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Abstract
A key challenge when statically typing so-called dynamic languages is the ubiquity of value-based
overloading, where a given function can dynamically reflect upon and behave according to the
types of its arguments. Thus, to establish basic types, the analysis must reason precisely about
values, but in the presence of higher-order functions and polymorphism, this reasoning itself can
require basic types. In this paper we address this chicken-and-egg problem by introducing the
framework of two-phased typing. The first “trust” phase performs classical, i.e. flow-, path- and
value-insensitive type checking to assign basic types to various program expressions. When the
check inevitably runs into “errors” due to value-insensitivity, it wraps problematic expressions
with DEAD-casts, which explicate the trust obligations that must be discharged by the second phase.
The second phase uses refinement typing, a flow- and path-sensitive analysis, that decorates the
first phase’s types with logical predicates to track value relationships and thereby verify the casts
and establish other correctness properties for dynamically typed languages.
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1 Introduction

Higher-order constructs are increasingly adopted in dynamic scripting languages, as they
facilitate the production of clean, correct and maintainable code. Consider, for example, the
following (first-order) JavaScript function

function minIndexFO(a) {
if (a.length ≤ 0)

return -1;
var min = 0;
for (var i = 0; i < a.length; i++) {

if (a[i] < a[min])
min = i;

}
return min;

}

which computes the index of the minimum value in the array a by looping over the array,
updating the min value with each index i whose value a[i] is smaller than the “current”
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function $reduce(a, f, x) {
var res = x, i = 0;
for (i = 0; i < a.length; i++)

res = f(res , a[i], i++);
return res;

}

function reduce(a, f, x) {
if (arguments.length === 3)

return $reduce(a, f, x);
return $reduce(a, f, a[0]);

}

function minIndex(a) {
if (a.length ≤ 0)

return -1;
function step(min , cur , i) {

return cur < a[min] ? i:min;
}
return reduce(a, step , 0);

}

Figure 1 Computing the minimum-valued index with Higher-Order Functions

a[min]. Modern dynamic languages let programmers factor the looping pattern into a
higher-order $reduce function (Figure 1), which frees them from manipulating indices and
thereby prevents the attendant “off-by-one” mistakes. Instead, the programmer can compute
the minimum index by supplying an appropriate f to reduce as in minIndex shown at the
right of Figure 1.

This trend towards abstraction and reuse poses a challenge to static program analyses:
how to precisely trace value relationships across higher-order functions and containers? A
variety of dataflow- or abstract interpretation- based analyses could be used to verify the
safety of array accesses in minIndexFO by inferring the loop invariant that i and min are
between 0 and a.length. Alas, these analyses would fail on minIndex. The usual methods
of procedure summarization apply to first-order functions, and it is not clear how to extend
higher-order analyses like CFA to track the relationships between the values and closures
that flow to $reduce.

An Approach: Refinement Types. Refinement types [30] hold the promise of a precise
and compositional analysis for higher-order functions. Here, basic types are decorated with
refinement predicates that constrain the values inhabiting the type. For example, we can
define

type idx <x> = {v:number | 0 ≤ v && v < len(x) }

to denote the set of valid indices for an array x and can be used to type $reduce as

$reduce :: <A,B>(a: A[], f: (B,A,idx <a>) ⇒ B, x: B) ⇒ B

The above type is a precise relational summary of the behavior of $reduce: the higher-order
f is only invoked with valid indices for a. Consequently, step is only called with valid indices
for a, which ensures array safety.

Problem: Value-based Overloading. A main attraction of dynamic languages is value-
based overloading, where syntactic entities (e.g. variables) may be bound to multiple types
at run-time, and furthermore, computations may be customized to particular types, by
reflecting on the values bound to variables. For example, it is common to simplify APIs by
overloading the reduce function to make the initial value x optional; when omitted, the first
array element a[0] is used instead (Figure 1). Here, reduce really has two different function
types: one with 3 parameters and another one with 2. Furthermore, reduce reflects on the
size of arguments to select the behavior appropriate to the calling context.
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Value-based overloading conflicts with a crucial prerequisite for refinements, namely that
the language possesses an unrefined static type system that provides basic invariants about
values which can then be refined using logical predicates. Unfortunately, as shown by reduce,
to soundly establish basic typing we must reason about the logical relationships between
values, which is exactly the problem we wished to solve via refinement typing. In other
words, value-based overloading creates a chicken-and-egg problem: refinements require us to
first establish basic typing, but the latter itself requires reasoning about values (and hence,
refinements!).

Solution: Trust but Verify. We introduce two-phased typing, a new strategy for statically
analyzing dynamic languages. The key insight is that we can completely decouple reasoning
about basic types and refinements into distinct phases by converting “type errors” from the
first phase into “assertion failures” for the second. Two-phase typing starts with a source
language where value-based overloading is specified using intersections and (untagged) unions
of the different possible (run-time) types.

The first phase performs classical, i.e. flow-, path- and value-insensitive type checking
to assign basic types to various program expressions. When the check inevitably runs into
“errors” due to value-insensitivity, it wraps problematic expressions with DEAD-casts which
allow the first phase to proceed, trusting that the expressions have the casted types. In other
words, the first phase elaborates [10] the source language with intersection and (untagged)
union types, into a target ML-like language with classical products, (tagged) sums and
DEAD-casts, which explicate the trust obligations that must be discharged by the second phase.
The second phase carries out refinement, i.e. flow- and path-sensitive inference, to decorate
the basic types (from the first phase) with predicates that precisely track relationships about
values, and uses the refinements to verify the casts and other properties, discharging the
assumptions of the first phase.

For example, reduce is described as the intersection of two contexts, i.e. function types
which take two and three parameters respectively. The trust-phase checks the body under
both contexts (separately). In each context, one of the calls to $reduce is “ill-typed”. In
the context where the function takes two inputs, the call using x is undefined; when the
function takes three inputs, there is a mismatch in the types of f and a[0]. Consequently,
each ill-typed expression is wrapped with a cast which obliges the verify phase to prove that
the call is dead code in that context, thereby verifying overloading in a cooperative manner.

Benefits. While it is possible to account for value-based overloading in a single phase, the
currently known methods that do so are limited to the extremes of types and program logics.
At one end, systems like Typed Racket [28] and Flow Typing [16] extend classical type
systems to account for a fixed set of typeof-style tests, but cannot reason about general
value tests (e.g. the size of arguments) that often appear in idiomatic code. At the other end,
systems like System D [7] embed the typing relation in an expressive program logic, allowing
general value tests, but give up on basic type structure, thereby sacrificing inference, causing
a significant annotation overhead. In contrast, our approach separates the concerns of basic
typing and reasoning about values, thereby yielding several concrete benefits by modularizing
specification, verification and soundness.

Specification: Instead of a fixed set of type-tests, two-phase typing handles complex
value relationships which can be captured inside refinements in an expressive logic.
Furthermore, the expressiveness of the basic type system and logics can be extended
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neg :: (number , number) ⇒ number
∧ (number , boolean) ⇒ boolean

function neg(flag , x) {
if (flag) return 0-x;
return !x;

}

var a = neg(1,1); // OK
var b = neg(0,true); // OK
var c = neg(0,1); // ERR
var d = neg(1,true); // ERR

Figure 2 An example program with value-based overloading

independently, e.g. to account for polymorphism, classes or new logical theories, directly
yielding a more expressive specification mechanism.
Verification: Two-phase typing enables the straightforward composition of simple type
checkers (uncomplicated by reasoning about values) with program logics (relying upon
the basic invariants provided by typing – e.g. the parametric polymorphism needed to
verify minIndex). Furthermore, two-phase typing allows us to compose basic typing with
abstract interpretation [23], which drastically lowers the annotation burden for using
refinement types.
Soundness: Finally, our elaboration-based approach makes it straightforward to establish
soundness for two-phased typing. The first phase ignores values and refinements, so we
can use classical methods to prove the elaborated target is “equivalent to” the source. The
second phase uses standard refinement typing techniques on the well-typed elaborated
target, and hence lets us directly reuse the soundness theorems for such systems [18] to
obtain end-to-end soundness for two-phased typing.

Contributions. Concretely, in this paper we make the following contributions. First, we
informally illustrate (§ 2) how two-phase typing lets us statically analyze dynamic, value-
based overloading patterns drawn from real-world code, where, we empirically demonstrate,
value-based overloading is ubiquitous. Second, we formalize two-phase typing using a core
calculus, Rsc, whose syntax and semantics are detailed in § 3. Third, we formalize the first
phase (§ 4), which elaborates [10] a source language with value-based overloading into a
target language with DEAD-casts in lieu of overloading. We prove that the elaborated target
preserves the semantics of the source, i.e. the DEAD-casts fail iff the source would hit a type
error at run time. Finally, we demonstrate how standard refinement typing machinery can be
applied to the elaborated well-typed target (§ 5) to statically verify the DEAD-casts, yielding
end-to-end soundness for our system.

2 Overview

We begin with an overview illustrating how we soundly verify value-based overloading using
our novel two-phased approach.

2.1 Value-based Overloading

Consider the code in Figure 2. The function neg behaves as follows. When a number is passed
as input, indicated by passing in a non-zero, i.e. “truthy” flag, the function flips its sign by
subtracting the input from 0. Instead, when a boolean is passed in, indicated by a zero, i.e.
“falsy” flag, the function returns the boolean negation. Hence, the calls made to assign a

and b are legitimate and should be statically accepted. However, the calls made to assign c
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and d lead to run-time errors (assuming we eschew implicit coercions), and hence, should be
rejected.

The function neg distils value-based overloading to its essence: a run-time test on one
parameter’s value is used to determine the type of, and hence the operation to be applied to,
another value. Of course in JavaScript, one could use a single parameter and the typeof

operator for this particular simple case, and design analyses targeted towards a fixed set of
type tests, e.g. using variants of the typeof operator [28, 16]. However, arbitrary value tests
– such as tests of the size of arguments shown in reduce in Figure 1 – can be and are used in
practice. Thus, we illustrate the generality of the problem and our solution without using
the typeof operator (which is a special case of our solution).

Prevalence of Value-based Overloading. The code from Figure 1 is not a pathological
toy example. It is adapted from the widely used D3 visualization library. The advent
of TypeScript makes it possible to establish the prevalence of value-based overloading in
real-world libraries, as it allows developers to specify overloaded signatures for functions.
(Even though TypeScript does not verify those signatures, it uses them as trusted interfaces
for external JavaScript libraries and code completion.) The Definitely Typed repository 1

contains TypeScript interfaces for a large number of popular JavaScript libraries. We analyzed
the TypeScript interfaces to determine the prevalence of value-based overloading. Intuitively,
every function or method with multiple (overloaded) signatures or optional arguments has
an implementation that uses value-based overloading.

Figure 3 summarizes the results of our study. On the left, we show the fraction of
overloaded functions in the 10 benchmarks analyzed by Feldthaus et al. [12]. The data shows
that over 25% of the functions in 4 of 10 libraries use value-based overloading, and an even
larger fraction is overloaded in libraries like jquery and d3. On the right we summarize
the occurrence of overloading across all the libraries in Definitely Typed. The data shows,
for example, that in more than 25% of the libraries, more than 25% of the functions are
overloaded with multiple types. The figure jumps to nearly 55% of functions if we also
include optional arguments.

The signatures in Definitely Typed have not been soundly checked against2 their imple-
mentations. Hence, it is possible that they mischaracterize the semantics of the actual code,
but modulo this caveat, we believe the study demonstrates that value-based overloading is
ubiquitous, and so to soundly and statically analyze dynamic languages, it is crucial that we
develop techniques that can precisely and flexibly account for it.

2.2 Refinement Types

Types and Refinements. A basic refinement type T is a basic type, e.g. number, refined
with a logical formula from an SMT decidable logic – for the purposes of this paper, the
quantifier-free logic of uninterpreted functions and linear integer arithmetic (QF_UFLIA [25]).
For example, {v:number | v != 0} describes the subset of numbers that are non-zero. We
write A to abbreviate the trivially refined type {ν :A | true}, e.g. number is an abbreviation
for {ν :number | true}.

1 http://definitelytyped.org
2 Feldthaus et al. [12] describe an effective but unsound inconsistency detector.
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File #Funs %Ovl %Opt %Any

box2d 529 0 3 3
ace 484 1 5 6
pixi 123 0 12 12
fabricjs 371 5 9 13
threejs 1022 1 24 24
leaflet 414 12 38 41
underscore 344 25 34 45
sugar 446 29 37 48
d3 475 43 17 52
jquery 226 52 31 67
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Figure 3 The prevalence of value-based overloading. (L) Libraries from the survey of Feldthaus
et al. [12]: #Funs is the number of functions in the signature, %Ovl is %-functions with multiple
signatures, %Opt is %-functions with optional arguments, and %Any is %-functions with either of
these features. (R) Overloading across all files in Definitely Typed. A point (x, y) means y% of
files have more than x% overloaded functions.

Summaries: Function Types. We can specify the behavior of functions with refined function
types, of the form

(x1 : T1, . . . , xn : Tn)⇒ T

where arguments are named xi and have types Ti and the output is a T . In essence, the
input types Ti specify the function’s preconditions, and the output type T describes the
postcondition. Furthermore, each input type and the output type can refer to the arguments
xi which yields precise function contracts. For example,

(x :0 ≤ x)⇒ {ν :number | x < ν}

is a function type that describes functions that require a non-negative input, and ensure that
the output is greater than the input.

Example. Returning to neg in Figure 2, we can define two refinements of number:

type tt = {v:number | v != 0} // "truthy" numbers
type ff = {v:number | v = 0} // "falsy" numbers

which are used to specify a refined type for neg shown on the left in Figure 4.

Problem: A Circular Dependency. While it is easy enough to specify a type signature, it is
another matter to verify it, and yet another matter to ensure soundness. The challenge is that
value-based overloading introduces a circular dependency between types and refinements. The
soundness of basic types requires (i.e. is established by) the refinements, while the refinements
themselves require (i.e. are attached to) basic types. In classical refinement systems like
DML [30], basic types are established without requiring refinements. A classical refinement
system is thus a conservative extension of the corresponding non-refined language, i.e.
removing the refinements from a DML program, yields valid, well-typed ML. Unfortunately,
value-based overloading removes this crucial property, posing a circular dependency between
types and refinements.
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neg :: (tt, number) ⇒ number
∧ (ff, boolean) ⇒ boolean

function neg(flag , x) {
if (flag) return 0-x;
return !x;

}

var a = neg(1,1); //OK
var b = neg(0,true); //OK
var c = neg(0,1); //ERR
var d = neg(1,true); //ERR

neg#1 :: (tt, number) ⇒ number
function neg#1(flag , x) {

if (flag) return 0-x;
return !DEAD(x);

}
neg#2 :: (ff, boolean) ⇒ boolean
function neg#2(flag , x) {

if (flag) return 0-DEAD(x);
return !x;

}
var neg = (neg#1, neg#2);

var a = fst(neg)(1,1); //OK
var b = snd(neg)(0,true); //OK
var c = fst(neg)(0,1); //ERR
var d = snd(neg)(1,true); //ERR

Figure 4 Source program (l) and target (r) resulting from first phase elaboration.

Solution: Two-Phase Checking. We break the cycle by typing programs in two phases.
In the first, we trust the basic types are correct and use them (ignoring the refinements) to
elaborate source programs into a target overloading-free language. Inevitably, value-based
overloading leads to “errors” when typing certain sub-expressions in the wrong context, e.g.
subtracting a boolean-valued x from 0. Instead of rejecting the program, the elaboration
wraps ill-typed expressions with DEAD-casts, which are assertions stating the program is
well-typed assuming those expressions are dead code. In the second phase we reuse classical
refinement typing techniques to verify that the DEAD-casts are indeed unreachable, thereby
discharging the assumptions made in the first phase.

2.3 Phase 1: Trust
The first phase elaborates the source program into an equivalent typed target language
with two key properties: First, the target program is simply typed – i.e. has no union
or intersection types, but just classical ML-style sums and products. Second, source-level
type errors are elaborated to target-level DEAD-casts. The right side of Figure 4 shows the
elaboration of the source from the left side. While we formalize the elaboration declaratively
using a single judgment form (§ 4), it comprises two different steps. Critically, each step,
and hence the entire first phase, is independent of the refinements – they are simply carried
along unchanged.

A. Clone. In the first step, we create separate clones of each overloaded function, where
each clone is assigned a single conjunct of the original overloaded type. For example, we
create two clones neg#1 and neg#2 respectively typed using the two conjuncts of the original
neg. The binder neg is replaced with a tuple of its clones. Finally, each use of neg extracts
the appropriate element from the tuple before issuing the call.

Since the trust phase must be independent of refinements, the overload resolution in this
step uses only the basic types at the call-site to determine which of the two clones to invoke.
For example, in the assignment to a, the source call neg(1,1) – which passes in two number

values, and hence, matches the first overload (conjunct) – is elaborated to the target call
fst(neg)(1,1). In the assignment to d, the source call neg(1,true) – which passes in a
number and a boolean, and hence matches the second overload – is elaborated to the target
call snd(neg)(1,true), even though 1 does not have the refined type ff.

ECOOP’15
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B: Cast. In the second step we check – using classical, unrefined type checking – that each
clone adheres to its specified type. Unlike under usual intersection typing [22, 10], in our
context these checks almost surely “fail”. For example, neg#1 does not type-check as the
parameter x has type number and so we cannot compute !x. Similarly, neg#2 fails because x

has type boolean and so 0-x is erroneous. Rather than reject the program, we wrap such
failures with DEAD-casts. For example, the above occurrences of x elaborate to DEAD(x) on
the right in Figure 4.

Intuitively, the value relationships established at the call-sites and guards ensure that
the failures will not happen at run-time. However, recall that the first phase’s goal is to
decouple reasoning about types from reasoning about values. Hence, we just trust all the
types but use DEAD-casts to explicate the value-relationship obligations that are needed to
establish typing: namely that the DEAD-casts are indeed dead code.

2.4 Phase 2: Verify
The second phase takes as input the elaborated program emitted by the first phase, which
is essentially a classical well-typed ML program with assertions and without any value-
overloading. Hence, the second phase can use any existing program logic [14, 4], refinement
typing [30, 18, 23, 2], or contracts & abstract interpretation [20] to check that the target’s
assertions never fail, which, we prove, ensures that the source is type-safe.

To analyze programs with closures, collections and polymorphism, (e.g. minIndex from
Figure 1) we perform the second phase using the refinement types that are carried over
unchanged by the elaboration process of the first phase. Intuitively, refinement typing can
be viewed as a generalization of classical program logics where assertions are generalized to
type bindings, and the rule of consequence is generalized as subtyping. While refinement
typing is a previously known technique, to make the paper self-contained, we illustrate how
the second phase verifies the DEAD-casts in Figure 4.

Refinement Type Checking. A refinement type checker works by building up an environ-
ment of type bindings that describe the machine state at each program point, and by checking
that at each call-site, the actual argument’s type is a refined subtype of the expected type
for the callee, under the context described by the environment at that site. The subtyping
relation for basic types is converted to a logical verification condition whose validity is checked
by an SMT solver. The subtyping relation for compound types (e.g. functions, collections)
is decomposed, via co- and contra-variant subtyping rules, into subtyping constraints over
basic types, which can be discharged as above.

Typing DEAD-Casts. To use a standard refinement type checker for the second phase of
verification, we only need to treat DEAD as a primitive operation with the refined type:

DEAD :: ∀A,B.({ν :A | false})⇒ B

That is, we assign DEAD the precondition false which states there are no valid inputs for it,
i.e. that it should never be called (akin to assert(false) in other settings).

Environments. To verify DEAD-casts, the refinement type checker builds up an environment
of type binders describing variables and branch conditions that are in scope at each program
point. For example, the DEAD call in neg#1, has the environment:

Γ1
.= flag :tt, x :number, g1 :{ν :boolean | flag = 0} (1)
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where the first two bindings are the function parameters, whose types are the input types.
The third binding is from the “else” branch of the flag test, asserting the branch condition
flag is “falsy” i.e. equals 0. At the DEAD call in neg#2 the environment is:

Γ2
.= flag :ff, x :boolean, g1 :{ν :boolean | flag 6= 0} (2)

At the assignments to a, b and c the environments are respectively:

Γa
.= neg :Tneg (3)

Γb
.= Γa, a :number (4)

Γc
.= Γb, b :boolean (5)

where Tneg abbreviates the product type of the (elaborated) tuple neg.

Tneg
.= ((tt, number)⇒ number) × ((ff, boolean)⇒ boolean) (6)

Subtyping. At each function call-site, the refinement type system checks that the actual
argument is indeed a subtype of the expected one. For example, the DEAD calls inside neg#1

and neg#2 yield the respective subtyping obligation:

Γ1 ` {ν :number | ν = x} v {ν :number | false} (7)
Γ2 ` {ν :boolean | ν = x} v {ν :boolean | false} (8)

The obligation states that the type of the argument x should be a subtype of the input
type of DEAD. Similarly, at the assignments to a, b and c the first arguments generate the
respective subtyping obligations:

Γa ` {ν :number | ν = 1} v {ν :number | ν 6= 0} (9)
Γb ` {ν :number | ν = 0} v {ν :number | ν = 0} (10)
Γc ` {ν :number | ν = 0} v {ν :number | ν 6= 0} (11)

Verification Conditions. To verify subtyping obligations, we convert them into logical
verification conditions (VCs), whose validity determines whether the subtyping holds. A
subtyping obligation Γ ` {ν :b | p} v {ν :b | q} translates to the VC [[Γ]]⇒ (p⇒ q) where
[[Γ]] is the conjunction of the refinements of the binders in Γ. For example, the subtyping
obligations (7) and (8) yield the respective VCs:

(flag 6= 0 ∧ true ∧ flag = 0)⇒ ν = x ⇒ false (12)
(flag = 0 ∧ true ∧ flag 6= 0)⇒ ν = x ⇒ false (13)

Here, the conjunct true arises from the trivial refinements e.g. the binding for x. The above
VCs are deemed valid by an SMT solver as the hypotheses are inconsistent, which proves the
call is indeed dead code. Similarly, (9), (10) respectively yield VCs:

true⇒ ν = 1 ⇒ ν 6= 0 (14)
true⇒ ν = 0 ⇒ ν = 0 (15)

which are deemed valid by SMT, verifying the assignments to a, b. However, by (11):

true⇒ ν = 0 ⇒ ν 6= 0 (16)

which is invalid, ensuring that we reject the call that assigns to c.

ECOOP’15
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2.5 Two-Phase Inference
Our two-phased approach readily lends itself to abstract interpretation based refinement
inference which can drastically lower the programmer annotations required to verify various
safety properties, e.g. reducing the annotations needed to verify array bounds safety in ML
programs from 31% of code size to under 1% [23]. Here we illustrate how inference works
in the presence of value-based overloading. Suppose we are not given the refinements for
the signature of neg but only the unrefined signature (either given to us explicitly as in
TypeScript, or inferred via dataflow analysis [16, 11]). As inference is difficult with incorrect
code, we omit the erroneous statements that assign to c and d.

Refinement inference proceeds in three steps. First, we create templates which are the
basic types decorated with refinement variables κ in place of the unknown refinements.
Second, we perform the trust phase to elaborate the source program into a well-typed target
free of overloading. Remember that this phase uses only the basic types and is oblivious
to the (in this case unknown) refinements. Third, we perform the verify phase which now
generates VCs over the refinement variables κ. These VCs – logical implications between the
refinements and κ variables – correspond to so-called Horn constraints over the κ variables,
and can be solved via abstract interpretation [13, 23].

0. Templates: Let us revisit the program from Figure 2, with the goal of inferring the
refinements. Recall that the (unrefined) type of neg is:

neg :: (number, number)⇒ number

∧ (number, boolean)⇒ boolean

We create a template by refining each base type with a (distinct) refinement variable:

neg :: ({ν :number | κ1}, {ν :number | κ2})⇒ {ν :number | κ3}
∧ ({ν :number | κ4}, {ν :boolean | κ5})⇒ {ν :boolean | κ6}

1. Trust: The trust phase proceeds as before, propagating the refinements to the signatures
of the elaborated target, yielding the code on the right in Figure 4 except that neg#1 and
neg#2 have the respective templates:

neg#1 :: ({ν :number | κ1}, {ν :number | κ2})⇒ {ν :number | κ3}
neg#2 :: ({ν :number | κ4}, {ν :boolean | κ5})⇒ {ν :boolean | κ6}

2. Verify: The verify phase proceeds as before, but using templates instead of the types.
Hence, at the DEAD-cast in neg#1 and neg#2, and the calls to neg that assign to a and b,
instead of the VCs (12), (13), (14) and (15), we get the respective Horn constraints:

(κ1 [flag/ν] ∧ true ∧ flag = 0)⇒ ν = x ⇒ false (17)
(κ4 [flag/ν] ∧ true ∧ flag 6= 0)⇒ ν = x ⇒ false (18)

true⇒ ν = 1 ⇒ κ1 (19)
true⇒ ν = 0 ⇒ κ4 (20)

These constraints are identical to the corresponding VCs except that κ variables appear
in place of the unknown refinements for the corresponding binders. We can solve these
constraints using fixpoint computations over a variety of abstract domains such as monomial
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predicate abstraction [13, 23] over a set of ground predicates which are arithmetic (in)equalities
between program variables and constants, to obtain a solution mapping each κ to a concrete
refinement:

κ1
.= ν = 0 κ4

.= ν 6= 0 κ2, κ3, κ5, κ6
.= true

which, when plugged back into the templates, allow us to infer types for neg.

Higher-Order Verification. Our two-phased approach generalizes directly to offer precise
analysis for polymorphic, higher-order functions. Returning to the code in Figure 1, our
two-phased inference algorithm infers the refinement types:

$reduce :: ∀A,B.(a :A[ ], f : (B,A, idx〈a〉)⇒ B, x :B)⇒ B

reduce :: ∀A.(a :A[ ]+, f : (A,A, idx〈a〉)⇒ A)⇒ A

∧ ∀A,B.(a :A[ ], f : (B,A, idx〈a〉)⇒ B, x :B)⇒ B

where idx〈a〉 describes valid indices for array a, and A[ ]+ describes non-empty arrays:

idx〈a〉 .= {ν :number | 0 ≤ ν < len(a)}
A[ ]+ .= {ν :A[ ] | 0 < len(ν)}

The above type is a precise summary for the higher-order behavior of $reduce: it describes
the relationship between the input array a, the step (“callback”) function f , and the initial
value of the accumulator, and stipulates that the output satisfies the same properties B as
the input x. Furthermore, it captures the fact that the callback f is only invoked on inputs
that are valid indices for the array a that is being reduced. Consequently, Liquid Types [23],
for example, would automatically infer:

step :: ∀A.(idx〈a〉, A, idx〈a〉)⇒ idx〈a〉
minIndex :: ∀A.(A[ ])⇒ number

thereby verifying the safety of array accesses in the presence of higher order functions,
collections, and value-based overloading.

3 Syntax and Operational Semantics of Rsc

Next, we formalize two-phase typing via a core calculus Rsc comprising a source language
λ∧∨ with overloading via union and intersection types, and a simply typed target language λ×+
without overloading, where the assumptions for safe overloading are explicated via DEAD-casts.
In § 4, we describe the first phase that elaborates source programs into target programs,
and finally, in § 5 we describe how the second phase verifies the DEAD-casts on the target to
establish the safety of the source. Our elaboration follows the overall compilation strategy
of Dunfield [10] except that we have value-based overloading instead of an explicit “merge”
operator [22], and consequently, our elaboration and proofs must account for source level
“errors” via DEAD-casts.

3.1 Source Language (λ∧∨)
Terms. We define a source language λ∧∨, with syntax shown in Figure 5. Expressions include
variables, functions, applications, let-bindings, a ternary conditional construct, and primitive
constants c which include numbers 0, 1, . . ., operators +,−, . . ., etc.
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Source Language: Syntax
Values v ::= c | x | λx.e

Expressions e ::= v | let x = e1 in e2 | e ? e1 : e2 | e1 e2

Primitive Types B ::= Num | Bool
Types A,B ::= B | A→ B | A ∧B | A ∨B

Source Language: Operational Semantics e −→ e′

E-ECtx
e −→ e′

E[e] −→ E[e′]

E-App-1
c v −→ JcK(v)

E-App-2
(λx.e) v −→ [v/x] e

E-Cond-True
true ? e1 : e2 −→ e1

E-Cond-False
false ? e1 : e2 −→ e2

E-Let
let x = v in e −→ [v/x] e

Figure 5 Syntax and Operational Semantics of λ∧∨

Operational Semantics. In figure 5 we also define a standard small-step operational se-
mantics for λ∧∨ with a left-to-right order of evaluation, based on evaluation contexts

E ::= 〈 〉 | let x = E in e | E ? e1 : e2 | E e | v E

Types. Figure 5 shows the types A in the source language. These include primitive types
B, arrow types A→ B and, most notably, intersections A ∧B and (untagged) unions A ∨B
(hence the name λ∧∨). Note that the source level types are not refined, as crucially, the first
phase ignores the refinements when carrying out the elaboration.

Tags. As is common in dynamically typed languages, runtime values are associated with
type tags, which can be inspected with a type test (cf. JavaScript’s typeof operator). We
model this notion to our static types, by associating each type with a set of possible tags.
The multiplicity arises from unions. The meta-function TAG(A), defined in Figure 6, returns
the possible tags that values of type A may have at runtime.

Well-Formedness. In order to resolve overloads statically, we apply certain restrictions on
the form of union and intersection types, shown by the judgment ` A formalized in Figure 6.
For convenience of exposition, the parts of an untagged union need to have distinct runtime
tags, and intersection types require all conjuncts to have the same tag.

3.2 Target Language (λ×+)
The target language λ×+ eliminates (value-based) overloading and thereby provides a basic,
well-typed skeleton that can be further refined with logical predicates. Towards this end,
unions and intersections are replaced with classical tagged unions, products and DEAD-casts,
that encode the requirements for basic typing.

Terms. Figure 7 shows the terms M of λ×+, which extend the source language with the
introduction of pairs, projections, injections, a case-splitting construct and a special constant
term DEADA�B〈M〉 which denotes an erroneous computation. Intuitively, a DEADA�B〈M〉 is
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Well-Formed Types ` A

` B
` A ` B
` A→ B

` A ` B
TAG(A) = TAG(B)
` A ∧B

` A ` B
TAG(A) ∩ TAG(B) = ∅

` A ∨B

TAG(Num) = {"number"} TAG(A ∧A′) = TAG(A)
TAG(Bool) = {"boolean"} TAG(A ∨A′) = TAG(A) ∪ TAG(A′)
TAG(A→ A′) = {"function"}

Figure 6 Basic Type Well-Formedness

Target Language: Syntax
Expressions M,N ::= c | x | λx.M | M ?M1 :M2 | M1 M2

| (M1,M2) | projkM | inj1 M | inj2 M

| caseM of inj1 x1 ⇒M1 | inj2 x2 ⇒M2 | DEADA�B〈M〉
Values W ::= c | x | λx.M | inj1 W | inj2 W | (M,M) | DEADA�B〈W 〉

Ref. Types T, S ::= {ν :B | p} | x :T → S | T+S | T × S

Target Language: Operational Semantics M −→M ′

TE-ECtx
M −→M ′

E [M ] −→ E [M ′]

TE-App-1
W 6≡ DEADA�B〈W ′〉
c W −→ JcK(W )

TE-App-2
(λx.M) W −→ [W/x] M

TE-Cond-True
true ?M1 :M2 −→M1

TE-Cond-False
false ?M1 :M2 −→M2

TE-Let
let x = W inM −→ [W/x] M

TE-Proj
projk(M1,M2) −→Mk

TE-Case
case injk W of inj1 x1 ⇒M1 | inj2 x2 ⇒M2 −→ [W/xk] Mk

Figure 7 Syntax and Operational Semantics of λ×+

produced in the elaboration phase whenever the actual type A for a term M is incompatible
with an expected type B.

Operational Semantics. As in the source language we define evaluation contexts

E ::= 〈 〉 | let x = E inM | E ?M1 :M2 | E M | v E | injk E
| projkE | DEADA�B〈E〉 | case E of inj1 x1 ⇒M1 | inj2 x2 ⇒M2

and use them to define a small-step operational semantics for the target in Figure 7. Note
how evaluation is allowed in DEAD-casts and DEADA�B〈W 〉 is a value.

Types. The target language is checked against a refinement type checker. Thus, we modify
the type language to account for the new language terms and refinements. Basic Refinement
Types are of the form {ν :B | p}, consisting of the same basic types B as source types, and a
logical predicate p (over some decidable logic), which describes the properties that values
of the type must satisfy. Here, ν is a special value variable that describes the inhabitants
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of the type, that does not appear in the program, but can appear inside the refinement p.
Function types are of the form x :T → S, to express the fact that the refinement predicate of
the return type S may refer to the value of the argument x. Sum and product types have
the usual structure found in ML-like languages.

4 Phase 1: Trust

Terms of λ∧∨ are elaborated to terms of λ×+ by a judgment: Γ ` e :: A↪→M . This is read:
under the typing assumptions in Γ, term e of the source language is assigned a type A and
elaborates to a term M of the target language. This judgment follows closely Dunfield’s
elaboration judgment [10], but with crucial differences that arise due to dynamic, value-based
overloading, which we outline below.

Elaboration Ignores Refinements. A key aspect of the first phase is that elaboration is
based solely on the basic types, i.e. does not take type refinements into account. Hence, the
types assigned to source terms are transparent with respect to refinements; or more precisely,
they work just as placeholders for refinements that can be provided as user specifications.
These specifications are propagated as is during the first phase along with the respective
basic types they are attached to. Due to this transparency of refinements we have decided to
omit them entirely from our description of the elaboration phase.

4.1 Source Language Type-checking and Elaboration
Figure 8 shows the rules that formalize the elaboration process. At a high-level, following
Dunfield [10], unions and intersections are translated to simpler typing constructs like sums
and products (and the attendant injections, pattern-matches, and projections). Unlike the
above work, which focuses on the classical intersection setting where overloading is explicit
via a “merge” construct [22], we are concerned with the dynamic setting where overloading
is value-based, leading to conventional type “errors”.

Elaboration Modes: Strict and Flexible. Thus, one of the distinguishing features of our
type system is its ability to not fail in cases where conventional static type system would
raise type incompatibility errors, but instead elaborate the offending terms to the special
error form DEADA�B〈M〉. However, these error forms do not appear indiscriminately, but
under certain conditions, specified by two elaboration modes: (1) a flexible judgment ( F̀) for
rules that may yield DEADA�B〈M〉 terms, and (2) a strict judgment ( S̀) for those that don’t.
Most elaboration rules come in both flavors, depending on the surrounding rules in a typing
derivation. We write α to parameterize over the two modes.

Intuitively, we use flexible mode when checking calls to non-overloaded functions (with
a single conjunct) and strict mode when checking calls to overloaded ones. In the former
case, a type incompatibility truly signals a (potential) run-time error, but in the latter case,
incompatibility may indicate the wrong choice of overload. Consequently, the elaboration
judgment also states whether the intersection rule has been used, or not, by annotating the
hook-arrow with the label y or n, respectively. As with strictness, we parametrize over n
and y with the variable θ, and use ? to denote that the outcome is not important.

Top-level Elaboration. Our top-level judgment is agnostic of either of the aforementioned
modes. Elaborating programs in an empty context (`) is essentially elaborating in the flexible
sense and assumes we are not in the context of intersection elimination (T-TopLevel).
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Elaboration Typing Γ ` e :: A↪→M

T-TopLevel
· F̀ e :: A n

↪→M

· ` e :: A↪→M
T-Weaken

Γ S̀ e :: A θ
↪→M

Γ F̀ e :: A θ
↪→M

T-Cst
Γ ὰ c :: ty_c θ

↪→ c
T-Let

Γ ὰ e1 :: A1
?
↪→M1 Γ, x :A1 ὰ e2 :: A2

θ
↪→M2

Γ ὰ let x = e1 in e2 :: A2
θ
↪→ let x = M1 inM2

T-Var
x :A ∈ Γ

Γ ὰ x :: A θ
↪→ x

T-If
Γ F̀ e :: Bool n↪→M ∀i ∈ {1, 2} . Γ ὰ ei :: A θ

↪→Mi

Γ ὰ e ? e1 : e2 :: A θ
↪→M ?M1 :M2

T-∧I
∀k ∈ {1, 2} . Γ ὰ v :: Ak

θ
↪→Mk ` A1 ∧A2

Γ ὰ v :: A1 ∧A2
θ
↪→ (M1,M2)

T-∧E
Γ ὰ e :: A1 ∧A2

?
↪→M

Γ ὰ e :: Ak
y
↪→ projkM

T-Lam
` A→ B Γ, x :A ὰ e :: B ?

↪→M

Γ ὰ λx.e :: A→ B
n
↪→ λx.M

T-App

Γ ὰ e1 :: A→ B
y/n
↪→ M1

Γ S̀/L e2 :: A ?
↪→M2

Γ ὰ e1 e2 :: B n
↪→M1 M2

T-⊥
Γ F̀ e :: A θ

↪→M TAG(A) ∩ TAG(B) = ∅

Γ F̀ e :: B θ
↪→ DEADA�B〈M〉

T-∨I
Γ F̀ e :: Ak

θ
↪→M ` A1 ∨A2

Γ F̀ e :: A1 ∨A2
θ
↪→ injk M

T-∨E

Γ, x1 :A1 ὰ E[x1] :: B θ
↪→M1

Γ ὰ e0 :: A1 ∨A2
θ
↪→M0 Γ, x2 :A2 ὰ E[x2] :: B θ

↪→M2

Γ ὰ E[e0] :: B θ
↪→ caseM0 of inj1 x1 ⇒M1 | inj2 x2 ⇒M2

Figure 8 Elaboration Typing rules

Furthermore, an elaboration that succeeds in strict mode also succeeds in flexible mode
(T-Weaken), so all strict rules can be used as flexible ones.

Standard Rules. Rules T-Cst, T-Var are standard and preserve the structure of the
source program. Rule T-If expects the condition e of a conditional expression e ? e1 : e2 to
be of boolean type, and assigns the same type A to each branch of the conditional. Rule
T-Let checks expressions of the form let x = e1 in e2. It assigns a type A1 to expression e1
and checks e2 in an environment extended with the binding of A1 for x.

Intersections. In rule T-∧I the choice of the type we assign to a value v causes different
elaborated terms Wk, as different typing requirements cause the addition of DEAD-casts at
different places. This rule is intended to be used primarily for abstractions, so it’s limited
to accept values as input. Rule T-∧E for eliminating intersections replaces a term e that
is originally typed as an intersection with a projection of that part of the pair that has a
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matching type. By T-∧I values typed at an intersection get a pair form.

Unions. Rule T-∨I for union introduction is standard. The union elimination rule, taken
from Dunfield’s elaboration scheme [10], states that an expression e0 can be assigned a union
type A1 ∨A2 when placed at the “hole” of an evaluation context E, so long as the evaluation
context can be typed with the same type B, when the hole is replaced with a variable typed
as A1 on the one hand and as A2 on the other. While the rule is inherently non-deterministic,
it suffices for a declarative description of the elaboration process; see Dunfield’s subsequent
work on untangling type-checking of intersections and unions [9] for an algorithmic variant
via a let-normal conversion.

Abstraction and Application. Rule T-Lam assumes the arrow type A → B is given as
annotation and is required to conform to the well-formedness constraints. At the crux of our
type system is the rule T-App. Expression e1 can be typed in flexible mode. Depending
on whether intersection elimination was used for e1 we toggle on the mode of checking
e2. To only allow sensible derivations, we disallow the use of the DEAD-cast insertion when
choosing among the cases of an intersection type. Below, we justify this choice using an
example. If on the other hand, the type for e1 is assigned without choosing among the parts
of an intersection, then expression e2 can be typed in flexible mode, potentially producing
DEAD-casts.

Trusting via DEAD-Casts. The cornerstone of the “trust" phase lies in the presence of the
T-⊥ rule. As we mentioned earlier, this rule can only be used in flexible mode. The main
idea here is to allow cases that are obviously wrong, as far as the simple first phase type
system is concerned; but, at the same time, include a DEAD-cast annotation and defer sound
type-checking for the second phase. The premises of this rule specify that a DEAD-cast
annotation will only be used if the inferred and the expected type have different tags. One of
the consequences of this decision is that it does not allow DEAD-casts induced by a mismatch
between higher-order types, as the tags for both types would be the same (most likely
"function"). Thus, such mismatches are ill-typed and rejected in the first phase. This
limitation is due to the limited information that can be encoded using the tag mechanism. A
more expressive tag mechanism could eliminate this restriction but we omit this for simplicity
of exposition.

Semantics of DEAD-Casts. To prove that elaboration preserves source level behaviors, our
design of DEAD-casts preserves the property that the target gets stuck iff the source gets
stuck. That is, source level type “errors” do not lead to early failures (e.g. at function
call boundaries). Instead, DEAD-casts correspond to markers for all source terms that can
potentially cause execution to get stuck. Hence, the target execution itself gets stuck at the
same places as the source – i.e. when applying to a non-function, branching on a non-boolean
or primitive application over the wrong base value, except that in the target, the stuckness
can only occur when the value in question carries a DEAD marker. Consider the source program
(λx.x 1) 0 which gets stuck after the top-level application, when applying 1 to 0. It could be
elaborated to (λx.x 1) DEADA�B〈0〉 (where A and B are respectively Num and Num→ Num)
which also has a top-level application and gets stuck at the second, inner application.

Necessity of elaboration modes. If we allowed the argument of an overloaded call-site to
be checked in flexible context, then for the application f x, where f has been assigned the
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type f :I→ I ∧ B→ B and x :B, the following derivation would be possible:

T-App

T-∧E

...

. . . F̀ f :: I→ I
y
↪→ proj1f

T-⊥

. . . F̀ x :: B n
↪→ x

TAG(B) ∩ TAG(I) = ∅

. . . F̀ x :: I n
↪→ DEADB�I〈x〉

f :I→ I ∧ B→ B, x :B F̀ f x :: I n
↪→ (proj1f) (DEADB�I〈x〉)

But, clearly, the intended derivation here is:

T-App

T-∧E

...

. . . F̀ f :: B→ B
y
↪→ proj2f . . . S̀ x :: B n

↪→ x

f :I→ I ∧ B→ B, x :B F̀ f x :: B n
↪→ (proj2f) x

Subtyping. This formulation has been kept simple with respect to subtyping. The only
notion of subtyping appears in the T-∨I rule, where a type A1 is widened to A1 ∨A2. We
could have employed a more elaborate notion of subtyping, by introducing a subtyping
relation (≤) and a subsumption rule for our typing elaboration. The rules for this subtyping
relation would include, among others, function subtyping:

A′1 ≤ A1 A2 ≤ A′2
A1 → A2 ≤ A′1 → A′2

However, supporting subtyping in higher-order constructs would only be possible with the
introduction of wrappers around functions to accommodate checks on the arguments and
results of functions. So, assuming that a cast c represents a dynamic check the above rule
would correspond to a cast producing relation (.):

A′1 . A1  c1 A2 . A
′
2  c2

A1 → A2 . A
′
1 → A′2  λf.λx.(c2 (f (c1 x)))

This formulation would just complicate the translation without giving any more insight in
the main idea of our technique, and hence we forgo it.

4.2 Source and Target Language Consistency
In this section, we present the theorems that precisely connect the semantics of source
programs with their elaborated targets. The main challenges towards establishing those are
that: (1) the source and target do not proceed in lock-step, a single step of the one may
be matched by several steps of the other (for example evaluating a projection in the target
language does not correspond to any step in the source language), and (2) we must design
the semantics of the DEAD-casts in the target to ensure that DEAD-casts cause evaluation to
get stuck iff some primitive operation in the source gets stuck. We address these, next, with
a number of lemmas and state our assumptions.

Value Monotonicity. This lemma fills in the mismatch that emerges when (non-value)
expressions in the source language elaborate to values in the target language. Informally,
if a source expression e elaborates to a target value W , then e evaluates (after potentially
multiple steps) to a value v that is related to the target value W with an elaboration relation
under the same type. Furthermore, all expressions on the path to the target value v elaborate
to the same value and get assigned the same type.
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I Lemma 1 (Value Monotonicity). If Γ ` e :: A↪→W , then there exists v

(1) e −→∗ v
(2) Γ ` v :: A↪→W

(3) ∀i s.t. e −→∗ ei . Γ ` ei :: A↪→W

Proof. The first two parts are handled similarly to Dunfield’s [10] Lemma 11. The last part
is proved by induction on the length of the path e −→∗ ei. Details of this proof can be found
in the extended version of this paper [29]. J

The reverse of the above lemma also comes in handy. Namely, given a value v that
elaborates to an expression M and gets assigned the type A, there exists a value in the target
language W , such that v elaborates to W and get assigned the same type A.

I Lemma 2 (Reverse Value Monotonicity). If Γ ` v :: A↪→M , then exists W M −→∗ W
and Γ ` v :: A↪→W .

Proof. Similar to proof of Lemma 1. J

This is an interesting result as it establishes that different derivations may assign the
same type to a term and still elaborate it to different target terms. For example, one can
assume derivations that consecutively apply the intersection introduction and elimination
rules. It’s easy to see that the same value v can be used in the following elaborations:

· ` v :: A1 ∧A2↪→ (W1,W2)
· ` v :: A1 ∧A2↪→ (proj1(W1,W2), proj2(W1,W2))︸ ︷︷ ︸

M

Lemma 2 guarantees it will always be the case that M −→∗ (W1,W2). It is up to the
implementation of the type-checking algorithm to produce an efficient target term.

Primitive Semantics. To connect the failure of the DEAD-casts with source programs getting
stuck, we assume that the primitive constants are well defined for all the values of their input
domain but not for DEAD-cast values. This lets us establish that primitive operations c are
invariant to elaboration. Hence, a source primitive application gets stuck iff the elaborated
argument is a DEAD-cast. The forward version of this statement is the following assumption.
I Assumption 1 (Primitive constant application). If (1) · ` c :: A→ B↪→ c, (2) · ` v :: A↪→W ,
and (3) W 6≡ DEAD·�A〈·〉, then (i) c v −→ JcK(v), (ii) c W −→ JcK(W ), and (iii) · ` JcK(v) ::
B↪→ JcK(W ).

Substitution lemma. The proof of soundness relies upon the following substitution lemma.

I Lemma 3 (Substitution). If Γ, x :A ` e :: A′↪→M and Γ ` v :: A↪→W then Γ ` [v/x] e ::
A′↪→ [W/x] M .

Proof. Similar to Dunfield’s substitution proof [10] (Lemma 12). J

We use the above lemmas and assumptions to obtain a consistency result, analagous to
Dunfield’s Consistency Theorem [10], which states that the elaboration produces terms that
are consistent with the source in that each step of the target is matched by a corresponding
step of the source, i.e. the behaviors of the target under-approximate the behaviors of the
source.
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I Theorem 4 (Consistency). If · ` e :: A↪→M and M −→M ′ then there exists e′ such that
e −→∗ e′ and · ` e′ :: A↪→M ′.

Proof. The proof of this theorem is by induction on the derivation · ` e :: A↪→M , adapting
the proof scheme given by Dunfield [10], and using Lemma 1. Details of this proof can be
found in the extended version of this paper [29]. J

While this suffices to prove soundness – intuitively if the target does not “go wrong” then
the source cannot “go wrong” either – it is not wholly satisfactory as a trivial translation that
converts every source program to an ill-typed target also satisfies the above requirement. So,
unlike Dunfield [10], we also establish a completeness result stating that if the source term
steps, then the elaborated program will also eventually step to a corresponding (by elaboration)
term. Theorem 5 declares that behaviors of the elaborated target over-approximate those of
the source, and hence, in conjunction with Theorem 4, ensure that the source “goes wrong”
iff the target does.

I Theorem 5 (Reverse Consistency). If · ` e :: A↪→M and e −→ e′ then there exists M ′
such that · ` e′ :: A↪→M ′, and M −→+ M ′.

Proof. Similar to the proof of Theorem 4, using adapted versions of the lemmas used by
Dunfield [10] and Lemma 2. Again, details can be found in the accompanying report [29]. J

5 Phase 2: Verify

At the end of the first phase, we have elaborated the source with value based overloading
into a classically well-typed target with conventional typing features and DEAD-casts which
are really assertions that explicate the trust assumptions made to type the source. Thanks
to Theorems 4 and 5 we know the semantics of the target are equivalent to the source. Thus,
to verify the source, all that remains is to prove that the target will not “go wrong”, that is
to prove that the DEAD-casts are indeed never executed at run-time.

One advantage of our elaboration scheme is that at this point any program analysis
for ML-like languages (i.e. supporting products, sums, and first class functions) can be
applied to discharge the DEAD-cast [8]: as long as the target is safe, the consistency theorems
guarantee that the source is safe. In our case, we choose to instantiate the second phase with
refinement types as they: (1) are especially well suited to handle higher-order polymorphic
functions, like minIndex from Figure 1, (2) can easily express other correctness requirements,
e.g. array bounds safety, thereby allowing us to establish not just type safety but richer
correctness properties, and, (3) are automatically inferred via the abstract interpretation
framework of Liquid Typing [23]. Next, we recall how refinement typing works to show how
DEAD-cast checking can be carried out, and then present the end-to-end soundness guarantees
established by composing the two phases.

5.1 Refinement Type-checking
We present a brief overview of refinement typing as the target language falls under the scope
of existing refinement type systems [18], which can, after accounting for DEAD-casts, be reused
as is for the second phase. Similarly, we limit the presentation to checking; inference follows
directly from Liquid Type inference [23]. Figure 9 summarizes the refinement system. The
type-checking judgment is G `M :: T , where type environment G is a sequence of bindings of
variables x to refinement types T and guard predicates, which encode control flow information
gathered by conditional checks. As is standard [18] each primitive constant c has a refined
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Refined Typechecking G `M :: T

R-Sub
G `M :: T1 G ` T1 v T2

G `M :: T2

R-Cst
G ` c :: ty_c

R-Var
x :T ∈ G

G ` x :: sngl(T, x)
R-Let

G `M1 :: T1 G, x :T1 `M2 :: T2

G ` let x = M1 inM2 :: T2

R-If
G `M :: Bool G,M `M1 :: T G,¬M `M2 :: T

G `M ?M1 :M2 :: T

R-Lam
G, x : Tx;G `M :: T
G ` λx.M :: Tx → T

R-App
G `M1 :: Tx → T G `M2 :: Tx

G `M1 M2 :: [M2/x] T

R-Pair
∀k ∈ {1, 2} . G `Mk :: Tk
G ` (M1,M2) :: T1 × T2

R-Proj
G `M :: T1 × T2

G ` projkM :: Tk

R-Inj
G `M :: Tk

G ` injk M :: T1+T2

R-Case
G `M :: T1+T2 G, x1 : T1 `M1 :: T G, x2 : T2 `M2 :: T

G ` caseM of inj1 x1 ⇒M1 | inj2 x2 ⇒M2 :: T

Refinement Subtyping G ` T1 v T2

v-Base
Valid(JG K ∧ J p K⇒ J p′ K)
G ` {ν :B | p} v {ν :B | p′}

v-Fun
G ` T ′x v Tx G, x :T ′x ` T v T ′

G ` (x : Tx)→ T v (x : T ′x)→ T ′

Figure 9 Refined Type-checking

type ty_c, and a variable x with type T is typed as sngl(T, x) which is {ν :B | ν = x} if T is
a basic type B and T otherwise.

Checking DEAD-casts. The refinement system verifies DEAD-casts by treating them as special
function calls, i.e. discharging them via the application rule R-App. Formally, DEADA�B〈M〉
is treated as call to:

DEADA�B :: Bot([A])→ Bot([B])

The notation [·] denotes the elaboration of λ∧∨ types to λ×+ types [10]:

[B] .= B [A ∧B] .= [A] × [B] [A ∨B] .= [A]+[B] [A→ B] .= [A]→ [B]

The meta-function Bot(T ) .= Tx(T, false) where:
Tx(B, r) .= {ν :B | r} Tx(S+T, r) .= Tx(S, r)+Tx(T, r)
Tx(S → T, r) .= Tx(S, ¬r)→ Tx(T, r) Tx(S × T, r) .= Tx(S, r) × Tx(T, r)

Returning to rule R-App for DEAD-casts and inverting, expression M gets assigned
a refinement type T . For simplicity we assume this is a base type B. Due to R-Sub
we get the subtyping constraint: G ` {ν :B | p} v {ν :B | false}, which generates the VC:
Valid(JG K ∧ J p K⇒ J false K). This holds if the environment combined with the refinement
in the left-hand side is inconsistent, which means that the gathered flow conditions are
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infeasible, hence dead-code [18]. Thus, the refinements statically ensure that the specially
marked DEAD values are never created at run-time. As only DEAD terms cause execution to
get stuck, the refinement verification phase ensures that the source is indeed type safe.

Conditional Checking. R-If and R-Case check each branch of a conditional or case
splitting statement, by enhancing the environment with a guard (M or ¬M) or the right
binding (x :T1 or x :T2), that encode the boolean test performed at the condition, or the
structural check at the pattern matching, respectively. Crucially, this allows the use of “tests”
inside the code to statically verify DEAD-casts and other correctness properties. The other
rules are standard and are described in the refinement type literature.

Correspondence of Elaboration and Refinement Typing. The following result establishes
the fact that the type A assigned to a source expression e by elaboration and the type T
assigned by refinement type-checking to the elaborated expression M are connected with
the relation: [A] = ‖T‖, where ‖T‖ is merely a (recursive) elimination of all refinements
appearing in T . The notation [Γ] = ‖G‖ means that for each binding x :A ∈ Γ there exists
x :T ∈ G, such that [A] = ‖T‖, and vice versa.

I Lemma 6 (Correspondence). If Γ ` e :: A↪→M , G ` M :: T and [Γ] = ‖G‖, then
[A] = ‖T‖.

Proof. By induction on pairs of derivations: Γ ` e :: A↪→M and G `M :: T . Details of this
proof can be found in the extended version of this paper [29]. J

The target language satisfies a progress and preservation theorem [18]:

I Theorem 7 (Refinement Type Safety). If · ` M : T then either M is a value or there
exists M ′ such that M −→M ′ and · `M ′ : T .

Proof. Given by Vazou et al. [?] for a similar language. J

5.2 Two-Phase Type Safety
We say that a source term e is well two-typed if there exists a source type A, target term M

and target (refinement) type T such that: (1) · ` e :: A↪→M , and, (2) · `M :: T . That is, e
is well two-typed if it elaborates to a refinement typed target. The Consistency Theorems 4
and 5, along with the Safety Theorem 7, yield end-to-end soundness: well two-typed terms
do not get stuck, and step to well two-typed terms.

I Theorem 8 (Two-Phase Soundness). If e is well two-typed then, either e is a value, or
there exists e′ such that:

(1) (Progress) e −→ e′

(2) (Preservation) e′ is well two-typed.

Proof. By induction on pairs of derivations: Γ ` e :: A↪→M and G `M :: T . Details are to
be found in the extended version of this paper [29]. J

6 Related Work

We focus on the highlights of prior work relevant to the key points of our technique: static
types for dynamic languages, intersections and union types, and refinement types.
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Types for Dynamic Functional Languages. Soft Typing [5] incorporates static analysis to
statically type dynamic languages: whenever a program cannot be proven safe statically,
it is not rejected, but instead runtime checks are inserted. Henglein and Rehof [17] build
up on this work by extending soft typing’s monomorphic typing to polymorphic coercions
and providing a translation of Scheme programs to ML. These works foreshadow the notion
of gradual typing [24] that allows the programmer to control the boundary between static
and dynamic checking depending on the trade-off between the need for static guarantees
and deployability. Returning to purely static enforcement, Tobin-Hochstadt et al. [27, 28]
formalize the support for type tests as occurrence typing and extend it to an inter-procedural,
higher-order setting by introducing propositional latent predicates that reflect the result of
tests in Typed Racket function signatures.

Types for Dynamic Imperative Languages. Thiemann [26] and Anderson et al. [1] describe
early attempts towards static type systems for JavaScript, and Furr et al. [15] present DRuby,
a tool for type inference for Ruby scripts. However, these systems do not handle value-based
overloading (like TypeScript, DRuby allows overloaded specifications for external functions).
Flow typing [16] and TeJaS [19] account for tests using flow analysis, bringing occurrence
typing to the imperative JavaScript setting, but, unlike our approach, they restrict themselves
to a fixed set of type-testing idioms (e.g. typeof), precluding general value-based overloading
e.g. as in reduce from Figure 1.

Logics for Dynamic Languages. The intuition of expressing subtyping relations as logical
implication constraints and using SMT solvers to discharge these constraints allows for a more
extensive variety of typing idioms. Bierman et al. [3] investigate semantic subtyping in a first
order language with refinements and type-test expressions. In nested refinement types [7],
the typing relation itself is a predicate in the refinement logic and a feature-rich language
of predicates accounts for heavily dynamic idioms, like run-time type tests, value-indexed
dictionaries, polymorphism and higher order functions. While program logics allow the use
of arbitrary tests to establish typing, the circular dependency between values and basic types
leads to two significant problems in theory and practice. First, the circular dependency
complicates the metatheory which makes it hard to add extra (basic) typing features (e.g.
polymorphism, classes) to the language. Second, the circular dependency complicates the
inference of types and refinements, leading to significant annotation overheads which make
the system difficult to use in practice. In contrast, two-phase typing allows arbitrary type
tests while enabling the trivial composition of soundness proofs and inference algorithms.

Intersection and Union Types. Central to our elaboration phase are intersection and union
types: Pierce [21] indicates the connection between unions and intersections with sums and
products, that is the basis of Dunfield’s elaboration scheme [10] on which we build. However,
Dunfield studies static source languages that use explicit overloading via a merge operator [22].
In contrast, we target dynamic source languages with implicit value based overloading, and
hence must account for “ill-typed” terms via DEAD-casts discharged via the second phase
refinement check. Castagna et al. [6] describe a λ&-calculus, where functions are overloaded
by combining several different branches of code. The branch to be executed is determined at
run-time by using the arguments’ typing information. This technique resembles the code
duplication that happens in our approach, but overload resolution (i.e. deciding which branch
is executed) is determined at runtime whereas we do so statically.
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Refinement Types. DML [30] is an early refinement type system composing ML’s types
with a decidable constraint system. Hybrid type checking [18] uses arbitrary refinements over
basic types. A static type system verifies basic specifications and more complex ones are
defered to dynamically checked contracts, since the specification logic is statically undecidable.
In these cases, the source language is well typed (ignoring refinements), and lacks intersections
and unions. Our second phase can use Liquid Types [23] to infer refinements using predicate
abstraction.

7 Conclusions and Future Work

In this paper, we introduce two-phased typing, a novel framework for analyzing dynamic
languages where value-based overloading is ubiquitous. The advantage of our approach over
previous methods is that, unlike purely type-based approaches [28], we are not limited to a
fixed set of tag- or type- tests, and unlike purely program logic-based approach [7], we can
decouple reasoning about basic typing from values, thereby enabling inference.

Hence, we believe two-phased typing provides an ideal foundation for building expressive
and automatic analyses for imperative scripting languages like JavaScript. However, this is
just the first step; much remains to achieve this goal. In particular we must account for the
imperative features of the language. We believe that decoupling makes it possible to address
this problem by applying various methods for tracking mutation and aliasing [31] in the first
phase, and we intend to investigate this route in future work to obtain a practical verifier for
TypeScript.
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