E. Strom and Shaula Yemini. 1986. Typestate: A programming
language concept for enhancing software reliability. IEEE Transactions
on Software Engineering SE-12, 1 (1986).

Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and
Ronghui Gu. 2021. Formal verification of a multiprocessor hypervisor
on arm relaxed memory hardware. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles.

Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and Anupam
Datta. 2016. iiberSpark: Enforcing Verifiable Object Abstractions for
Automated Compositional Security Analysis of a Hypervisor. In 25th
USENIX Security Symposium (USENIX Security 16).

Christof Windeck. 2024. Microsoft security controller Pluton is also
coming to Intel Core. https://www.heise.de/en/news/Microsoft-
security-controller-Pluton-is-also-coming-to-Intel-Core-
9833954.html.

Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and
Zhaohui Li. 2016. A practical verification framework for preemptive
OS kernels. In International Conference on Computer Aided Verification.
Springer.

Ido Yariv. 2018. Potential Sharing of Kernel Memory. https://github.
com/tock/tock/issues/1141 GitHub issue.

Lu Zhao, Guodong Li, Bjorn De Sutter, and John Regehr. 2011. ARMor:
fully verified software fault isolation. In Proceedings of the Ninth ACM
International Conference on Embedded Software (EMSOFT °11). ACM.
Xia Zhou, Jiaqi Li, Wenlong Zhang, Yajin Zhou, Wenbo Shen, and
Kui Ren. 2022. OPEC: operation-based security isolation for bare-
metal embedded systems. In Proceedings of the Seventeenth European
Conference on Computer Systems.

Zigiao Zhou, Anjali, Weiteng Chen, Sishuai Gong, Chris Hawblitzel,
and Weidong Cui. 2024. VeriSMo: A Verified Security Module for
Confidential VMs. In 18th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 24). USENIX.

https://github.com/tock/tock/issues/4246
https://github.com/tock/tock/issues/4371
https://github.com/tock/tock/issues/4366
https://github.com/tock/tock/issues/4245
https://github.com/tock/tock/issues/4245
https://github.com/tock/tock/issues/4272#issuecomment-2552364086
https://github.com/tock/tock/issues/4272#issuecomment-2552364086
https://www.heise.de/en/news/Microsoft-security-controller-Pluton-is-also-coming-to-Intel-Core-9833954.html
https://www.heise.de/en/news/Microsoft-security-controller-Pluton-is-also-coming-to-Intel-Core-9833954.html
https://www.heise.de/en/news/Microsoft-security-controller-Pluton-is-also-coming-to-Intel-Core-9833954.html
https://github.com/tock/tock/issues/1141
https://github.com/tock/tock/issues/1141

	Abstract
	1 Introduction
	2 Overview
	2.1 Tock: Isolation via MPUs
	2.2 Bugs Break Isolation
	2.3 Formally Verified Isolation
	2.4 Flux

	3 Redesigning the MPU Abstraction
	3.1 Requirements
	3.2 A Monolithic Design
	3.3 Verification Roadmap
	3.4 Verification-guided Redesign
	3.5 A Granular Redesign

	4 Verification
	4.1 A Refined MPU Interface
	4.2 Verifying the Kernel's Logical View of Memory
	4.3 Verifying Logical-MPU View Correspondence
	4.4 Verifying TickTock's MPU drivers
	4.5 Reasoning About Interrupts

	5 Implementation
	6 Evaluation
	6.1 Running TickTock
	6.2 Benchmarking TickTock
	6.3 Verifying TickTock

	7 Related Work
	References

